Натриевые каналы аксона также работают по принципу "все или ничего" и при этом независимо друг от друга, что было установлено исследованиями, проведенными Ф. Сигуорсом (медицинский факультет Йельского университета). В немиелинизированной области мембраны аксона, названной перехватом Ранвье, во время распространения нервного импульса обычно открывается около 10000 каналов, I-изменения проницаемости для натрия во времени; II-получена при 12-кратном усилении по сравнению с верхней; показаны флуктуации проницаемости вокруг среднего значения, обусловленные вероятностным характером процессов открывания и закрывания каналов.
   Развитие нервных импульсов в телах нейронов требует координированного открывания и закрывания каналов пяти типов, пропускающих разные виды ионов (натрия, калия или кальция). Вклад различных каналов в нервный импульс можно оценить, решая систему нелинейных дифференциальных уравнений. А. Зависимость от времени фактически зарегистрированных (I) и вычисленных на основании уравнений (II) изменений потенциала внутри тела нейрона. Б. Изменения во времени всех токов, протекающих через основные типы каналов. Для возникновения серии нервных импульсов необходимо сложное взаимодействие каналов разных типов. Исследования, на основании которых построены данные кривые, были проведены Дж. Коннором в Иллинойском университете и автором статьи на медицинском факультете Йельского университета.
   Воротные механизмы, регулирующие открывание и закрывание мембранных каналов, представлены двумя основными типами. Канал одного типа, упоминавшийся выше при описании нервного импульса, открывается и закрывается в ответ на изменения потенциала клеточной мембраны, поэтому говорят, что он управляется электрически. Второй тип каналов управляется химически. Такие каналы реагируют лишь слабо, если вообще реагируют, на изменения потенциала, но открываются, когда особая молекула - медиатор - связывается с некоторой рецептор ной областью на белке канала. Химически управляемые каналы обнаружены в рецептивной мембране синапсов: они ответственны за перевод химических сигналов, посылаемых окончаниями аксона в процессе синаптической передачи, в изменения ионной проницаемости. Химически управляемые каналы обычно именуют в соответствии с их специфическим медиатором. Так, например, говорят об АХ-активируемых каналах или о ГАМК-активируемых каналах (АХ ацетилхолин, ГАМК - гамма-аминомасляная кислота). Электрически управляемые каналы принято называть по иону, наиболее легко проходящему через данный канал.
   Функционируя, белки обычно изменяют свою форму. Такие изменения формы, называемые конформационными, особенно ярко выражены у сократимых белков, ответственных за движение клеток, но они не менее важны и для многих ферментов и других белков. Конформационные изменения канальных белков составляют основу воротных механизмов, поскольку они обеспечивают открывание и закрывание канала за счет малых перемещений частей молекулы, расположенных в критическом месте и позволяющих блокировать или освобождать пору.
   Когда электрически или химически управляемые каналы открываются и пропускают ионы, возникает электрический ток, который можно измерить. Совсем недавно в нескольких случаях удалось зарегистрировать ток, проходящий через одиночный канал, так что его открывание и закрывание можно было исследовать непосредственно. Обнаружилось, что время, на протяжении которого канал остается открытым, варьирует случайным образом, так как открывание и закрывание канала есть результат некоторых конформационных изменений белковой молекулы, встроенной в мембрану. Наличие случайности в воротных процессах проистекает из случайных столкновений молекул воды и других молекул со структурными элементами канала.
   Кроме ионных насосов и каналов для выполнения основных функций нервной системы нейронам требуются и другие мембранные белки.
   Одним из таких необходимых белков является фермент аденилатциклаза, который регулирует внутриклеточную концентрацию циклического аденозинмонофосфата (циклического АМФ). Циклические нуклеотиды, такие, как циклический АМФ, существенны для ряда клеточных функций, механизмы которых в деталях еще не изучены. Мембранный фермент аденилатциклаза, по-видимому, состоит из двух основных субъединиц - каталитической и регуляторной. Каталитическая субъединица способствует образованию циклического АМФ. Различные регуляторные субъединицы, которые, как полагают, физически обособлены от каталитических, могут связывать специфические молекулы (включая медиаторы, открывающие и закрывающие каналы) и тем самым контролировать содержание циклического АМФ в клетке. Регуляторные субъединицы разных типов называются в соответствии с теми молекулами, которые в физиологических условиях с ними связываются; одна из них, например, названа серотонинактивируемой аденилатциклазой. Известно, что аденилатциклаза и родственные ей мембранные ферменты выполняют в нейронах ряд регуляторных функций, и точный механизм их действия является сейчас объектом интенсивного исследования.
   В процессе эмбриогенеза нервной системы клетка должна уметь узнавать другие клетки, чтобы рост каждой из них происходил в "правильном" направлении и заканчивался образованием "правильных" связей. Процесс узнавания клетки клеткой и формирования на основе этого соответствующей структуры определяется мембранными белками специального класса, связанными с особыми углеводами. Изучение белково-углеводных комплексов, ответственных за узнавание клеток, находится пока на ранней стадии.
   Внутренние мембранные белки, о которых я здесь рассказываю, не распределяются по всей клеточной мембране однородно и не присутствуют в равных количествах во всех нейронах. Плотность и тип белка определяются потребностями клетки и различны для разных нейронов и для разных частей одного и того же нейрона. Так, плотность каналов определенного типа варьирует от 0 до 10000 на квадратный микрон. Аксоны обычно не имеют химически управляемых каналов, тогда как в постсинаптических мембранах дендритов плотность таких каналов лимитируется лишь упаковкой канальных молекул. В то же время мембраны дендритов обычно имеют мало электрически управляемых каналов, тогда как в мембранах аксонов их плотность может доходить в некоторых местах до 1000 каналов на квадратный микрон.
   Внутренние мембранные белки синтезируются первоначально в теле нейрона и хранятся в мембране в небольших пузырьках. Для перемещения таких пузырьков от места их синтеза к месту их функционирования нейроны имеют специальную транспортную систему. Эта система, по-видимому, перемещает пузырьки небольшими скачками с помощью сократимых белков. Достигнув места своего назначения, белки встраиваются в поверхностную мембрану, где и функционируют до тех пор, пока не будут удалены оттуда и не распадутся внутри клетки. Точно не известно, каким образом клетки решают, куда какой мембранный белок поместить. Также неизвестен и механизм, который регулирует синтез, встраивание и разрушение мембранных белков. Метаболизм мембранных белков составляет одну из центральных проблем биологии клетки.
   Каким образом свойства различных мембранных белков, которые я здесь обсуждаю, связаны с функцией нейрона? Чтобы ответить на этот вопрос, вернемся к рассмотрению нервного импульса и проанализируем более детально те молекулярные процессы, которые лежат в основе его генерации и распространения. Как мы видели, внутренность нейрона имеет отрицательный потенциал в 70 мВ относительно наружной среды. Этот "потенциал покоя" является следствием ионных градиентов, создаваемых натриевым насосом, и присутствием в клеточной мембране некоторого класса постоянно открытых каналов, избирательно проницаемых для ионов калия. Насос выталкивает наружу ионы натрия, обменивая их на ионы калия, и делает внутриклеточную среду в 10 раз богаче ионами калия по сравнению с наружной средой. Калиевые каналы мембраны позволяют ионам калия, находящимся в непосредственной близости от мембраны, выходить из клетки совершенно свободно. В состоянии покоя проницаемость мембраны для ионов натрия низка, так что не существует почти никакого встречного потока ионов натрия из внешней среды во внутреннюю, несмотря на то что внешняя среда в 10 раз богаче ионами натрия, чем внутренняя. В связи с этим поток калия создает дефицит положительных зарядов на внутренней поверхности клеточной мембраны и избыток положительных зарядов на ее наружной поверхности. В результате возникает разность потенциалов в 70 мВ, причем внутренность клетки имеет отрицательный потенциал по отношению к наружной среде.
   Распространение нервного импульса определяется присутствием в мембране нейрона электрически управляемых натриевых каналов, открывание и закрывание которых ответственно за потенциал действия. Каковы характеристики этих важных канальных молекул? Хотя с химической точки зрения натриевый канал еще не достаточно хорошо изучен, известно, что он является белком с молекулярным весом в диапазоне от 250000 до 300000. Диаметр поры этого канала составляет 0,4-0,6 нм; через такую пору могут проходить ионы натрия, связанные с молекулами воды. На поверхности канала имеется много заряженных групп, размещенных в критических точках. Эти заряды обусловливают наличие большого электрического дипольного момента, который меняется по направлению и по величине в соответствии с конформационными изменениями канала, сопровождающими переход из закрытого состояния в открытое.
   Поскольку поверхностная мембрана клетки очень тонка, трансмембранная разность потенциалов в 70 мВ создает внутри покоящейся мембраны сильное электрическое поле порядка 100 кВ/см. Подобно тому как магнитные диполи имеют тенденцию ориентироваться вдоль силовых линий магнитного поля, электрические диполи белка натриевого канала стремятся встать параллельно линиям электрического поля мембраны. Изменения напряженности электрического поля могут переводить канал из закрытого состояния в открытое. По мере того как под влиянием входящих ионов натрия внутренняя поверхность мембраны становится все более положительной, натриевые каналы все дольше находятся в открытом состоянии. Процесс открывания натриевых каналов под влиянием изменения потенциала мембраны называют активацией натриевых каналов.
   Этот процесс останавливается благодаря развитию другого процесса, названного натриевой инактивацией. Трансмембранная разность потенциалов, явившаяся причиной открывания натриевых каналов, затем переводит их в особое закрытое конформационное состояние, отличное от состояния, характерного для канала в покое. Второе закрытое состояние, названное состоянием инактивации, развивается медленнее, чем процесс активации, так что до того, как каналы закроются под влиянием инактивации, они остаются короткое время открытыми. В состоянии инактивации каналы пребывают несколько миллисекунд, а затем возвращаются в нормальное состояние покоя.
   Полный цикл активации и инактивации в норме включает в себя открывание и закрывание тысяч натриевых каналов. Как можно узнать, с чем связано увеличение общей мембранной проницаемости: с открыванием и закрыванием некоторого числа каналов по закону "все или ничего" или с работой каналов, у каждого из которых проницаемость может меняться градуально? Частичный ответ на этот вопрос был получен с помощью новой методики, которая соотносит флуктуации мембранной проницаемости с вероятностным характером конформационных изменений канальных белков. Можно много раз вызывать открывание канала и вычислить среднюю проницаемость за какое-то время, а также точные ее значения в каждом испытании. Флуктуации точных значений проницаемости относительно среднего значения укладываются в 10% или около того. Анализ этих флуктуации показывает, что натриевые каналы работают по закону "все или ничего" и что открывание каждого канала увеличивает проводимость мембраны на 8-10-12 Ом-1. Одним из принципиальных моментов для понимания работы нейрона является необходимость развития сколько-нибудь полной теории, которая опишет поведение натриевых каналов и свяжет его с молекулярной структурой канального белка.
   Как я уже кратко отметил выше, аксоны также имеют электрически управляемые калиевые каналы, которые помогают прекращать нервный импульс, позволяя ионам калия выходить из аксона, противодействуя тем самым входящему потоку ионов натрия. В теле нейрона ситуация еще более сложная, поскольку мембрана там пронизана каналами пяти типов. Различные каналы открываются с различными скоростями, остаются открытыми на протяжении разных интервалов времени и являются избирательно проницаемыми для разных ионов (натрия, калия и кальция).
   Наличие в теле нейрона каналов пяти типов (в аксоне их только два) приводит к более сложным законам генерации нервных импульсов. Если на аксон подается некоторый постоянный стимул, аксон генерирует только одиночный импульс в ответ на начало стимуляции. Тело же клетки генерирует в таком случае целый ряд импульсов, частота которых определяется интенсивностью стимула.
   Нейроны способны генерировать нервные импульсы в широком диапазоне частот: от одного или менее до нескольких сотен в секунду. Все нервные импульсы имеют одну и ту же амплитуду, так что информация, которую они несут, представлена числом импульсов, генерируемых в единицу времени: такой способ кодирования известен под названием частотного кодирования. Чем больше величина сигнала, который должен быть передан, тем выше частота разряда.
   Когда нервный импульс проходит по всей длине аксона и прибывает к его окончанию, из пресинаптической мембраны высвобождается один из видов медиаторов. Этот медиатор диффундирует к постсинаптической мембране, где индуцирует открывание химически управляемых каналов. Ионы, проходящие через открытые каналы, вызывают изменения потенциала, известные под названием синаптических потенциалов.
   Большая часть того, что известно о синаптических механизмах, получена в экспериментах на определенном синапсе: нервно-мышечном соединении, управляющем сокращением мышц лягушки. Аксон мотонейрона лягушки проходит на протяжении нескольких сотен микрон вдоль поверхности мышечной клетки, образуя несколько сотен синаптических контактов на расстояниях порядка микрона друг от друга. В каждой пресинаптической области легко обнаружить характерные синаптические пузырьки.
   В синаптическом пузырьке содержится около 10000 молекул медиатора ацетилхолина. Когда нервный импульс достигает синапса, запускается цепь событий, кульминацией которых являются слияние пузырька с пресинаптической мембраной и происходящее благодаря этому высвобождение ацетилхолина в щель между пресинаптической и постсинаптической мембранами; этот процесс называют экзоцитозом. Слившийся с мембраной пузырек в дальнейшем отделяется от нее и быстро вновь наполняется ацетилхолином, чтобы затем вновь опорожниться.
   В последнее время были вскрыты многие детали событий, приводящих к экзоцитозу. Выяснилось, что слияние пузырьков с пресинаптической мембраной, по всей видимости, запускается быстрым, но кратковременным увеличением концентрации кальция в окончании аксона. Прибытие в окончание нервного импульса приводит к открыванию химически управляемых кальциевых каналов и появлению потока кальция внутрь окончания. Однако наблюдающееся вследствие этого увеличение концентрации кальция бывает лишь кратковременным, поскольку в окончании содержится специальный механизм, который быстро устраняет свободный кальций и восстанавливает его концентрацию до нормального, очень низкого уровня. Кратковременный резкий подъем уровня свободного кальция приводит к слиянию заполненных медиатором пузырьков с пресинаптической мембраной, но точный механизм этого важного процесса еще не совсем понятен.
   Интересные детали структуры пресинаптической мембраны были выявлены методом криоскалывания, который позволяет разъединить слои двуслойной мембраны и делает внутренние мембранные белки доступными для исследования методом электронной микроскопии. В нервно-мышечном соединении лягушки на ширине каждого синапса тянется двойной ряд крупных мембранных белков. К этим белкам или вблизи них прикрепляются синаптические пузырьки. Только такие пузырьки могут сливаться с мембраной и выделять медиатор; другие пузырьки, по-видимому, остаются в резерве на некотором расстоянии от мембраны. Слияние пузырька с мембраной является случайным процессом, и каждый пузырек ведет себя при этом независимо от других.
   Нервно-мышечное соединение лягушки; электронная микрофотография получена Хойзером. Аксон отделяется от мышечной клетки синаптической щелью. Синаптические пузырьки группируются вдоль пресинаптической мембраны; ближе к центру видны два синаптических контакта. Постсинаптическая мембрана мышечной клетки имеет одну особенность, не обнаруживаемую в других синапсах: против каждого контакта мембрана образует складки.
   Реплики пресинаптической мембраны нервно-мышечного соединения лягушки после криоскалывания. А. Состояние мембраны через 3 мс после раздражения мышцы. Через мембрану аксона тянется двойной ряд частиц - мембранных белков, которые могут быть либо кальциевыми каналами, либо структурными белками, присоединяющими к себе пузырьки. Б. Состояние мембраны через 5 мс после стимуляции. Стимуляция привела к слиянию синаптических пузырьков с пресинаптической мембраной и образованию углублений.
   Менее чем за 100 микросекунд ацетилхолин высвобождается из слившишхся с мембраной пузырьков, пересекает синаптическую щель и связывается с ацетилхолиновым рецептором - внутренним мембранным белком, встроенным в постсинаптическую мембрану. Рецептор одновременно является канальным белком, химически управляемым ацетилхолином. Когда к каналу прикрепляются две молекулы ацетилхолина, они снижают энергетический уровень молекулы белка в конформации, соответствующей открытому состоянию, и тем самым увеличивают вероятность того, что канал будет открыт. Переход канала в открытое состояние является случайным событием; среднее время пребывания в этом состоянии около миллисекунды. Каждый пакет из 10000 ацеталхолиновых молекул приводит к открыванию примерно 2000 каналов.
   Медиатор выделяется в щель синаптического контакта между нейронами из пузырьков, которые сливаются с пресинаптической мембраной аксона и раскрываются; этот процесс назван экзоцитозом. На данной электронной микрофотографии нервно-мышечного синапса лягушки пузырьки аксонного окончания запечатлены в момент высвобождения ацетилхолина; микрофотография получена Хойзером.
   Синаптические пузырьки группируются вблизи пресинаптической мембраны. На схеме показаны предположительные стадии экзоцитоза. Заполненные пузырьки движутся к синаптической щели, сливаются с мембраной, выделяют содержимое, а затем вновь отделяются от мембраны, восстанавливают свою форму и заполняются медиатором.
   За тот короткий период, в течение которого канал остается открытым, через него проходит около 20000 ионов натрия и приблизительно столько же ионов калия. В результате этих ионных потоков трансмембранная разность потенциалов уменьшается почти до нуля. Насколько близко она подходит к нулю, зависит от того, как много каналов было открыто и как долго они оставались открытыми. Ацетилхолин, высвобожденный типичным нервным импульсом, приводит к возникновению постсинаптического потенциала, или изменению напряжения, длящегося всего около пяти миллисекунд. Поскольку постсинаптические потенциалы обусловлены работой каналов, управляемых химически, а не электрически, их параметры сильно отличаются от параметров нервного импульса. Они обычно меньше по амплитуде, имеют большую длительность и могут плавно меняться по величине в зависимости от количества выделенного медиатора и, следовательно, от числа открытых каналов.
   Различные типы химически управляемых каналов демонстрируют разную избирательность. Некоторые из них сходны с ацетилхолиновым каналом, пропускающим ионы натрия и калия почти без предпочтения. Другие каналы высоко избирательны. Изменение потенциала, возникающее на данном синапсе, зависит от избирательности открывающихся каналов. Если в клетку входят положительные ионы, происходит изменение потенциала в положительном направлении. Сдвиги потенциала в положительную сторону имеют тенденцию открывать электрически управляемые каналы и способствовать генерации нервных импульсов; в связи с этим они получили название возбуждающих постсинаптических потенциалов. Если положительные ионы (обычно калий) выходят из клетки, происходит изменение потенциала в отрицательном направлении, что способствует закрыванию электрически управляемых каналов. Такие постсинаптические потенциалы противодействуют возникновению нервных импульсов, и поэтому они названы тормозными. И возбуждающие, и тормозные постсинаптические потенциалы обычны для нейронов мозга.
   Ацетилхолиновый канал в постсинаптической мембране открывается молекулами ацетилхолина, выделяемыми в синаптическую щель. Рисунок изображает ацетилхолиновый рецептор в нервно-мышечном соединении лягушки. Две молекулы ацетилхолина быстро связываются с закрытым каналом в покое и формируют комплекс из рецептора и ацетилхолина (1, 2). Этот комплекс претерпевает конформационные изменения, в результате которых канал открывается для прохождения ионов натрия и калия (3). Время, необходимое для конформационных изменений комплекса, лимитирует скорость реакции. Канал остается открытым в среднем около 1 мс и затем вновь превращается в рецептор-ацетилхолиновый комплекс. Пока канал открыт, через него проходит около 20000 ионов натрия и равное количество ионов калия. Ацетилхолин быстро отделяется и разрушается ферментом ацетилхолинэстеразой.
   Синапсы мозга отличаются от синапсов нервно-мышечного соединения в нескольких аспектах. В то время как в нервно-мышечных соединениях ацетилхолин всегда действует возбуждающе, действие того же самого вещества в мозгу в одних синапсах является возбуждающим, а в других тормозным. И если в нервно-мышечных соединениях медиатором обычно служит именно ацетилхолин, то каналы мозговых синапсов регулируются самыми различными медиаторами. Однако каждое данное синаптическое окончание выделяет только один тип медиатора, и в соответствующей постсинаптической мембране имеются каналы, управляемые этим медиатором. В противоположность активируемым ацетилхолином каналам нервно-мышечного синапса, всегда открывающимся примерно на одну миллисекунду, в некоторых типах мозговых синапсов имеются каналы, открывающиеся на доли миллисекунды, а в некоторых других каналы могут оставаться открытыми сотни миллисекунд. Последнее большое различие состоит в том, что в области нервно-мышечного соединения лягушки аксон образует сотни синаптических контактов с мышечной клеткой, а в мозгу аксоны обычно устанавливают только один-два синаптических контакта с данным нейроном. Как и можно было ожидать, такие различия в функциональных свойствах коррелируют со значительными различиями в структуре.
   Как мы видели, интенсивность стимула кодируется частотой импульсов. В синапсе декодирование производится с помощью двух процессов: временной суммации и пространственной суммации. В процессе временной суммации каждый постсинаптический потенциал добавляется к суммарному потенциалу предшественников, вызывая таким образом изменение потенциала, средняя амплитуда которого отражает частоту поступающих импульсов. Другими словами, нейрон, который разряжается с высокой частотой, выделяет из своих синаптических окончаний больше молекул медиатора, чем нейрон, разряжающийся с меньшей частотой. А чем больше молекул медиатора выделяется за данное время, тем больше каналов открывается в постсинаптической мембране и, следовательно, тем выше постсинаптический потенциал. Пространственная суммация - это в некотором смысле эквивалентный процесс, только он отражает интеграцию нервных импульсов, прибывающих от всех нейронов, находящихся в синаптическом контакте с данным нейроном. Итоговое изменение потенциала, получившееся в результате временной и пространственной суммации, кодируется частотой нервных импульсов для передачи в другие клетки, расположенные в нейронной сети "ниже по течению".
   Я описал здесь то, что обычно понимают под нормальной передачей информации в нервных сетях, при которой изменения постсинаптического потенциала кодируются частотой нервных импульсов и передаются по аксону другим нервным клеткам. Однако в последние годы было обнаружено, что в некоторых случаях постсинаптический потенциал не трансформируется в нервный импульс. Так, изменение напряжения, связанное с синаптическим потенциалом, может непосредственно вызвать выделение медиатора из соседней зоны без возникновения импульса. Полагают, что такое непосредственное воздействие может играть роль в синаптических контактах между дендритами, а также в некоторых цепях с обратной связью, где один дендрит вступает как пресинаптический в контакт с другим дендритом, а тот в свою очередь, тоже как пресинаптический, вступает в контакт с первым. Такие короткие цепи обратной связи, по-видимому, обычны для мозга, но их роль в переработке информации пока еще не выяснена.