Такие аппараты стала выпускать фирма "Зибе и Горман" - ведущая фирма мира в данной области техники. Он является прямым предком нынешних горноспасательных приборов, респираторов для пожарных, а также спасательных дыхательных аппаратов подводников. Но вместо стекла для всего лица (как в маске Рукеройля и Дене-руза) Флюсе применил менее совершенные очки. А надо заметить, что в те дни изобретатели работали в одиночку, не зная, что происходит даже в соседней провинции, не говоря уже о других государствах.
   В дальнейшем Флюсе, Зибе и Горман, а затем Флюсе и Дэвис создали новые кислородные приборы, снабженные поглотителями углекислого газа, иначе говоря - первые закрытые системы. Один за другим стали появляться всевозможные прототипы, одни - с баллонами сжатого кислорода, другие - с генераторами кислорода, работавшими на перекиси натрия. К числу последних относится дыхательный аппарат, который создали в 1899 году французы Дегре и Бальтазар. Для выработки кислорода в нем использовалась электрическая батарея, поэтому он был тяжелым (20 кг) и недостаточно надежным, к тому же кислорода в нем хватало не более, чем на тридцать минут. Однако с таким дыхательным аппаратом водолаз мог действовать независимо от базы наверху.
   В 1907 году английский флот принял на вооружение дыхательный кислородный аппарат конструкции С. Холла и О. Риза. Он предназначался для спасения экипажей затонувших подводных лодок.
   Все это подготовило появление дыхательных кислородных аппаратов Роберта Дэвиса, получивших всемирное признание. В них выдыхаемый воздух проходит через мешок с каустической содой, которая поглощает углекислоту и восстанавливает кислород. Первая их модель была создана в 1911 году и тоже предназначалась для спасения экипажей затонувших подводных лодок. Именно аппаратами такого типа пользовались подводные диверсанты в период Второй мировой войны и ряд лет после ее окончания.
   На первый взгляд кажется, что кислородный дыхательный аппарат почти идеален. Однако у него есть серьезный недостаток - ограничение допустимой глубины погружения 20 метрами. На большей глубине довольно часто происходит кислородное отравление мозга и потеря сознания, что влечет за собой гибель водолаза. Более того, в случае переохлаждения и сильной усталости отравление кислородом может произойти на глубине от 20 до 10 метров.
   Пятый этап. Знаменитые "водяные легкие" - акваланг - изобрели французы Жак-Ив Кусто (1910-1997) и Эмиль Ганьян. Это было в 1943 году, во французском порту Тулон на Средиземном море. Если быть точным, они радикально усовершенствовали дыхательный аппарат на сжатом воздухе, который в 30-е годы сконструировал Ив ле Приер.
   Суть их изобретения заключалась в создании так называемого легочного автомата. Благодаря автомату, подача воздуха из баллонов, в которых он находится под давлением 150-200 атмосфер, осуществляется пульсирующим образом (порциями) и по открытой схеме, т. е. с выдохом в воду. При этом исключается перемешивание отработанного воздуха со свежим, равно как и повторное его использование.
   По сравнению с кислородными аппаратами, акваланги обладают целым рядом существенных преимуществ. Среди них надо выделить следующие: возможность безопасного погружения на глубину до 40 метров; исключение опасности кислородного отравления; исключение опасности отравления углекислым газом; сведение к минимуму опасности возникновения кессонной болезни и баротравмы легких.
   Но время пребывания под водой с аквалангом значительно меньше, чем в кислородном аппарате. А главное, дыхание по открытой схеме влечет за собой непрерывное появление на поверхности воды пузырьков воздуха, демаскирующих водолазов. Поэтому в диверсионных целях акваланг может применяться весьма ограниченно.
   Шестой этап. Военные конструкторы довольно быстро сумели объединить аппарат Дэвиса с аквалангом Кусто. Так появились воздушно-кислородные аппараты замкнутого цикла. В них с помощью регенеративной системы воздух (либо газовая смесь) очищается от углекислоты и обогащается кислородом. При этом количество подаваемого кислорода меняется в зависимости от глубины и температурных условий.
   Так, работая на большой глубине в холодной воде, где водолаз может получить кислородное отравление, он дышит воздухом с минимально допустимым содержанием кислорода. А для ускорения процесса освобождения крови от азота на подъеме он увеличивает количество кислорода вплоть до того, что полностью переходит на дыхание им.
   Комбинированные дыхательные аппараты дают человеку возможность оставаться под водой до 10 и более часов, погружаться значительно глубже 40 метров, сводить к минимуму опасность отравления воздушно-кислородной смесью.
   ОФИЦЕРСКИЙ КЛАСС ПОДВОДНОГО ПЛАВАНИЯ
   Специальное военно-морское учебное заведение по подготовке кадров для службы на подводных лодках. Сформирован в составе Учебного отряда подводного плавания, созданного при порте императора Александра III (Либава) Высочайшим утверждением мнения Государственного Совета от 27 марта 1906 г. Создателем и первым начальником УОПП был герой русско-японской войны контр-адмирал Э. Н. Щенснович.
   Положение об Учебном отряде подводного плавания Высочайше утверждено императором Николаем II 29 мая 1906 г. Первыми слушателями Класса стали офицеры приписанных к отряду подводных лодок "Сиг", "Белуга", "Лосось", "Пескарь", "Стерлядь" и учебного судна "Хабаровск". Окончательно Класс сформировался к 1909 г. , тогда же определены программы и порядок обучения, составлены учебные пособия. Принимались офицеры, прослужившие на надводных кораблях три года.
   Курс обучения делился на два периода. С ноября по март офицеры-слушатели изучали теоретические основы материальной части подводных лодок, вооружения, технических средств и общенаучные предметы (теория подводных лодок, устройство подводных лодок, девиация, двигатели внутреннего сгорания, электротехника, физика, минное дело, водолазное дело, маневрирование и др. ). Во втором периоде, с апреля по сентябрь, слушатели практиковались на лодках, последовательно исполняли обязанности матросов по всем специальностям экипажа и помощника командира, упражнялись в управлении лодками и проводили учебные торпедные (по 14-17 выстрелов) стрельбы, участвовали в тактических учениях. Общая продолжительность обучения составляла 10 месяцев. Успешно сдавшим экзамен присваивалось звание "офицер подводного плавания" и вручался специальный нагрудный знак.
   Обучение проводилось на материальной базе УОПП, имевшего несколько учебных лодок, береговые классы, лаборатории исследования топлива и смазочных материалов, самодвижущихся мин (торпед), моторов, электротехники, классы и мастерские на транспорте "Хабаровск".
   До Первой мировой войны Класс подводного плавания закончили 45 строевых офицеров флота, 4 инженер-механика, 5 корабельных инженеров, 2 военно-морских врача и 3 офицера по адмиралтейству.
   С началом войны Класс вместе с Учебным отрядом подводного плавания переведен в Ревель, затем в Петербург.
   СВЕРХМАЛЫЕ ПОДВОДНЫЕ ЛОДКИ
   В первое послевоенное десятилетие серийное строительство сверхмалых подводных лодок прекратилось. Создавались лишь единичные образцы для отработки отдельных технических решений и проведения экспериментов. Однако с середины 50-х годов итальянские фирмы начали строить их на экспорт. В 70-е и 80-е годы идеей создания сверхмалых подлодок с учетом новых технологий заинтересовались военно-морские специалисты в США, СССР и Великобритании, было начато собственное строительство в Югославии, Северной и Южной Корее, Франции, ФРГ, Чили.
   Известно много интересных проектов сверхмалых подводных лодок. Например, часто упоминается англо-немецкий проект "Piranha", итальянский GST-48, немецкий MSV-75, шведский "Sea Dagger" и другие. Однако большинство этих проектов реализовано не было, за исключением одной-двух экспериментальных лодок, не принятых на вооружение.
   "...Интерес, проявляемый к подводным "малюткам" военно-морскими силами ряда капиталистических государств, еще раз свидетельствует об агрессивных намерениях империализма, который даже в условиях разрядки международной напряженности нацеливает свои ВМС на создание средств проведения диверсионно-разведывательных операций", писал советский журнал в 1976 году.
   Примерно в это же время командование ВМФ СССР выдало ленинградскому Специальному морскому бюро машиностроения "Малахит" техническое задание на проектирование современной отечественной сверхмалой лодки. Оно определяло, что такая лодка предназначена для использования на морском театре с обширной мелководной акваторией шельфа, в диапазоне глубин от 10 до 200 метров, где должна решать задачи противодействия противнику и вести разведку. На ней следовало разместить соответствующее радиоэлектронное вооружение, минно-торпедное оружие, а также водолазный комплекс для выполнения специальных задач на глубинах до 60 метров. При этом водоизмещение лодки, согласно заданию, не должно было превышать 80 тонн.
   Главным конструктором проекта 865 назначили Л. В. Чернопятова, в 1984 году его сменил Ю. К. Минеев. Опыт проектирования и создания подобных технических средств отсутствовал, поскольку наработки Остехбюро были засекречены и прочно забыты. Вновь требовалось начинать все с нуля. Новизна инженерной задачи обусловила необходимость выполнения значительного объема опытных работ, модельных и натурных испытаний, экспериментов по отдельным конструкциям, устройствам и технологическим процессам.
   Малая подводная лодка проекта 865 "Пиранья". Закладка опытной подводной лодки состоялась в Ленинградском адмиралтейском объединении в июле 1984 года. Ее габариты составили: длина 28,2 метра, ширина 4,7 метра, средняя осадка 3,9 метра, водоизмещение - 218 тонн. Таким образом, данная лодка оказалась далеко не сверхмалой.
   Корпус был выполнен из титанового сплава и рассчитан на глубину погружения 200 метров. Полная подводная скорость достигала 6,7 узлов, надводная - 6 узлов. Дальность плавания под водой экономическим ходом (4 узла) - 260 миль, в надводном положении - 1000 миль.
   Комплекс оружия, размещаемого в средней части надстройки, состоял из двух грузовых контейнеров для транспортировки водолазного снаряжения (четырех буксировщиков типа "Протон" или двух транспортировщиков типа "Сирена-У") и двух устройств минной постановки, в которых размещались две мины типа ПМТ, либо две решетки для торпед "Латуш", используемых "самовыходом" на всем диапазоне глубин. Прочный грузовой контейнер, заполняемый забортной водой, представлял собой цилиндрическую конструкцию длиной около 12 метров и диаметром 62 см. Для погрузки, выгрузки и крепления водолазного снаряжения предусматривался выдвижной лоток. Его привод и органы управления располагались внутри прочного корпуса.
   Устройство минной постановки состояло из пусковой проницаемой решетки с направляющими дорожками пневмомеханического выталкивающего устройства, обеспечивающего выталкивание мины вперед по ходу подлодки. Второй вариант предусматривал возможность размещения торпеды вместо мины.
   В центральном посту располагались пульт оператора, приборные стойки и средства отображения информации, органы управления основными системами и устройствами. Под настилом палубы ЦП размещалась аккумуляторная яма. Ближе в нос от пульта оператора находились входной люк, перископ, шахта выдвижного устройства комплекса РЛС. Ограничивающая центральный пост носовая сферическая переборка имела входной люк в шлюзовую камеру, которая могла служить и как декомпрессионная. На переборке располагался иллюминатор для наблюдения за водолазами и шлюз для передачи предметов из ЦП в камеру. Здесь же находились приборы управления системой шлюзования водолазов.
   Плоская кормовая переборка с газоплотной дверью отделяла центральный пост от электромеханического отсека, где на амортизированной платформе, отключенной от прочного корпуса, стояли на амортизаторах дизель-генератор мощностью 160 кВт, гребной электродвигатель постоянного тока в 60 кВт, насосы, вентиляторы, компрессор и другое оборудование. Система двухкаскадной амортизации в сочетании с шумопоглощающими покрытиями на корпусных конструкциях обеспечивала подлодке минимальное акустическое поле. Электромеханический отсек являлся необитаемым помещением, в походе его посещали только для проверки состояния технических средств. Винт, размещенный в поворотной кольцевой насадке, выполнял также функции вертикального руля.
   Экипаж состоял из трех офицеров: командира-штурмана, помощника по электромеханической части и помощника по радиоэлектронному вооружению. Кроме них, на борт принималась разведывательно-диверсионная группа из шести человек, которая и являлась основным "оружием" корабля. Выход боевых пловцов мог осуществляться на глубинах до 60 метров и на грунте. Находясь вне лодки, они имели возможность использовать подаваемую с нее по проводам электроэнергию, а также пополнять запас газовой смеси в дыхательных приборах. Автономность лодки - 10 суток.
   20 августа 1986 года опытная лодка, получившая тактический номер МС-520, была спущена на воду. Затем целых два года (!) она проходила заводские и государственные испытания, которые завершились лишь в декабре 1988 года. С 1989 года МС-520 находилась в Лиепае, где подчинялась командиру 22-й бригады подводных лодок. Особого энтузиазма командование соединения от присутствия лодки спецназначения не испытывало, так как выходы ее в море были сопряжены с определенными трудностями, а боевая подготовка, в силу своей специфики, оказалась весьма сложной.
   Дальнейшее строительство сверхмалых лодок в Советском Союзе застопорилось, а потом и "власть сменилась". В результате серия ограничилась двумя единицами - опытной МС-520 и головной МС-521, сданной флоту в декабре 1990 года. Для каждой лодки были сформированы по два сменных экипажа. Существовал еще и технический экипаж, предназначенный для обслуживания обеих лодок.
   В марте 1999 года МС-520 и 521 отбуксировали в Кронштадт для разделки на металлолом. Прослужив менее десяти лет, они так и не нашли себе применение. Причин тому много: недостаток финансирования, мнение ряда флотских специалистов о ненужности таких кораблей, а также явные недостатки проекта (слишком большое водоизмещение, трудности эксплуатации и другие).
   ПОДВОДНЫЕ ЛОДКИ
   СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ
   Это переоборудованные подводные лодки обычных типов или специальной постройки, основное назначение которых - доставка в заданные районы водолазов-разведчиков со снаряжением, оружием, надводными средствами высадки, а также подводных средств движения и сверхмалых подлодок.
   Первыми для этих целей в 1948 году были переоборудованы две американские подлодки военной постройки "Окунь" (Perch) и "Морской лев" (Sea Lion). После демонтажа торпедного и артиллерийского вооружения, каждая из них могла одновременно принять на борт 100 боевых пловцов с десятью надувными лодками. В 1969 году в транспортно-десантную была переоборудована дизельная ракетная лодка "Грейбэк", она могла доставить в район боевой операции 67 легководолазов.
   В настоящее время ВМФ США использует для этих целей три атомные подводные лодки: две типа "Лафайет" (SSN-642 и 645) и одну типа "Стёрджен" (SSN-686). Атомные подводные лодки специального назначения типа "Лафайет" "Камеха" и "Джеймс К. Поллак" в 1993-94 годах сменили атомные лодки "Сэм Хьюстон" и "Джон Маршалл", выполнявшие ранее ту же задачу.
   При переоборудовании на них демонтировали шахтные пусковые установки для баллистических ракет "Посейдон", устроив взамен отсеки для размещения разведчиков-диверсантов общим количеством 180 человек и шлюзовые камеры для обеспечения выхода водолазов из лодки в подводном положении. Кроме того, на легком корпусе были установлены две док-камеры, в каждой из которых можно транспортировать по одному ПСД, либо надувные лодки типа RIB-36.
   Лодка спецназначения "Л. Мендел Риверс" типа "Стёрджен" оборудована одной док-камерой. Она способна транспортировать ПСД и разведывательно-диверсионную группу из шести человек. Кроме нее, в состав американского флота входят еще 3 лодки того же типа (SSN-666, 667, 680), имеющие док-камеры для глубоководных спасательных аппаратов. В случае необходимости их тоже можно использовать для доставки и высадки боевых пловцов.
   В конструкциях всех строящихся атомных лодок новых типов предусмотрена возможность транспортировки ПСД типа ASDS или SDV в док-камере, а также 40 разведчиков-диверсантов.
   В настоящее время рассматривается возможность переоборудования "лишних" (по договорам ОСВ-2 и 3) атомных стратегических ракетоносцев типа "Огайо" в носители ракетного оружия оперативно-тактического назначения и подразделений сил специальных операций. После перестройки каждая из них по запасу тактических ракет будет соответствовать боевым возможностям корабельной ударной группы - в 22 шахтах разместятся 132 "обычных" ракеты. В двух оставшихся шахтах будут устроены шлюзовые камеры, на верхней палубе установят док-камеры для ПСД. Всего на лодке типа "Огайо" можно разместить 66 разведчиков-диверсантов, а для кратковременных операций - даже 100 человек.
   После переоборудования лодки типа "Огайо" первых лет строительства серии смогут находиться в эксплуатации еще не менее 20 лет. При этом они сохранят все средства обнаружения, разведки, боевого управления, а также торпедное оружие. Перспектива использования лодок этого типа в качестве носителей подразделений сил спецопераций реальна хотя бы потому, что три бывших ракетоносца постройки 1964-65 годов уже близки к списанию и требуют замены.
   В России для доставки диверсионных групп и транспортировщиков типа "Сирена" могут использоваться дизельные подводные лодки проекта 877 "Палтус". Имеются сведения о службе на Тихоокеанском флоте двух атомных подлодок-носителей крылатых ракет, переоборудованных в 70-е годы для доставки групп разведчиков-диверсантов. Кроме того, в 1980 году на вооружение ВМФ СССР поступила подводная лодка специальной постройки проекта 940. На верхней палубе она несет два глубоководных аппарата, имеет шлюзовые камеры и предназначена для проведения как спасательных, так и диверсионных операций.
   Двумя шлюзовыми камерами для боевых пловцов оборудованы новейшие израильские подводные лодки типа "Долфин" (проект 800), строящиеся на немецких судоверфях с 1998 года.
   МОЖЕТ ЛИ ПОДВОДНАЯ ЛОДКА ЛЕТАТЬ?
   Увлекшись этой идеей: заставить подводную лодку летать, - безвестный изобретатель и моделист-энтузиаст Рейд в один прекрасный день взял да и построил... нет, нет, пока не летающую субмарину, а только модель. Модель представляла собой аппарат длиной один метр, имела двигатель внутреннего сгорания и подчинялась командам, которые передавались "на борт" и приводились в исполнение радиоаппаратурой дистанционного управления. Испытания оказались довольно успешными и показали, что ничего абсурдного в идее летающей подлодки нет, хотя наряду с положительными результатами были выявлены и серьезные недостатки. Так, бензобаки летающей субмарины одновременно играли роль балластных цистерн. Садясь на воду, лодка выпускала бензин наружу, а вместо горючего в баки принимала более тяжелую воду. Возникал резонный вопрос: а как лодка, лишенная горючего, будет взлетать после всплытия? Ответа Рейд не давал, надеясь, что сама жизнь и упорная работа в конце концов сами подскажут ему нужное решение.
   Работа фанатичного изобретателя продолжалась. Шли годы. И неизвестно, чем бы кончилась смелая затея изобретателя-одиночки, если бы в 1964 году Рейд не надумал рассказать о своей необыкновенной лодке на страницах научно-популярного журнала. Дерзкая, но, судя по всему, осуществимая идея немедленно привлекла внимание военных. Больше того, моряки объявили конкурс на создание лучшей конструкции "три-фибии" - принципиально нового корабля, способного летать по воздуху, плавать на воде и под водой.
   Будущую летающую субмарину предполагалось использовать в качестве перехватчика подводных лодок. Это обстоятельство продиктовало очень жесткие требования к аппарату. Он должен был весить в среднем 500 килограммов, развивать скорость в 10-20 узлов под водой и 500-800 километров в час в воздухе. Запас хода под водой 80 километров, в воздухе - 500-800 километров. От лодки требовалось, чтобы она могла плавать на глубине до 25 метров и летать на высоте до 750 метров, нести 250-500 килограммов полезного груза, уверенно взлетать и садиться на воду даже при метровой волне.
   Итак, задача была поставлена, награда обещана, работа над тем, чтобы заставить подводную лодку летать, началась. Впрочем, почему именно лодку нужно заставлять летать? Не целесообразнее ли строить погружающийся самолет? Или это одно и то же?
   Инженер-капитан 3-го ранга Г. Святов пишет: "Попробовали взять за основу гидросамолет - ведь он уже приспособлен для плаваний. И тут обнаружилось важное обстоятельство: по весу гидросамолеты близки к другому подклассу - малым лодкам. Таким образом, выяснилось, что в самолете не соблюден самый главный принцип подводного плавания, вытекающий из закона Архимеда, - равенство весового и объемного водоизмещения.
   Следовательно, чтобы гидросамолет плавал под водой, нужно в несколько раз увеличить вес его корпуса и снизить запас плавучести с 300 процентов, скажем, до 15-30 процентов. Но такая машина - весом 150-300 тонн - при прежней мощности двигателей не полетит. А если подвести под общий знаменатель лодку? Облегчить ее корпус и применять запас плавучести в 300 процентов? Такая лодка будет очень долго погружаться, причем лишь на незначительную глубину, низкими будут у нее ходовые и маневренные характеристики.
   В зарубежной печати проектируемое подводно-летное средство назвали сабпланом, что означает погружающийся самолет. Это говорит о том, что за основу взят все-таки самолет. Предполагаемый вес сабплана 6-7 тонн, примерно тот же, что и у сверхмалой лодки. Рассчитывают, что он будет летать со скоростью 300-400 километров в час при дальности полета 1000-1800 километров и иметь скорость подводного хода 9-10 километров в час при дальности плавания под водой 70-90 километров. Глубина погружения сабплана 25-50 метров, вес полезного груза до 700 килограммов.
   Считают, что формами машина будет напоминать современный гидросамолет. На сабплане думают установить три воздушно-реактивных двигателя: один на фюзеляже и два на пилонах над крыльями. Фюзеляжный двигатель предназначен для полета в район боевых действий, а крыльевые - после выполнения заданий.
   Так какие же проблемы, по мнению зарубежных специалистов, встали при создании погружающегося самолета? Основная - уменьшение габаритов оборудования сабплана.
   Объем его корпуса уменьшается по сравнению с гидросамолетом в четыре раза. А ведь в таком маленьком корпусе нужно разместить не только всю авиационную "начинку", но и оборудование сверхмалой подводной лодки: ее энергетическую установку, запасы энергии для подводного плавания, торпеды, мины и другое оружие весом до 700 килограммов. При всем этом хотя бы 30 процентов объема корпуса надо оставить для цистерн главного балласта, без которых нельзя погрузиться и всплыть.
   В ходе проектирования возникают и другие проблемы. Как уже говорилось, в район выполнения боевой задачи сабплан полетит на одном фюзеляжном двигателе. Так как единица объема машины будет иметь значительный вес, этот двигатель должен быть небольшим, легким и достаточно мощным. В то же время сабплан должен обладать развитыми крыльями с большой подъемной силой. Тогда его взлетно-посадочная скорость будет небольшой, он сможет взлетать и садиться при значительных волнах.
   Во время полета в заданный район сабплан израсходует примерно половину горючего, которое, как предполагают, разместится в цистернах главного балласта. Перед посадкой на воду машину надо подготовить к подводному плаванию. К этому моменту горючее в балластных цистернах должно быть или израсходовано или удалено, а другие переменные грузы размещены так, чтобы центр тяжести сабплана находился на одной вертикали и несколько ниже центра его водонепроницаемого объема.
   Как же будет осуществляться плавание под водой? Для этого в кормовой части будет установлен гребной винт, приводимый в движение электромотором или парогазовой турбиной. Так как скорость подводного хода сабплана сравнительно невелика, сопротивление крыльев, очевидно, не будет очень большим. Однако на управляемость сабплана крылья окажут большое влияние.
   Для плавания подводной лодки с нулевой плавучестью под водой крылья не нужны.
   Кстати, и наличие их практически не скажется на устойчивости движения лодки. Маневренные же характеристики крылатой подводной лодки в вертикальной плоскости даже улучшаются.
   При погружении сабплана через каждые 10 метров давление на него будет возрастать на одну атмосферу. Значит, при глубине погружения 25-50 метров и корпус должен быть рассчитан на давление в 5-10 атмосфер. С такими давлениями авиационным конструкторам обычно не приходится иметь дело. Следовательно, корпус сабплана должен быть построен не только по правилам строительной механики самолета, но и по законам строительной механики подводной лодки.
   Выполнять боевую задачу под водой невозможно без современного гидроакустического оборудования, да и без обыкновенного перископа. Понятно, что без совмещения ряда функций приборов и органов управления, обеспечивающих полет и плавание сабплана, будет невозможно втиснуть всю аппаратуру в корпус машины. Совмещение потребуется и при обеспечении аварийно-спасательными средствами экипажа самолета на случай аварии под водой или в воздухе.
   После выполнения боевой задачи сабплан должен выйти под водой из опасной зоны, всплыть к поверхности и взлететь с помощью двух крыльевых двигателей. Взлет - наиболее трудная проблема. Уже говорилось, что запас плавучести сабплана не может быть выше примерно 15-30 процентов. Поэтому при взлете крыльевые двигатели должны буквально вырвать машину из воды. Для этого, очевидно, будут использоваться рули высоты и закрылки, причем не только в воздухе, но и в воде.
   Ну а как обстоит дело с практическим воплощением идеи?
   Сабплан задал своим создателям множество труднейших задач. То он успешно нырял, зато никак не хотел отрываться от воды. То, наоборот, хорошо летал, но вода оставалась для него чужеродной средой. Даже самые упорные конструкторы терпели неудачу за неудачей в безуспешных попытках создать универсальный аппарат. Некоторые начинали даже сомневаться в осуществимости этого дела вообще. И только неутомимый Рейд не унывал, не отчаивался и в конце концов представил комиссии конкурса самый удачный проект.
   "Вначале изобретатель построил, - пишет в журнале "Техника - молодежи" инженер Ю. Федоров, - опытный образец "Коммандер", зарегистрированный в США как первая летающая подводная лодка. У сигарообразного 7-метрового аппарата - дельтавидное крыло. В воздух машину поднимал двигатель внутреннего сгорания мощностью 65 л. с. , под водой же включается электромотор мощностью всего лишь 736 Вт. Пилот-аквалангист сидел в открытой кабине. "Трифибия" развивала в воздухе 100 км/ч, а на глубине - 4 узла.
   На базе "Коммандера" Рейд соорудил более совершенный, реактивный аппарат "Аэрошип".
   Выпустив лыжи, двухместная "трифибия" садилась на воду. С пульта управления пилот закрывал воздухозаборники и выхлопное отверстие турбореактивного двигателя задвижками (которые при этом открывали водозаборники и выходное сопло водомета). Включается насос, заполняющий балластные цистерны в носу и корме. "Аэрошип" погружался. Оставалось убрать лыжи, пустить электромотор, поднять перископ, и самолет превращался в подводную лодку. Чтобы всплыть и взлететь, операции нужно было проделать в обратном порядке. Топливные баки располагались в крыле. Рули направления и глубины одновременно и элероны. Балласт вытеснялся сжатым воздухом.
   В августе 1968 года на глазах у тысяч посетителей Нью-йоркской промышленной выставки "Аэрошип" спикировал, нырнул в воды залива, немного поманеврировал на глубине, а потом с ревом взмыл в небо. Но, увы, технические данные "Аэрошипа" еще были весьма далеки от конкурсных требований. Дальность полета машины была небольшой, скорости в воздухе и под водой невелики - 130 км/ч и 8 узлов".
   Что ж, разработка новой техники всегда сложное и многотрудное дело. Сабплан, естественно, не исключение. Трудно сказать, когда будет построен аппарат, который без оговорок будет годен для практического употребления, для выполнения боевых задач. Но, видимо, такое время, несмотря на все технические трудности, все же не за горами. Расчеты показывают, что концепция целесообразна и осуществима. А это, учитывая быстрый прогресс техники и науки, уже немало.