В какой мере нам нужен кислород?
Для чего организму нужен углекислый газ?
Об энергетике организма
Эффект Вериго-Бора
Оптимальная реакция крови
Здесь я предлагаю читателям кратко рассмотреть, как в процессе эволюции совершенствовалось дыхание у живых организмов. Известно, что растения улавливают энергию солнечного света и запасают ее в виде химических соединений, главным образом в виде углеводов. Этими запасами могут воспользоваться не только растения, но и животные, которые получают необходимое им «горючее», поедая или сделанные растениями запасы, или же сами растения. Но съеденная животными пища еще не является энергией. Для высвобождения энергии необходимо контролируемое окисление молекул пищи, что и происходит в процессе дыхания. Для дыхания в целом в качестве акцептора электронов (принимающего электроны) необходим кислород.
Вдыхая воздух, мы втягиваем в легкие кислород, где он всасывается в кровь и разносится по всем частям тела. Там он окисляет жиры, белки и углеводы. Выделяемая при окислении энергия используется, а образующийся в результате этого углекислый газ удаляется из организма с выдыхаемым воздухом. Эту истину мы знали давно, не придавая только особого значения той части углекислого газа, которая при выдохе все еще оставалась в организме. Несомненным для нас всегда было и то, что первостепенной задачей дыхания является снабжение организма кислородом. Стоит нам увеличить расход энергии в организме, как, например, при беге, и сразу же без всякого с нашей стороны волевого усилия следует увеличение интенсивности дыхательных движений – организму в повышенном количестве нужен кислород.
При физической нагрузке потребность организма в кислороде может возрасти почти в 25 раз по сравнению с состоянием покоя (у тренированных спортсменов потребление кислорода может увеличиться с 200 до 5000 мл в минуту – это максимальное потребление кислорода человеком).
Всем нам также хорошо известно, что если по какой-то причине дыхание прекращается хотя бы на пять минут, то тотчас прекращается и сама жизнь. Не зря поэтому древние греки говорили: «Пока дышу – надеюсь».
Как видим, наша жизнь поддерживается непрерывным и контролируемым организмом окислением кислородом органических веществ. Так организм получает необходимую ему энергию.
Небольшая заметка из газеты «Советский спорт» (1990, 12 октября, «Сколько „весит“ воздух?»): «Мало кто знает, сколько „весит“ воздух, который мы вдыхаем. Здоровый человек делает около 20 000 вдохов за 24 часа, пропуская через легкие 15 килограммов воздуха. Для сравнения: в сутки нам в среднем требуется 1,5 кг пищи и 2 л воды. Человек может жить 5 недель без пищи, 5 дней без воды, но только 5 минут без воздуха. Известно, что один француз провел под водой без движения 6 минут 24 секунды. Его предшественники – рекордсмены не могли продержаться под водой больше 4 минут 40 секунд».
Что кислород необходим нашему организму, это, кажется, ясно каждому. Другое дело, в какой мере он нам необходим? Возможно, что кислорода и в самом деле в атмосфере настолько много, что мы вдыхаем его даже в излишнем количестве. Подобная мысль содержится и в книге Ю. А. Мерзлякова «Путь к долголетию» (с подзаголовком «Энциклопедия оздоровления»).
«Гипервентиляция, повышая содержание кислорода в крови (а Бутейко говорит, что гипервентиляция не прибавляет насыщения крови кислородом. – Примеч. Н. Д.) и тканях, приводит к сдвигу реакции крови в щелочную сторону. Организм сопротивляется этому, стремится не допустить повышенного количества кислорода, так как его избыток организму не нужен. Кислород необходим только при выполнении физической работы, после чего он тут же используется для энергетических целей. Чтобы не допустить излишка кислорода, включаются механизмы защиты: сужаются бронхи, спазмируются артерии мозга, сердца, легких и т. д. Субъективно это выражается в повышении артериального давления, затруднении дыхания, головокружении, головных болях, спазмах кишечника и других неприятных симптомах».
Я полностью не согласен с тем, о чем говорится в этой цитате, но смогу прокомментировать сказанное в ней только в конце этой главы, когда читатели будут более подготовлены по вопросу дыхания, а сейчас продолжу разговор о кислороде.
Когда-то кислорода совсем не было в атмосфере Земли (первичная атмосфера состояла из водяных паров, двуокиси и окиси углерода, аммиака, азота и сероводорода), и первые живые организмы добывали необходимую им энергию без помощи кислорода, лишь частично расщепляя глюкозу с последующим образованием двух молекул пировиноградной кислоты. Последняя в отсутствие кислорода превращалась в молочную кислоту. Таким путем высвобождалась запасенная в глюкозе энергия без участия кислорода. Это анаэробное дыхание.
Энергообеспечение клеток при анаэробном дыхании – крайне неэффективный процесс, потому что значительная часть энергии, которую можно было бы извлечь при полном окислении глюкозы, все еще остается невостребованной.
Когда же в процессе фотосинтеза растения начали выделять кислород в качестве побочного продукта и он постепенно стал накапливаться в атмосфере, использование его живыми организмами при аэробном дыхании дало возможность им извлекать больше энергии из пищевых веществ. С этого момента и начался своеобразный взрыв в развитии жизни на Земле.
Теперь нам ясно, что анаэробный путь извлечения энергии возник на самых ранних этапах развития жизни, когда кислорода в атмосфере Земли совсем не было. Когда же в атмосфере появился кислород, живые организмы не замедлили воспользоваться им, так как теперь в процессе метаболизма стало возможным извлекать из углеводов в 18 раз больше биологически полезной энергии в сравнении с анаэробным дыханием. Суммарный выход АТФ (аденозинтрифосфат, играющий роль «разменной монеты» в реакциях энергетического обмена у всех живых организмов) при аэробном дыхании составляет 36 молекул вместо двух при анаэробном.
Однако, что особенно примечательно, такое возрастание извлечения энергии происходит не путем простой замены анаэробных реакций на аэробные, а путем присоединения аэробных реакций к уже существующим анаэробным. Таким образом, эволюция не отказалась от своей первоначальной находки – анаэробного дыхания. И мы еще не раз будем встречаться с этим способом добычи энергии живыми существами.
Приходилось мне читать и о том, что человеку совсем не нужен кислород воздуха – именно тот кислород, которым мы и дышим (Т. Баранова. Нужен ли нам воздух для дыхания? // НЛО. 1997. № 4), что человек может дышать эндогенно, то есть получать кислород не из атмосферы, а изнутри себя, возможно, разлагая воду на ее составляющие. В указанной выше статье даже делается предположение, что «может быть, в нас заложено биологическое свойство обходиться без воздуха, но мы его теряем, едва родившись».
Все это лишь красивая фантазия, рассчитанная на доверчивых читателей. Ведь если у нас имеются легкие, то, стало быть, легкими мы и должны дышать – не могла же эволюция оставить нам этот орган лишь на тот случай, когда мы не сможем вдруг по какой-то причине дышать эндогенно. Нет, конечно. Живые организмы во всем скроены экономно и рационально, и дыхание наше приспособлено к забору кислорода из газовой смеси атмосферы. Но даже и таким способом, забегая вперед, скажу я, нам не всегда удается обеспечить свой организм в полной мере кислородом.
Автор же идеи эндогенного дыхания В. Ф. Фролов всего лишь усовершенствовал метод ВЛГД К. Бутейко, и его пациенты дышат тем же атмосферным кислородом, что и мы с вами. У Фролова нет прямых доказательств существования эндогенного дыхания. Для этого надо было бы изолировать его подопечных от атмосферного кислорода и какое-то время дать им возможность дышать автономно только эндогенным кислородом, если полагать, что таковой и в самом деле вырабатывается в организме. Но такой эксперимент никогда не будет поставлен автором идеи об эндогенном дыхании, так как он окончательно погубит его идею.
Вдыхая воздух, мы втягиваем в легкие кислород, где он всасывается в кровь и разносится по всем частям тела. Там он окисляет жиры, белки и углеводы. Выделяемая при окислении энергия используется, а образующийся в результате этого углекислый газ удаляется из организма с выдыхаемым воздухом. Эту истину мы знали давно, не придавая только особого значения той части углекислого газа, которая при выдохе все еще оставалась в организме. Несомненным для нас всегда было и то, что первостепенной задачей дыхания является снабжение организма кислородом. Стоит нам увеличить расход энергии в организме, как, например, при беге, и сразу же без всякого с нашей стороны волевого усилия следует увеличение интенсивности дыхательных движений – организму в повышенном количестве нужен кислород.
При физической нагрузке потребность организма в кислороде может возрасти почти в 25 раз по сравнению с состоянием покоя (у тренированных спортсменов потребление кислорода может увеличиться с 200 до 5000 мл в минуту – это максимальное потребление кислорода человеком).
Всем нам также хорошо известно, что если по какой-то причине дыхание прекращается хотя бы на пять минут, то тотчас прекращается и сама жизнь. Не зря поэтому древние греки говорили: «Пока дышу – надеюсь».
Как видим, наша жизнь поддерживается непрерывным и контролируемым организмом окислением кислородом органических веществ. Так организм получает необходимую ему энергию.
Небольшая заметка из газеты «Советский спорт» (1990, 12 октября, «Сколько „весит“ воздух?»): «Мало кто знает, сколько „весит“ воздух, который мы вдыхаем. Здоровый человек делает около 20 000 вдохов за 24 часа, пропуская через легкие 15 килограммов воздуха. Для сравнения: в сутки нам в среднем требуется 1,5 кг пищи и 2 л воды. Человек может жить 5 недель без пищи, 5 дней без воды, но только 5 минут без воздуха. Известно, что один француз провел под водой без движения 6 минут 24 секунды. Его предшественники – рекордсмены не могли продержаться под водой больше 4 минут 40 секунд».
Что кислород необходим нашему организму, это, кажется, ясно каждому. Другое дело, в какой мере он нам необходим? Возможно, что кислорода и в самом деле в атмосфере настолько много, что мы вдыхаем его даже в излишнем количестве. Подобная мысль содержится и в книге Ю. А. Мерзлякова «Путь к долголетию» (с подзаголовком «Энциклопедия оздоровления»).
«Гипервентиляция, повышая содержание кислорода в крови (а Бутейко говорит, что гипервентиляция не прибавляет насыщения крови кислородом. – Примеч. Н. Д.) и тканях, приводит к сдвигу реакции крови в щелочную сторону. Организм сопротивляется этому, стремится не допустить повышенного количества кислорода, так как его избыток организму не нужен. Кислород необходим только при выполнении физической работы, после чего он тут же используется для энергетических целей. Чтобы не допустить излишка кислорода, включаются механизмы защиты: сужаются бронхи, спазмируются артерии мозга, сердца, легких и т. д. Субъективно это выражается в повышении артериального давления, затруднении дыхания, головокружении, головных болях, спазмах кишечника и других неприятных симптомах».
Я полностью не согласен с тем, о чем говорится в этой цитате, но смогу прокомментировать сказанное в ней только в конце этой главы, когда читатели будут более подготовлены по вопросу дыхания, а сейчас продолжу разговор о кислороде.
Когда-то кислорода совсем не было в атмосфере Земли (первичная атмосфера состояла из водяных паров, двуокиси и окиси углерода, аммиака, азота и сероводорода), и первые живые организмы добывали необходимую им энергию без помощи кислорода, лишь частично расщепляя глюкозу с последующим образованием двух молекул пировиноградной кислоты. Последняя в отсутствие кислорода превращалась в молочную кислоту. Таким путем высвобождалась запасенная в глюкозе энергия без участия кислорода. Это анаэробное дыхание.
Энергообеспечение клеток при анаэробном дыхании – крайне неэффективный процесс, потому что значительная часть энергии, которую можно было бы извлечь при полном окислении глюкозы, все еще остается невостребованной.
Когда же в процессе фотосинтеза растения начали выделять кислород в качестве побочного продукта и он постепенно стал накапливаться в атмосфере, использование его живыми организмами при аэробном дыхании дало возможность им извлекать больше энергии из пищевых веществ. С этого момента и начался своеобразный взрыв в развитии жизни на Земле.
Теперь нам ясно, что анаэробный путь извлечения энергии возник на самых ранних этапах развития жизни, когда кислорода в атмосфере Земли совсем не было. Когда же в атмосфере появился кислород, живые организмы не замедлили воспользоваться им, так как теперь в процессе метаболизма стало возможным извлекать из углеводов в 18 раз больше биологически полезной энергии в сравнении с анаэробным дыханием. Суммарный выход АТФ (аденозинтрифосфат, играющий роль «разменной монеты» в реакциях энергетического обмена у всех живых организмов) при аэробном дыхании составляет 36 молекул вместо двух при анаэробном.
Однако, что особенно примечательно, такое возрастание извлечения энергии происходит не путем простой замены анаэробных реакций на аэробные, а путем присоединения аэробных реакций к уже существующим анаэробным. Таким образом, эволюция не отказалась от своей первоначальной находки – анаэробного дыхания. И мы еще не раз будем встречаться с этим способом добычи энергии живыми существами.
Приходилось мне читать и о том, что человеку совсем не нужен кислород воздуха – именно тот кислород, которым мы и дышим (Т. Баранова. Нужен ли нам воздух для дыхания? // НЛО. 1997. № 4), что человек может дышать эндогенно, то есть получать кислород не из атмосферы, а изнутри себя, возможно, разлагая воду на ее составляющие. В указанной выше статье даже делается предположение, что «может быть, в нас заложено биологическое свойство обходиться без воздуха, но мы его теряем, едва родившись».
Все это лишь красивая фантазия, рассчитанная на доверчивых читателей. Ведь если у нас имеются легкие, то, стало быть, легкими мы и должны дышать – не могла же эволюция оставить нам этот орган лишь на тот случай, когда мы не сможем вдруг по какой-то причине дышать эндогенно. Нет, конечно. Живые организмы во всем скроены экономно и рационально, и дыхание наше приспособлено к забору кислорода из газовой смеси атмосферы. Но даже и таким способом, забегая вперед, скажу я, нам не всегда удается обеспечить свой организм в полной мере кислородом.
Автор же идеи эндогенного дыхания В. Ф. Фролов всего лишь усовершенствовал метод ВЛГД К. Бутейко, и его пациенты дышат тем же атмосферным кислородом, что и мы с вами. У Фролова нет прямых доказательств существования эндогенного дыхания. Для этого надо было бы изолировать его подопечных от атмосферного кислорода и какое-то время дать им возможность дышать автономно только эндогенным кислородом, если полагать, что таковой и в самом деле вырабатывается в организме. Но такой эксперимент никогда не будет поставлен автором идеи об эндогенном дыхании, так как он окончательно погубит его идею.
Для чего организму нужен углекислый газ?
Перейдем теперь от кислорода к углекислому газу.
Что же происходило с углекислым газом в атмосфере Земли, когда растения начали активно использовать его как основной источник углерода? Его концентрация, достигавшая некогда нескольких процентов, постепенно снизилась до современного ничтожного уровня – до 0,03 %.
По-видимому, в очень далекие времена живые организмы дышали воздушной смесью, содержавшей в себе значительное количество углекислого газа. И когда углекислый газ стал постепенно исчезать из атмосферы Земли, и это обстоятельство могло изменить какой-то из существенных параметров внутренней среды живых организмов, то последние, чтобы выжить в новых условиях, должны были или оставить внутри себя уже привычный для них уровень углекислого газа, или же попытаться приспособиться к новым условиям.
Природа, как и в случае с анаэробным дыханием, не отказалась от первоначальных параметров созданной ею внутренней среды живых организмов. По-видимому, только по этой причине в альвеолах легких и человека, и многих животных поддерживается высокая концентрация углекислого газа. Как бы в память о газовой среде атмосферы Земли далекого прошлого.
Не следует, конечно, думать, что некогда сам человек жил в атмосфере с повышенной концентрацией углекислого газа. Нынешний Hоmо sapiens возник всего лишь около 100 тысяч лет назад, а первые человекоподобные существа ответвились от других приматов не ранее четырех миллионов лет назад – об этом свидетельствуют многочисленные палеонтологические данные (Шервуд Л. Уошберн. Эволюция человека).
Оказала ли газовая среда древней атмосферы какое-то влияние на определенную задержку углекислого газа в организме животных, трудно нам об этом сегодня судить, но почему-то природа все же оставила в значительных концентрациях в организме своих живых творений этот газ. Например, подходящая к легким венозная кровь практически всех млекопитающих содержит примерно 550 см3/л СО2, а покидающая легкие кровь содержит около 500 см3/л СО2. Как видим, кровь отдает лишь малую долю содержащегося в ней углекислого газа.
Но для чего организму нужен задержанный в нем углекислый газ, этого мы пока не знаем. Ответ на этот вопрос будет найден нами лишь постепенно. Но для чего-то этот газ все же нужен нашему организму, и этот факт является уже бесспорным для нас. А Бутейко считает, что углекислый газ даже более необходим организму, чем кислород. По его мнению, человек, научившийся с помощью волевой ликвидации глубокого дыхания поддерживать в покое в альвеолярном воздухе более высокую концентрацию углекислого газа (до 6,5 %), уменьшает тем самым вероятность возникновения у него целого ряда заболеваний.
А теперь посмотрим, как происходит управление дыханием.
Управление дыханием ведется дыхательным центром. Он обеспечивает не только ритмическое чередование вдоха и выдоха, но и изменяет частоту и глубину дыхательных движений, приспосабливая тем самым легочную вентиляцию к сиюминутным потребностям организма. Накопление в крови углекислого газа, а также и недостаток кислорода являются теми факторами, которые возбуждают дыхательный центр, причем первый фактор почти в 20 раз активнее второго. Многим приходилось наблюдать ныряльщиков без аквалангов. Время от времени они выпускают воздух изо рта. Кажется, для чего они это делают, ведь таким образом они лишают себя запасов кислорода? Но оказывается, что их больше угнетает накапливаемый в крови углекислый газ, чем недостаток кислорода. И, выпуская порционно воздух из легких, они тем самым уменьшают концентрацию углекислоты в крови. Мы можем проверить и на себе реакцию дыхательного центра на кратковременно задержанное нами дыхание. Не пройдет и 30 секунд после задержки дыхания, как мы вынуждены будем возобновить дыхательные движения. И нам кажется, что причиной возобновления дыхания является недостаток кислорода у нас в легких, тогда как истинной причиной является накопление углекислоты в крови.
Высокую чувствительность дыхательного центра к концентрации углекислого газа в крови учитывают и некоторые пловцы, которые хотят подольше продержаться под водой. Для этого они в течение некоторого времени перед погружением под воду дышат глубоко и вымывают таким образом углекислый газ из легких и из крови. После такой гипервентиляции человек может дольше обычного оставаться под водой. Но такая практика очень опасна, так как из-за низкой концентрации СО2 не возникает потребности в дыхании, а запасы кислорода в крови могут полностью истощиться и человек может потерять сознание. Эта ситуация также указывает нам на то, что в основном регуляция дыханием идет по концентрации углекислого газа в крови, а по содержанию кислорода в крови она менее эффективна.
Чаще всего мы наблюдаем увеличение частоты и глубины дыхания при увеличении физической нагрузки. Но и при этом главным фактором, оказывающим влияние на регуляцию дыханием, тоже оказывается концентрация углекислого газа в крови. Если сравнить, как прореагирует дыхательный центр на изменения в составе вдыхаемого воздуха, то оказывается, что при добавлении к вдыхаемому воздуху 2,5 % СО2 вентиляция легких почти удваивается, а если уменьшить во вдыхаемом воздухе концентрацию кислорода на 2,5 %, практически никаких изменений в дыхании не произойдет. Отсюда легко сделать вывод, что с кислородом в нашем организме все обстоит довольно благополучно, и поэтому дыхательный центр не особенно активно реагирует на изменения его концентрации в атмосферном воздухе, но зато на концентрацию углекислого газа и в крови, и в атмосферном воздухе дыхательный центр реагирует незамедлительно, а следовательно, нашему организму этот газ совершенно не нужен. Но поспешные выводы не всегда бывают верными. И в отношении углекислого газа Бутейко сделал прямо противоположный вывод, что для организма углекислый газ очень нужен, что он для организма даже важнее кислорода. И стал учить нас, как задерживать этот газ в организме. А сделать это можно только путем длительных тренировок, в результате чего удается задерживать дыхание на 1–2 минуты. На этом и основан метод ВЛГД – постепенно приучать организм к повышенной концентрации углекислого газа в крови, а точнее, постепенно понижать чувствительность дыхательного центра к концентрации углекислоты в крови.
Таким образом неглубоким дыханием нам удается повысить содержание углекислоты в крови, что и приводит в некоторой степени к оздоровлению организма. И этот факт, по-видимому, дает основание автору метода ВЛГД сделать вывод о том, что углекислый газ для организма имеет более важное значение, чем кислород. Так это на самом деле или нет, трудно об этом судить неподготовленному человеку. Поэтому мы продолжим наше небольшое исследование о роли углекислого газа в организме, но только чуть ниже.
Как уже ранее было сказано, для дыхательного центра особо важное значение имеет концентрация углекислоты в крови. Но возбуждение дыхательного центра вызывает не сама по себе углекислота, и это принципиально важно нам знать, а вызываемое ею повышение концентрации ионов водорода в клетках дыхательного центра, то есть когда эта кислота в той или иной мере диссоциирует на ионы водорода (Н+) и гидрокарбонат-ионы (НСО3-).
Усиление дыхательных движений наблюдается и при введении в артерии, питающие мозг, не только угольной кислоты, но и других кислот, например молочной. Возникающая при этом гипервентиляция легких способствует выведению из организма части содержащейся в крови углекислоты и тем самым приводит к уменьшению концентрации ионов водорода в ней. И опять нам кажется, что организму не нужны ни ионы водорода, ни угольная кислота, которая их порождает. Но будем терпеливы и не будем спешить с выводами.
Что же происходило с углекислым газом в атмосфере Земли, когда растения начали активно использовать его как основной источник углерода? Его концентрация, достигавшая некогда нескольких процентов, постепенно снизилась до современного ничтожного уровня – до 0,03 %.
По-видимому, в очень далекие времена живые организмы дышали воздушной смесью, содержавшей в себе значительное количество углекислого газа. И когда углекислый газ стал постепенно исчезать из атмосферы Земли, и это обстоятельство могло изменить какой-то из существенных параметров внутренней среды живых организмов, то последние, чтобы выжить в новых условиях, должны были или оставить внутри себя уже привычный для них уровень углекислого газа, или же попытаться приспособиться к новым условиям.
Природа, как и в случае с анаэробным дыханием, не отказалась от первоначальных параметров созданной ею внутренней среды живых организмов. По-видимому, только по этой причине в альвеолах легких и человека, и многих животных поддерживается высокая концентрация углекислого газа. Как бы в память о газовой среде атмосферы Земли далекого прошлого.
Не следует, конечно, думать, что некогда сам человек жил в атмосфере с повышенной концентрацией углекислого газа. Нынешний Hоmо sapiens возник всего лишь около 100 тысяч лет назад, а первые человекоподобные существа ответвились от других приматов не ранее четырех миллионов лет назад – об этом свидетельствуют многочисленные палеонтологические данные (Шервуд Л. Уошберн. Эволюция человека).
Оказала ли газовая среда древней атмосферы какое-то влияние на определенную задержку углекислого газа в организме животных, трудно нам об этом сегодня судить, но почему-то природа все же оставила в значительных концентрациях в организме своих живых творений этот газ. Например, подходящая к легким венозная кровь практически всех млекопитающих содержит примерно 550 см3/л СО2, а покидающая легкие кровь содержит около 500 см3/л СО2. Как видим, кровь отдает лишь малую долю содержащегося в ней углекислого газа.
Но для чего организму нужен задержанный в нем углекислый газ, этого мы пока не знаем. Ответ на этот вопрос будет найден нами лишь постепенно. Но для чего-то этот газ все же нужен нашему организму, и этот факт является уже бесспорным для нас. А Бутейко считает, что углекислый газ даже более необходим организму, чем кислород. По его мнению, человек, научившийся с помощью волевой ликвидации глубокого дыхания поддерживать в покое в альвеолярном воздухе более высокую концентрацию углекислого газа (до 6,5 %), уменьшает тем самым вероятность возникновения у него целого ряда заболеваний.
А теперь посмотрим, как происходит управление дыханием.
Управление дыханием ведется дыхательным центром. Он обеспечивает не только ритмическое чередование вдоха и выдоха, но и изменяет частоту и глубину дыхательных движений, приспосабливая тем самым легочную вентиляцию к сиюминутным потребностям организма. Накопление в крови углекислого газа, а также и недостаток кислорода являются теми факторами, которые возбуждают дыхательный центр, причем первый фактор почти в 20 раз активнее второго. Многим приходилось наблюдать ныряльщиков без аквалангов. Время от времени они выпускают воздух изо рта. Кажется, для чего они это делают, ведь таким образом они лишают себя запасов кислорода? Но оказывается, что их больше угнетает накапливаемый в крови углекислый газ, чем недостаток кислорода. И, выпуская порционно воздух из легких, они тем самым уменьшают концентрацию углекислоты в крови. Мы можем проверить и на себе реакцию дыхательного центра на кратковременно задержанное нами дыхание. Не пройдет и 30 секунд после задержки дыхания, как мы вынуждены будем возобновить дыхательные движения. И нам кажется, что причиной возобновления дыхания является недостаток кислорода у нас в легких, тогда как истинной причиной является накопление углекислоты в крови.
Высокую чувствительность дыхательного центра к концентрации углекислого газа в крови учитывают и некоторые пловцы, которые хотят подольше продержаться под водой. Для этого они в течение некоторого времени перед погружением под воду дышат глубоко и вымывают таким образом углекислый газ из легких и из крови. После такой гипервентиляции человек может дольше обычного оставаться под водой. Но такая практика очень опасна, так как из-за низкой концентрации СО2 не возникает потребности в дыхании, а запасы кислорода в крови могут полностью истощиться и человек может потерять сознание. Эта ситуация также указывает нам на то, что в основном регуляция дыханием идет по концентрации углекислого газа в крови, а по содержанию кислорода в крови она менее эффективна.
Чаще всего мы наблюдаем увеличение частоты и глубины дыхания при увеличении физической нагрузки. Но и при этом главным фактором, оказывающим влияние на регуляцию дыханием, тоже оказывается концентрация углекислого газа в крови. Если сравнить, как прореагирует дыхательный центр на изменения в составе вдыхаемого воздуха, то оказывается, что при добавлении к вдыхаемому воздуху 2,5 % СО2 вентиляция легких почти удваивается, а если уменьшить во вдыхаемом воздухе концентрацию кислорода на 2,5 %, практически никаких изменений в дыхании не произойдет. Отсюда легко сделать вывод, что с кислородом в нашем организме все обстоит довольно благополучно, и поэтому дыхательный центр не особенно активно реагирует на изменения его концентрации в атмосферном воздухе, но зато на концентрацию углекислого газа и в крови, и в атмосферном воздухе дыхательный центр реагирует незамедлительно, а следовательно, нашему организму этот газ совершенно не нужен. Но поспешные выводы не всегда бывают верными. И в отношении углекислого газа Бутейко сделал прямо противоположный вывод, что для организма углекислый газ очень нужен, что он для организма даже важнее кислорода. И стал учить нас, как задерживать этот газ в организме. А сделать это можно только путем длительных тренировок, в результате чего удается задерживать дыхание на 1–2 минуты. На этом и основан метод ВЛГД – постепенно приучать организм к повышенной концентрации углекислого газа в крови, а точнее, постепенно понижать чувствительность дыхательного центра к концентрации углекислоты в крови.
Таким образом неглубоким дыханием нам удается повысить содержание углекислоты в крови, что и приводит в некоторой степени к оздоровлению организма. И этот факт, по-видимому, дает основание автору метода ВЛГД сделать вывод о том, что углекислый газ для организма имеет более важное значение, чем кислород. Так это на самом деле или нет, трудно об этом судить неподготовленному человеку. Поэтому мы продолжим наше небольшое исследование о роли углекислого газа в организме, но только чуть ниже.
Как уже ранее было сказано, для дыхательного центра особо важное значение имеет концентрация углекислоты в крови. Но возбуждение дыхательного центра вызывает не сама по себе углекислота, и это принципиально важно нам знать, а вызываемое ею повышение концентрации ионов водорода в клетках дыхательного центра, то есть когда эта кислота в той или иной мере диссоциирует на ионы водорода (Н+) и гидрокарбонат-ионы (НСО3-).
Усиление дыхательных движений наблюдается и при введении в артерии, питающие мозг, не только угольной кислоты, но и других кислот, например молочной. Возникающая при этом гипервентиляция легких способствует выведению из организма части содержащейся в крови углекислоты и тем самым приводит к уменьшению концентрации ионов водорода в ней. И опять нам кажется, что организму не нужны ни ионы водорода, ни угольная кислота, которая их порождает. Но будем терпеливы и не будем спешить с выводами.
Об энергетике организма
Нередко можно прочитать, что люди получают энергию непосредственно из космоса или от Солнца, что очень полезны продукты, накопившие в себе энергию нашего светила. Надо полагать, что это всего лишь красивая фантазия. Да, для поддержания жизни необходима энергия, и она производится в самом организме в результате окисления кислородом жиров, белков и углеводов. Именно от обеспечения нашего организма энергией в первую очередь и зависят наше здоровье и долголетие. Наш организм состоит из множества клеток, и только здоровая жизнь каждой клетки может обеспечить нам полноценное здоровье. Вся совершающаяся в клетках работа – химическая, механическая, электрическая и осмотическая – выполняется с потреблением энергии. Давно уже стало очевидным, что в конечном счете ключ к решению любой биологической проблемы следует искать именно в клетке, ибо каждый живой организм – это прежде всего клетка или, во всяком случае, был клеткой на каком-то этапе своего развития. И поэтому, чтобы в любом возрасте мы оставались и здоровыми, и жизнедеятельными, мы должны прежде всего в полной мере обеспечивать свой организм энергией. Но это вовсе не означает наполнять его только жирами, белками и углеводами и, переведя математически все это в килокалории, довольствоваться достигнутым. Чтобы получить необходимую для организма энергию, надо еще суметь сжечь запасенное в нем топливо. То есть надо еще доставить в организм достаточное для этого количество кислорода. Казалось бы, чего проще – ничего не надо покупать, а всего лишь надо взять из воздуха необходимое количество этого самого кислорода – и никаких проблем. Но, оказывается, что проблем здесь еще больше, чем с продуктами питания. Человек практически всю жизнь испытывает кислородное голодание (гипоксию). И если при недостатке кислорода клетка может и не погибнуть, делиться при этом она ни в коем случае не будет, а это уже прямой путь и к нашим болезням, и к преждевременному старению.
Почему же мы испытываем кислородное голодание? Причин для этого существует множество, и познакомиться с ними можно в специальной медицинской литературе. Все эти причины можно разделить на две группы. К первой следует отнести те, которые препятствуют насыщению крови кислородом. Самая известная из них – это пониженное парциальное давление кислорода во вдыхаемом воздухе. Такое может случиться не только при подъеме в горы, но в некоторых случаях и для особенно чувствительных людей и на низменных местах при резком падении барометрического давления. Но нас в данный момент интересует не эта группа причин, а другая, при которой кровь достаточно насыщена кислородом, но тем не менее отдельные органы или организм в целом испытывают кислородное голодание. Чаще всего отдельные органы испытывают такое голодание в результате атеросклероза сосудов, снабжающих их кровью. Атеросклерозу посвящена специальная глава (10-я), а поэтому мы уделим сейчас внимание только кислородному голоданию всего организма, не отягченного атеросклерозом, при нормальном насыщении крови кислородом. Возможно, что повышенный уровень кальция в крови тоже как-то неблагоприятно сказывается на энергетическом обеспечении организма.
Почему же мы испытываем кислородное голодание? Причин для этого существует множество, и познакомиться с ними можно в специальной медицинской литературе. Все эти причины можно разделить на две группы. К первой следует отнести те, которые препятствуют насыщению крови кислородом. Самая известная из них – это пониженное парциальное давление кислорода во вдыхаемом воздухе. Такое может случиться не только при подъеме в горы, но в некоторых случаях и для особенно чувствительных людей и на низменных местах при резком падении барометрического давления. Но нас в данный момент интересует не эта группа причин, а другая, при которой кровь достаточно насыщена кислородом, но тем не менее отдельные органы или организм в целом испытывают кислородное голодание. Чаще всего отдельные органы испытывают такое голодание в результате атеросклероза сосудов, снабжающих их кровью. Атеросклерозу посвящена специальная глава (10-я), а поэтому мы уделим сейчас внимание только кислородному голоданию всего организма, не отягченного атеросклерозом, при нормальном насыщении крови кислородом. Возможно, что повышенный уровень кальция в крови тоже как-то неблагоприятно сказывается на энергетическом обеспечении организма.
Эффект Вериго-Бора
При каждом данном парциальном давлении кислорода существует определенное количественное соотношение между гемоглобином и оксигемоглобином (оксигемоглобин – это гемоглобин, соединенный с кислородом; он переносит кислород от органов дыхания к тканям и придает ярко-красный цвет артериальной крови). Если построить график зависимости количества оксигемоглобина от парциального давления кислорода, мы получим кривую кислородной диссоциации, которая будет показывать, каким образом эта реакция зависит от парциального давления кислорода.
Но на кривую кислородной диссоциации оказывает влияние не только парциальное давление кислорода. Существенное влияние на нее оказывает и рН крови.
Основу разработки проблемы гипоксии заложил русский физиолог И. М. Сеченов фундаментальными работами по физиологии дыхания и газообменной функции крови. Большое значение имеют также исследования русского физиолога Б. Ф. Вериго[1] по физиологии газообмена в легких и тканях. Опираясь на идеи И. М. Сеченова о сложных формах взаимодействия между двуокисью углерода и кислородом в крови, он впервые установил зависимость степени диссоциации оксигемоглобина от величины парциального давления углекислоты в крови.
При большом парциальном давлении кислорода гемоглобин (Нb) соединяется с кислородом, образуя оксигемоглобин (НbО2), а при низком парциальном давлении кислорода гемоглобин отдает присоединенный ранее кислород. Всю эту цепочку можно записать в виде обратимой химической реакции:
Нb + O2 <->HbO2.
При снижении парциального давления углекислого газа в альвеолярном воздухе и крови сродство кислорода к гемоглобину повышается, что затрудняет переход кислорода из капилляров в ткани. Это явление сегодня известно как эффект Вериго-Бора. Эффект этот был открыт независимо друг от друга Б. Ф. Вериго (1898) и датским физиологом Х. Бором (1904)[2].
Физиологическое значение эффекта Вериго-Бора было отмечено многими исследователями.
Еще в 1911 году русский ученый П. М. Альбицкий писал, что углекислый газ, образующийся в организме, подлежит удалению, и нормальный организм освобождается от него с редким совершенством. Но какая-то часть углекислого газа не только не удаляется, а наоборот, организм сохраняет ее как одну из необходимейших составных частей внутренней среды организма.
И мы теперь знаем, что в процессе эволюции у высших животных и человека сформировались легкие, а в легких имеются альвеолы, в которых содержится около 6 % углекислого газа. Альбицкий выдвинул даже гипотезу (1911), согласно которой повышенное парциальное давление углекислого газа в крови является важнейшим регулятором интенсивности окислительных процессов в тканях.
Отсюда легко сделать вывод, что при снижении в крови парциального давления углекислого газа нам следует ожидать нарушения обменных функций в организме и последующих всевозможных болезней.
Через полвека гипотезу Альбицкого повторил К. Бутейко, но в то же время он предложил и способ повышенного удержания углекислого газа в организме, чего не сделал Альбицкий. Конечно, самое интенсивное вымывание углекислого газа из организма происходит при глубоком дыхании. Поэтому Бутейко и решил волевым методом воспрепятствовать такому дыханию.
Многочисленные случаи выздоровления больных, использовавших метод ВЛГД (в основном, это были астматические заболевания), говорят прежде всего о том, что этот метод затрагивает какие-то важные физиологические функции организма. Сам автор метода ВЛГД замечает, что многие болезни, в том числе и бронхиальная астма, связаны с нарушением кислотно-щелочного равновесия в организме. Поэтому задержкой в организме углекислого газа при неглубоком дыхании можно попытаться сдвинуть реакцию крови в кислую сторону. Как видим, организму нужен не столько углекислый газ, сколько его влияние на реакцию крови. А от реакции крови (от рН крови) зависит, как было сказано выше, кривая кислородной диссоциации (см. рис. 3).
Но в какой мере углекислый газ влияет на реакцию крови и какой должна быть оптимальная реакция крови, ответа на этот вопрос автор метода ВЛГД не дал.
Но на кривую кислородной диссоциации оказывает влияние не только парциальное давление кислорода. Существенное влияние на нее оказывает и рН крови.
Основу разработки проблемы гипоксии заложил русский физиолог И. М. Сеченов фундаментальными работами по физиологии дыхания и газообменной функции крови. Большое значение имеют также исследования русского физиолога Б. Ф. Вериго[1] по физиологии газообмена в легких и тканях. Опираясь на идеи И. М. Сеченова о сложных формах взаимодействия между двуокисью углерода и кислородом в крови, он впервые установил зависимость степени диссоциации оксигемоглобина от величины парциального давления углекислоты в крови.
При большом парциальном давлении кислорода гемоглобин (Нb) соединяется с кислородом, образуя оксигемоглобин (НbО2), а при низком парциальном давлении кислорода гемоглобин отдает присоединенный ранее кислород. Всю эту цепочку можно записать в виде обратимой химической реакции:
Нb + O2 <->HbO2.
При снижении парциального давления углекислого газа в альвеолярном воздухе и крови сродство кислорода к гемоглобину повышается, что затрудняет переход кислорода из капилляров в ткани. Это явление сегодня известно как эффект Вериго-Бора. Эффект этот был открыт независимо друг от друга Б. Ф. Вериго (1898) и датским физиологом Х. Бором (1904)[2].
Физиологическое значение эффекта Вериго-Бора было отмечено многими исследователями.
Еще в 1911 году русский ученый П. М. Альбицкий писал, что углекислый газ, образующийся в организме, подлежит удалению, и нормальный организм освобождается от него с редким совершенством. Но какая-то часть углекислого газа не только не удаляется, а наоборот, организм сохраняет ее как одну из необходимейших составных частей внутренней среды организма.
И мы теперь знаем, что в процессе эволюции у высших животных и человека сформировались легкие, а в легких имеются альвеолы, в которых содержится около 6 % углекислого газа. Альбицкий выдвинул даже гипотезу (1911), согласно которой повышенное парциальное давление углекислого газа в крови является важнейшим регулятором интенсивности окислительных процессов в тканях.
Отсюда легко сделать вывод, что при снижении в крови парциального давления углекислого газа нам следует ожидать нарушения обменных функций в организме и последующих всевозможных болезней.
Через полвека гипотезу Альбицкого повторил К. Бутейко, но в то же время он предложил и способ повышенного удержания углекислого газа в организме, чего не сделал Альбицкий. Конечно, самое интенсивное вымывание углекислого газа из организма происходит при глубоком дыхании. Поэтому Бутейко и решил волевым методом воспрепятствовать такому дыханию.
Многочисленные случаи выздоровления больных, использовавших метод ВЛГД (в основном, это были астматические заболевания), говорят прежде всего о том, что этот метод затрагивает какие-то важные физиологические функции организма. Сам автор метода ВЛГД замечает, что многие болезни, в том числе и бронхиальная астма, связаны с нарушением кислотно-щелочного равновесия в организме. Поэтому задержкой в организме углекислого газа при неглубоком дыхании можно попытаться сдвинуть реакцию крови в кислую сторону. Как видим, организму нужен не столько углекислый газ, сколько его влияние на реакцию крови. А от реакции крови (от рН крови) зависит, как было сказано выше, кривая кислородной диссоциации (см. рис. 3).
Но в какой мере углекислый газ влияет на реакцию крови и какой должна быть оптимальная реакция крови, ответа на этот вопрос автор метода ВЛГД не дал.
Оптимальная реакция крови
Надо полагать, что организм нормально функционирует только при оптимальной реакции крови. Но какую реакцию крови следует считать оптимальной, это нам еще предстоит выяснить, хотя кажется, что и выяснять здесь нечего – в медицине прочно укоренилось понятие о кислотно-щелочном равновесии в крови, откуда логически вытекает, что кровь должна быть и не кислой, и не щелочной, а только нейтральной. Но в действительности все обстоит далеко не так. У большинства людей, как известно, рН артериальной крови равен 7,4, а венозной – 7,35. Как видим, ни та ни другая кровь не является нейтральной, а только щелочной. Но в медицинской литературе все еще продолжается нещадная эксплуатация термина «кислотно-щелочное равновесие» (КЩР), хотя такого равновесия в организме нет. Справедливости ради надо сказать, что в последнее время стали говорить и о кислотно-щелочном состоянии крови. И это более верный подход к оценке реакции крови. Но точнее следовало бы просто говорить о реакции крови. И, безусловно, следует выяснить, какая же реакция крови может быть самой благоприятной для нашего организма. А о кислотно-щелочном равновесии можно просто забыть – нет такого состояния крови в организме человека, как и нет никакого механизма для осуществления такого равновесия, хотя для поддержания постоянства некоторой величины реакции крови в организме имеются соответствующие механизмы: это и буферная система крови, и почки, и легкие. Но мы уже знаем, что эта величина (рН = 7,4) – не нейтральная реакция крови.