В Хельсинки мне довелось испробовать несколько различных подходов к созданию виртуальной городской среды: опирающийся на инициативу масс и открытые исходники проект Helsinki Arena 2000, директивный проект Helsinki Virtual Village и общественные сети четырех интернетовских щеголей, давших своему проекту имя Aula. Ристо Линтури представил проект, поддержанный Бристольской лабораторией (Bristol Labs) компании HewlettPackard, финским поставщиком телекоммуникационных услуг Helsingin Puhelin Оу и компанией Arcus (с ноября 2002 года именуемой Fontus Оу), по созданию системы, которая бы в режиме реального времени собирала воедино данные о местонахождении пользователей мобильными средствами связи. Такая система видится как «распределенная среда обмена сообщениями, где все транспортные средства отображались бы со всеми своими связями в виде двойников на модели… В виртуальном Хельсинки вы встречаете двойников своих друзей, подобно тому как вы встречаете самих друзей в реальном Хельсинки. В виртуальном мире вам вовсе не нужно выходить из дому, когда на улице ливень или метель. Вы можете воспользоваться любимыми местами встречи, вроде входа в центральный универмаг Stockmann или башенных часов в Ласипалаци. Вы даже можете ощутить царящую там толчею и узнать кого-то в этой толчее» [34].
   Позже калифорнийские власти создали у себя в штате Центр изучения информационных технологий в интересах общества {Center for Information Technology Research in the Interest of SocietyCITRIS) для проектирования «вездесущих, надежных, энергосберегающих и безотказно работающих информационных систем, поставляющих необходимые нам данные, которыми мы можем незамедлительно воспользоваться; распределенных, надежных и безопасных информационных систем, способных развиваться и приспосабливаться к резким изменениям окружающей обстановки, предлагая информационные услуги в соответствии с нуждами людей и учреждений… Подобные системы мы называем социально-расширяемыми информационными системами [35].
   Теракт 11 сентября 2001 года способствовал становлению новых направлений в проектировании «разумных городов»:
   «Главное состоит в разработке и продвижении технологий, которые свяжут составляющие инфраструктуры в единую систему, значительно более умелую и лучше соображающую по сравнению с тем, что есть сейчас. Инженеры, обеспечивающие безопасность структуры, работают не покладая рук, чтобы сплести нити технологического полотна, которое будет оснащено средствами, способными распознавать вредные химикаты в водоеме, передавать спасателям нужные данные о целостности поврежденного здания, показывать пути эвакуации или рациональной подачи электроэнергии в случае кризиса. Эти высокотехнологичные сети — в соединении со средствами моделирования, улучшенными каналами связи и проектированием более надежных зданий — имеют большое значение в деле создания „разумного города“, где можно точно определить опасность и принять своевременные меры» [36].
   Для уяснения инфраструктуры умных толп перейдем от общего обозрения города к детальному рассмотрению расположенных в нем предметов, строений и автомашин. Умение мобильных устройств считывать штрихкод и общаться с поколениями радиочастотных микросхем, идущих на смену штрих-коду, позволяет «щелкать» по картине реального мира и наблюдать за тем, что произойдет.
 
   Союз битов и атомов
   Штрихкод — загадочная полосатая лента, наносимая на большинство производимых товаров, — представлял первые мостки, соединившие физический и виртуальный миры. Подобную мысль высказал в своей магистерской диссертации 1930 года учащийся Гарвардской школы предпринимательства Уоллес Флинт, изобретший «автоматическую систему бакалейной торговли» с привлечением перфокарт. В своей диссертации Флинт описывает супермаркет, где покупатели помечают выбранный товар пробиванием карты, вставляя ее затем в считывающее устройство у кассы и по конвейерной ленте получая товар. Но его идею не подхватили [37]. Современный штрихкод ведет свое начало с 1949 года, и придумал его Норман Вудленд, аспирант и преподаватель Технологического института Дрексела (с 1969 г. — университет Дрексела). Но само новшество лежало невостребованным вплоть до 1973 года, когда разработка Вудленда для компании IBM привлекла внимание бакалейной торговли и позже получила название универсального товарного кода {Universal Product CodeUPC). В 1981 году американская армия стала с его помощью помечать свое снаряжение. Сегодня крупнейшим мировым потребителем штрихкода является специализирующаяся на грузовых перевозках американская авиакомпания Federal Express. Ежедневно в 140 странах мира считывается пять миллиардов штрихкода [38].
   Штрихкод совершенно изменил лицо современной торговли, где на место складской системы пришла система «оперативных» поставок; при сборке автомобилей и иных многосоставных систем (включая запасы товаров бакалейных магазинов) штрихкод и информационные сети согласовывают производство и поставку требующейся продукции. WalMart Stores Inc., сеть магазинов розничной торговли, утвердила свое господство на рынке во многом благодаря всеобъемлющей и мгновенно реагирующей на спрос системе управления запасами.
   Когда в карманное устройство встроены функции считывателя штрихкода или радиочастотной метки RFID, оно легко может привязать к метке, которая физически соотносится с определенным местом или предметом, соответствующую веб-страницу или иную онлайновую службу. Сегодня мы можем направить свое считывающее устройство на какой-либо предмет и увидеть на экране КПК или прослушать на своем сотовом телефоне соответствующую информацию. Компания под названием Barpoint предоставляет владельцам сотовых телефонов, пейджеров и беспроводных компьютеров возможность сканировать штрихкод переносным считывающим устройством или вызывать по телефону автоматической службы с последующим клавиатурным вводом штрихкода любой товар [39]. Затем служба Barpoint указывает цену и предлагает оформить электронный заказ на выбранный товар. Подобная простая возможность может в итоге существенно изменить расстановку сил в отношениях между потребителями, розничной торговлей, производителями и торговлей в Сети. Например, широкое использование беспроводных карманных устройств способно превратить любой книжный магазин на свете в демонстрационный зал для Amazon.com.
   При лазерном считывании штрихкода требуется обзор, за один раз считывается один штрихкод, и записанные там сведения невозможно изменять динамически. В 1980-е годы в качестве электронных преемников штрихкода стали рассматривать радиочастотные метки RFID. Радиочастотные метки хранят, посылают и принимают информацию посредством слабых радиосигналов. Активные метки содержат крохотные элементы питания и в зависимости от мощности и частоты излучения посылают сигналы на расстояние более 30 метров. Из-за элементов питания активные метки стоят дороже и на сегодняшний день используются для слежения за крупным рогатым скотом, за товарами в магазинах (небольшие радиочастотные метки содержат громоздкие пластмассовые устройства защиты от кражи, а в проходы у выхода из магазинов встроены считыватели меток) и в системе автоматической оплаты проезда.
   Не имеет смысла устанавливать дорогостоящие радиочастотные метки на многие предметы. Менее дорогие пассивные метки содержат крохотную катушку индуктивности из электропроводящих чернил. При прохождении метки через магнитное поле считывающего устройства катушка создает ток достаточной силы для передачи на короткое расстояние сигнала. Работа такой метки как генератора тока подобна перемещению проводника в магнитном поле. Производители и все, кого привлекают преимущества радиочастотных меток, полагают, что они заменят штрихкод и совершенно преобразят слежение за объектами, стоит цене на них упасть до одного цента, когда появятся пресловутые «грошовые метки» (penny tags). На время написания этой книги их цена упала до пятнадцати центов. Вивик Субраманян из Калифорнийского университета утверждает, что добился, наконец, прорыва весной 2002 года, использовав технологию струйных принтеров и электронные чернила, которыми можно наносить грошовые умные метки на бумагу, пластмассу или ткань: «В состоянии ли мы напечатать на упаковке схему, которая при опрашивании радиосигналом ответит: „Эй, я банка пива“? Важно и то, в состоянии ли мы делать это дешево?» [40]. Центр автоматической идентификации (AutoID Center) в MIT, финансируемый такими компаниями, как Procter amp;Gamble, United Parcel Service of AmericaUPS (Единая посылочная служба Америки), Gillette Company, Johnson amp; Johnson, International Paper Co. и другими, для кого умные метки сулят огромное снижение издержек, является средоточием усилий по проведению междисциплинарных НИОКР [41].
   Совместное использование беспроводного подключения к сети, нательных вычислительных сред и считывателей меток приведет к созданию новых средств, могущих изменить природу товаров, мест и социального действия. Общество потребления ожидает глубокие сдвиги в потреблении. Изменения самой обыденной, но весьма существенной составляющей магазинных покупок — этикеток — могут иметь политические последствия. Например, противники генетически измененных продуктов питания и пестицидов требуют указывать это на этикетках. Борцы за права рабочих настаивают, чтобы этикетки на одежде содержали сведения об уровне (рейтинге) производственной культуры производящей компании или страны-производителя. В пору своего становления американские профсоюзы отстаивали и воспевали «ношение профсоюзной наклейки». При наличии беспроводных устройств, способных считывать данные меток, не представляет особого труда создание в Сети служб, предоставляющих те или иные сведения. Когда людям становится доступной оценка того или иного товара или места Гринписом или Христианской коалицией, политическая сила потребителей может сказаться на продажах самым непредсказуемым образом.
   Поспособствуют ли «грошовые метки» наряду с потреблением и общественному капиталу? Цифровые «примечания» к предметам и местам могли бы посодействовать взаимодействию объединения людей внутри района. Возьмите соседнюю автобусную остановку, где многим доводится бывать в течение дня, но в разное время. У этих людей есть чем поделиться друг с другом, но отсутствуют действенные способы общения между ними. Привязка телеконференций или веб-страниц к такой остановке позволила бы людям более гибко связываться друг с другом. Можно было бы создать ряд местных служб вроде выпусков новостей, объявлений о найме, обсуждений событий, аварийных и криминальных сообщений, обмена или продажи товаров и услуг. Здесь нашлось бы место развлечениям, включая игры.
   Пожалуй, самым уместным приложением радиочастотных меток сейчас видятся «умные деньги», ведущие запись своего происхождения, владельцев и того, что на них было куплено. С декабря 2001 года Европейский центральный банк работает над введением в 2005 году радиочастотных меток на денежных знаках [42]. Хотя очевидным побуждением банка здесь выступает предотвращение фальшивомонетничества, подобная технология вполне могла бы способствовать также надзору за поведением граждан с невиданным прежде размахом. Американские борцы за гражданские свободы полагают, что «умные деньги» нарушили бы конституционный запрет на незаконную слежку и задержание [43]. В июле 2001 года японская компания Hitachi объявила, что ее мю-чип, квадратик со стороной менее 0,4 миллиметра, с радиопередатчиком и 128-разрядным постоянным запоминающим устройством (ПЗУ), крошечные размеры которого позволяют внедрять его в денежные знаки без опасности повреждения при сгибании купюр, появятся на рынке ценой около 20 иен за штуку, что примерно соответствует 15 центам [44].
   После растворения компьютеров в стенах, они, возможно, начнут парить в воздухе. Мю-чипы по своим размерам приближаются к «умной пыли» — пока еще не существующей разновидности разумных предметов. Исследователи Калифорнийского университета при финансовой поддержке Управления перспективных исследований и разработок министерства обороны США DARPA занимаются объединением занятых обработкой информации микросхем с «микроэлектромеханическими системами», способными производить физическую работу [45]. Каждая такая «пылинка» содержит датчик (например, загрязнений воздуха или нервно-паралитического газа) и оптический приемо-передатчик, посредством лазерного луча обеспечивающий связь на расстоянии нескольких километров, а порой снабжается и крыльями [46]. Первый образец размером со спичечный коробок располагал датчиками температуры, атмосферного давления и влажности и вычислительной мощью, превосходящей мощь спускаемого на Луну аппарата Apollo. «Нам ничто не мешает уместить все это в объем одного кубического миллиметра», — заявил профессор Калифорнийского университета Кристофер Пистер [47]. Став совсем крохотными, такие «пылинки» смогут летать и плавать. Летающие «пылинки» можно было бы научить роиться (собираться в тучи).
   Подобно цифровым ЭВМ и вычислительным сетям, умная пыль — детище Пентагона, чьи спонсоры из DARPA, несомненно, усматривают в этой технологии основу для невидимых устройств наблюдения за полем боя. Побочные влияния на гражданскую жизнь могут быть самыми неожиданными: роящиеся датчики можно было бы использовать при прогнозе погоды, обеспечении безопасности ядерного реактора, наблюдении за окружающей средой, управлении складскими запасами и слежении за качеством пищи и воды. Меня не удивит, если роящимся разумным микромеханическим «пылинкам» найдут применение в косметологии, зрелищных мероприятиях или порнографии. Те, для кого повсеместная компьютеризация сейчас — отвлеченное понятие, со всей ясностью увидят, как исчезнут привычные преграды между информацией и материальным миром, когда вдыхаемый ими воздух будет в состоянии следить за ними. В 1950-е годы ЭВМ занимали целую комнату, а в 1980-е стали умещаться на столах. Сегодня мы уже держим в руках мощные вычислительные и коммуникационные средства. Затем мы вообще потеряем их из вида, а уронив на пол, не сумеем найти. Граница между битами и атомами проходит там, где смыкаются различные отрасли знаний, связанные с виртуальной реальностью, расширенной реальностью, умными помещениями, осязаемыми сопрягающими средами (интерфейсами) и нательными вычислительными средствами.
   Как пояснил мне Нил Гершенфельд, первый период существования Лаборатории информационных носителей MIT со дня ее основания в 1980 году до конца XX века был связан с «освобождением битов» от их различных представлений (форматов), наподобие текстового, звукового, изобразительного либо программного, и сведением их в один вид, цифровой. Согласно прогнозу Гершенфельда, следующий период будет связан со «слиянием битов и атомов». Услышав впервые об этом веянии несколько лет назад, я не связывал его с Интернетом или повсеместной компьютеризацией. Я посещал группу профессора Исии Хироси несколько лет. Когда я навестил его в Лаборатории информационных носителей в 1997 году, он работал над созданием так называемых осязаемых битов. Исии тогда увлекла мысль об отыскании иных путей взаимодействия с компьютером, помимо привычного управления «иконками» на экране монитора, и переходе к управлению осязаемыми объектами. Такие физически виртуальные объекты он назвал «фиконками», сократив словосочетание «физическая иконка». Здесь я впервые наблюдал включение части физического мира в виртуальный мир.
   Лаборатория информационных носителей — прежде всего место, где создают рабочие образцы безумных идей вроде «фиконок». Исии подвел меня к широкому столу с белой поверхностью. На краю стола стояло несколько деревянных предметов величиной с большие кубики. Один из них представлял собой модель купола здания MIT. Я взял купол и положил на середину стола. Белая поверхность стола превратилась в карту территории MIT. Я стал двигать «фиконку» — вместе с ней двигалась карта. Я стал поворачивать «фиконку», и вместе с ней поворачивалась карта. Исии подал мне другой предмет, в контурах которого угадывалось спроектированное архитектором Бэй Юймином здание Лаборатории информационных носителей. Я положил его на стол, и карта подвинулась таким образом, что купол и лаборатория заняли соответствующие им места. Я двигал то одной, то другой «фиконкой» — и карта подвигалась так, что оба строения неизменно вписывались в существующий ландшафт.
   Исследовательская работа в Лаборатории информационных носителей нацелена на технологии, которыми мы начнем пользоваться через десять — двадцать лет. Лаборатория вычислительной техники (Computer Science LaboratoryCSL) японской компании Sony старается заниматься проектами, сулящими более скорую отдачу. Я навестил Рэкимото Дзюнъитиро, молодого руководителя Лаборатории по человеко-машинному взаимодействию (Interaction Laboratory), состоящей из сорока сотрудников. Вооружившись карманным устройством NaviCam и направив его на дверь чьего-нибудь рабочего кабинета, вы видите то, чем занимается этот исследователь [48]. Рэкимото именует NaviCam лупой для расширенной реальности. Вместо того чтобы надевать громоздкий шлем, вы просто направляете устройство на снабженный радиочастотной меткой предмет и смотрите или слушаете информацию, связанную с данным предметом.
   Рэкимото предложил мне испробовать новый способ переноса данных с экрана одного компьютера на экран другого — «взять» снабженной микросхемой ручкой виртуальный предмет с экрана и «сбросить» его на экран другого компьютера. Я «взял» изображение картины французского художника Клода Моне с КПК и «бросил» его на настенный дисплей, где оно появилось настроенным на лучшее разрешение экрана. Рэкимото назвал этот метод щипцовым в противоположность обычному настольному графическому представлению файлов и папок.
   Рэкимото «занят разработкой нового подхода к человеко-машинному взаимодействию для высокомобильных компьютеров, которые будут осведомлены об окружающей обстановке и будут скорее подсказывать, чем дожидаться команд. При таком подходе пользователь сможет взаимодействовать с реальным миром, обогащенным поступающей с компьютера комплексной информацией. Знакомство с окружающей пользователя обстановкой будет происходить автоматически с привлечением ряда средств распознавания, что позволит компьютеру оказывать содействие пользователю без прямого инструктирования с его стороны. Как мне видится, еще до конца текущего десятилетия подобные компьютеры войдут в наш быт, как вошли в свое время современные аудиоплееры, электронные слуховые аппараты и наручные часы» [49]. Представьте только возможность «брать и бросать» звукозаписи, изображения и видео на кинокамеры, МРЗ-проигрыватели и ПК.
   Пожалуй, ведущим подразделением по работе с битами и атомами в Лаборатории информационных носителей MIT является Группа физики и информационных носителей (Physics and Media Group) под руководством профессора Нила Герщенфельда. Гершенфельд в 1999 году издал книгу «Когда вещи станут мыслить» (When Things Start to Think) — в названии содержится намек на научно-исследовательский консорциум «Мыслящие предметы» (Things That Think) при Лаборатории информационных сред [50]. Он только что прилетел утренним рейсом из Индии, когда мы с ним встретились. Он ездил туда в рамках оказываемой консорциумом MIT «Цифровые государства» (Digital Nations) технической помощи развивающимся странам. На нем были поношенные белые шиповки, слаксы, очки в роговой оправе, а выглядел он моложе тех лет, на которые указывала проседь в его кудрявых волосах.
   Его частые поездки в Индию, как и усилия самого консорциума Digital Nations обусловлены верой в то, что повсеместная компьютеризация способна сгладить наиболее острые противоречия внутри беднейших стран мира. «Значительная часть нашей работы в Индии нацелена на обращение вспять процесса урбанизации, приближение к селу благ цивилизации. Компьютеры и сети способны изменить положение в области управления, здравоохранения, ликвидации последствий и предупреждения аварий, образования и землепользования. Но для этого компьютеры должны подешеветь до десяти долларов и обходиться без электросети или квалифицированной помощи».
   Мне хотелось поговорить с ним о «грошовых метках», а Гершенфельд горел желанием обсудить рисуемые компьютеры. «Что до „грошовых меток“, мы близки к завершению, — были его слова. — Сейчас на повестке производственный вопрос». Ему видятся самоорганизующиеся сети датчиков и компьютеров. Один из его бывших студентов — Уильям Бьютера — описал такой образец в виде «нескольких тысяч копий одной интегральной схемы (ИС), каждая размером с крупную песчинку, равномерно распределенных в полувязком веществе и наносимых на поверхность подобно краске. Каждая такая ИС содержит микропроцессор, память и беспроводной приемопередатчик на площади 4x4 мм, имеет встроенные часы и локальную связь… Модель программирования, использующая самоорганизующуюся среду кусков мобильного кода, поддерживает множество полезных приложений» [51]. Представьте умную пыль, умеющую собираться в ситуативные сети, решающие вычислительные задачи, образующие из окрашенных поверхностей суперЭВМ, экраны мониторов, распределенные микрофоны или громкоговорители либо беспроводные приемопередатчики.
   Экран компьютера Гершенфельда проецировался на широкую белую поверхность стола. Он любовно поглаживал ту часть стола, куда спроецировал макет нового здания Лаборатории информационных носителей, описывая мне это здание, представляющее собой настоящий полигон. Гершенфельд должен был возглавить Центр битов и атомов {Center for Bits and Atoms), который разместится в новом здании, где все переключатели и термостаты обзаведутся собственными интернетовскими адресами. Рисуемые краской компьютеры — давняя мечта Гершенфельда: «Истинное предназначение подключения компьютеров состоит в освобождении людей установкой средств, умеющих обходиться с окружающими нас вещами» [52].
   Переместимся теперь на другой уровень, от умного помещения с его окрашенными компьютерами стенами перейдя к человеческому телу. Политические последствия выбора технических решений проясняются по мере того, как компьютеры заселяют просторы самой интимной сферы приложения техники — одежды и бижутерии — и люди уже не просиживают у компьютеров, не держат в руках технику и даже не ходят в окружении ее, а надевают ее. Создание и использование нательных вычислительных средств ярко оттенили технико-политическую сторону различий между виртуальной реальностью, расширенной реальностью и опосредованной реальностью и между умными помещениями и разумными персональными информационными посредниками.
 
   Нательные компьютеры: поле политических битв
   Подобно большей части интернетовской братии, я узнал о Стиве Манне, первом интерактивном киборге, когда он стал передавать в Сеть все, что представлялось его взору. Манн, возившийся с нательными компьютерами с малолетства, очутился в MIT, где вооружился шлемом, укрывшим его голову, так что на мир он теперь смотрел сквозь видеокамеры. Внешний видеосигнал пропускался через компьютеры, что позволяло Манну добавлять и убирать картины мира, который он видел вокруг. Начиная с 1994 года беспроводные средства связи предоставили ему возможность пересылать все, что он видел, на веб-страницу. Носимый Манном компьютер обладал многими функциями, включая доступ к электронной почте и Сети, но самым примечательным фактором была решимость Стива постоянно носить компьютер. Теперь большую часть своей жизни ему предстоит опосредованно общаться с действительностью.
   Манн, ныне профессор Университета Торонто, еще подростком хотел стать киборгом. Слово «киборг» — это сокращение словосочетания «кибернетический организм», и придумали его для обозначения слияния человеческого и искусственного организмов Манфред Клайнс и Натан Клайн, а сделал известным изобретатель кибернетики Норберт Винер. Для многих само это слово и все с ним связанное олицетворяют бесчувственный образ, механический и бесчеловечный, пиррову победу технофилии над всем, что есть человечного в людях. Манн думает об этом совершенно иначе, и в 2001 году он написал страстное воззвание, не оставившее равнодушным и меня, человека, которому довелось испытать на себе возможности расширенной реальности:
   «Вместо умных помещений, умных автомобилей, умных туалетов и так далее мне хотелось бы предложить понятие об умных людях.
   Цель работ по ЧИ (человечному интеллекту) заключается в совершенствовании разума рода человеческого, а не только его орудий. Понятие «умные люди» попросту означает, что нам в развитии технической инфраструктуры следует опираться на человеческий разум, а не пытаться вынести человека за скобки. Важная задача ЧИ состоит в том, чтобы сделать первый шаг к сближению с главенствующим принципом Просвещения, состоящим в уважении человека. Это происходит, в переносном и буквальном смысле слов, через преображение тела посредством протезов в суверенную единицу, предоставляя в итоге всем нам возможность управлять окружающей нас обстановкой… Один из основополагающих принципов развития технологии в рамках системы ЧИ состоит в том, что пользователь должен стать составной частью обсуждения. Нательный компьютер допускает существование, а не только действие новых подходов» [53].