2 682 440 4+ 15 365 639 4+ 187 960 4= 20 615 673 4. [15]
   Несмотря на все «подкрепляющие» данные гипотеза Эйлера оказалась ложной. В действительности Элькис доказал, что это уравнение имеет бесконечно много решений в целых числах. Мораль ясна: нельзя использовать результаты, полученные для первого миллиона целых чисел, как обоснование гипотезы относительно всех целых чисел.
   Но обманчивый характер гипотезы Эйлера — ничто по сравнению с гипотезой о завышенной оценке количества простых чисел. Рассматривая все б?льшие и б?льшие целые числа, мы убеждаемся, что найти среди них простые числа становится все труднее. Например, между 0 и 100 расположены 25 простых чисел, тогда как между 10 000 000 и 10 000 100 — только 2 простых числа. В 1791 году Карл Гаусс, которому было тогда всего лишь четырнадцать лет, сформулировал приближенный закон, по которому уменьшается частота простых чисел. Формула Гаусса давала разумную точность, но всегда слегка завышала истинное распределение простых чисел. Проверка на простых числах до миллиона, миллиарда или триллиона показала, что гипотеза Гаусса излишне щедра, и математики испытывали сильнейшее искушение считать, что так будет и для всех чисел до бесконечности. Так родилась гипотеза о завышенной оценке распределения простых чисел.
   В 1914 году Дж. И. Литлвуд, сотрудник Г.Г. Харди по Кембриджскому университету доказал, что для очень больших чисел формула Гаусса даст заниженную оценку распределения простых чисел. В 1955 году С. Скьюз показал, что недооценка количества простых чисел может наступить прежде, чем будет достигнуто число
   Это число невозможно даже представить, и никаких практических приложений оно не имеет. Харди назвал число Скьюза «самым большим числом, которое когда-либо служило какой-нибудь цели в математике». Харди подсчитал, что если бы кто-нибудь вздумал сыграть в шахматы со всеми частицами во Вселенной (а их 10 87; под ходом в такой игре следовало бы понимать перестановку любых двух частиц), то число возможных партий оказалось бы приближенно равно числу Скьюза.
   Не существует причин, по которым Великая теорема Ферма не могла бы оказаться столь же обманчивой, как гипотеза Эйлера или гипотеза о завышенной оценке распределения простых чисел.

Аспирантские годы

   В 1975 году Эндрю Уайлс поступил в аспирантуру Кембриджского университета. В ближайшие три года ему предстояло работать над диссертацией на соискание ученой степени Рh.D. (доктора философии) и за это время как бы пройти свое послушание математика-подмастерья. У каждого аспиранта имеется свой руководитель и наставник. У Уайлса им был австралиец Джон Коутс, профессор из колледжа Эммануэля, живший у себя на родине в городке Посум Браш в Новом Южном Уэльсе.
   Коутс хорошо помнит, как он принял Уайлса: «Помню, что коллега сообщил мне о своем очень сильном студенте, который только что сдал последнюю часть экзаменов по математике и настоятельно рекомендовал мне взять его в аспирантуру. К счастью, я знал Эндрю еще в бытность его студентом. Еще тогда у него были очень глубокие идеи, и было ясно, что он математик с большим будущим. Разумеется, в то время не было и речи о том, чтобы какой-нибудь аспирант работал непосредственно над доказательством Великой теоремы Ферма. Она слишком трудна и для более опытного математика».
   В последнее десятилетие все, что делал Уайлс, было направлено на подготовку к решающей схватке с Великой теоремой Ферма, но теперь, когда он вступил в ряды профессиональных математиков, ему приходилось быть более прагматичным. Как вспоминает Уайлс, он был вынужден временно отказаться от своей мечты. «Придя в Кембридж, я отложил Ферма в сторону. Не то, чтобы я забыл о теореме — она всегда была со мной, но я вдруг осознал, что те методы, которыми мы пытались доказать ее, существовали уже около 130 лет. По-видимому, они не позволяли дойти до корней проблемы. Работая над доказательством теоремы Ферма, вы могли потратить годы и остаться ни с чем. Работать над любимой проблемой — одно удовольствие, пока получается интересная математика, даже если проблему не удается решить к концу дня. Хорошей математической проблемой по определению считается такая, которая порождает хорошую математику. Важна математика, а не сама проблема».
    Эндрю Уайлс во время обучения в колледже
 
    Джон Коутс, научный руководитель Уайлса в 70-е годы, продолжал поддерживать отношения со своим бывшим студентом
 
   В обязанности Джона Коутса входило найти для Эндрю новую увлекательную проблему, которая станет предметом его исследования по крайней мере на следующие три года. «Думаю, все, что руководитель может сделать для аспиранта, — это попытаться дать ему толчок в правильном направлении. Разумеется, никто не может с уверенностью знать заранее, какое направление исследования окажется плодотворным, но одно старший по возрасту математик может сделать — использовать свое чутье, свою интуицию при выборе стоящей области исследования, а от аспиранта зависит, насколько ему удастся продвинуться в указанном направлении». В конце концов Коутс решил, что Уайлсу следовало бы заняться областью математики, известной под названием теории эллиптических кривых. Как впоследствии оказалось, это решение стало поворотным пунктом в судьбе Уайлса и вооружило его теми методами, которые понадобились при выработке нового подхода к доказательству Великой теоремы Ферма. Название «эллиптические кривые» способно ввести в заблуждение потому, что они не эллипсы и даже не кривые в обычном смысле слова. Речь, скорее, идет об уравнениях вида
    y 2= x 3+ ax 2+ bx+ c, где a, b, c— некоторые числа.
   Свое название эллиптические кривые получили потому, что некоторые функции, тесно связанные с этими кривыми, потребовались для измерения длин эллипсов (а, следовательно, и длин планетных орбит). Уравнения такого вида называются кубическими. Проблема эллиптических кривых, как и проблема доказательства Великой теоремы Ферма, заключается в вопросе, имеют ли соответствующие им уравнения целочисленные решения, и если имеют, то сколько. Например, кубическое уравнение
    y 2= x 3–2,
   где a=0, b=0, c=–2, имеет только одно решение в целых числах, а именно:
    5 2= 3 3-2, или 25 = 27-2.
   Доказать, что это уравнение имеет только одно решение в целых числах — трудная задача. Этот факт доказал Пьер Ферма. В гл. 2, как вы, возможно, помните, мы упоминали о том, что 26 — единственное число во всей Вселенной, заключенное между квадратом и кубом. Доказал это также Ферма. Его доказательство эквивалентно доказательству того, что приведенное выше кубическое уравнение имеет только одно решение в целых числах, т. е. 52 и 33 — единственные квадрат и куб, разность которых равна 2, т. е. 26 — единственное целое число, которое может быть заключено между квадратом и кубом.
   Особое очарование кубическим уравнениям придает то, что образно говоря они занимают нишу между более простыми уравнениями, решения которых почти тривиальны, и более сложными, решить которые невозможно. Изменяя значения a, bи cв общем кубическом уравнении, можно получить бесконечное множество уравнений, каждое из которых обладает своими характерными особенностями, но все эти уравнения поддаются анализу.
   Первыми изучали кубические уравнения древнегреческие математики, в том числе Диофант, который посвятил изучению их свойств большие разделы своей «Арифметики». Возможно, именно под влиянием Диофанта занялся изучением кубических уравнений Ферма, а поскольку его излюбленный герой исследовал такие уравнения, Уайлс был счастлив продолжить эти исследования. Для начинающих математиков, вроде Уайлса, кубические уравнения представляли крепкий орешек даже через две тысячи лет после Диофанта. По словам Уайлса, «они были очень далеки от полного понимания. Существует множество простых на первый взгляд вопросов относительно кубических уравнений, все еще остающихся нерешенными. Даже вопросы, которые рассматривал еще Ферма, до сих пор остаются без ответа. В каком-то смысле вся математика, которую мне удалось разработать, восходит если не к Великой теореме Ферма, то к другим его идеям».
   В качестве первого шага исследования можно не находить решения явно, а поставить вопрос: сколько решений вообще может быть? Как правило, и на этот вопрос ответить очень сложно, однако математики придумали способ как упростить эту задачу. Например, кубическое уравнение
    x3 — x2 = y2 + y
   почти невозможно решить напрямую. Одно, тривиальное, решение очевидно: x=0 и y=0. Действительно,
    0 3— 0 2= 0 2+ 0.
   Чуть больший интерес представляет собой решение x=1 и y=0:
    1 3— 1 2= 0 2+ 0.
   Возможно, существуют и другие решения, но если принять во внимание, что перебору подлежит бесконечное множество целых чисел, то станет ясно, что составление полного списка решений этого уравнения в целых числах — задача невозможная. Более простой задачей является поиск решений в конечном числовом пространстве — так называемой арифметике вычетов [16].
   Ранее мы видели, что целые числа можно мыслить как отметки на числовой прямой, простирающейся в бесконечность, как показано на рис. 16. Чтобы сделать числовое пространство конечным, арифметика вычетов отрезает от числовой прямой определенную часть и замыкает ее в петлю, образуя вместо числовой прямой числовое кольцо. На рис. 17 вы видите часы с пятью пометками: от числовой прямой отрезана часть по отметке 5, и конец ее склеен с отметкой 0. Число 5 при этом исчезает и становится эквивалентным 0, поэтому в новой арифметике — арифметике вычетов по модулю 5 — фигурируют только числа 0, 1, 2, 3, 4. 7
 
   Рис. 16. Обычные арифметические действия можно представить как передвижения направо и налево по числовой оси
 
 Рис. 17.
   В обычной арифметике мы мыслим сложение как сдвиг по прямой на несколько делений — зазоров между отметками. Например, сказать: 2+4 = 6 — то же самое, что сказать: начните с отметки 2, сдвиньтесь вдоль числовой прямой на 4 деления и вы получите число 6. Но в арифметике вычетов по модулю 5 получаем, что
    4 + 2 = 1.
   Так происходит потому, что если мы начнем с отметки 4 и сдвинемся по окружности на 2 деления, то вернемся к отметке 1. Новая арифметика может показаться непривычной, но в действительности, мы пользуемся ей ежедневно, когда речь заходит о времени. Четыре часа после 11 (т. е. 11+4) обычно принято называть не 15, а 3 часами. Это — арифметика вычетов по модулю 12.
   Помимо сложения в «часовой» арифметике можно производить и все другие обычные математические операции, например, умножение. В арифметике вычетов по модулю 12 имеем: 5·7=11. Такое умножение можно представить себе следующим образом: начав с отметки 0 и сдвинувшись на 5 групп из 7 делений в каждой, вы в конце концов дойдете до отметки 11. Это лишь один из способов мысленно представить себе умножение в этой арифметике; существуют более хитрые приемы, позволяющие ускорить вычисления. Например, чтобы вычислить 5·7, мы можем для начала просто вычислить обычное произведение, которое равно 35. Разделив затем 35 на 12, мы получим остаток, который и дает ответ на интересующий нас вопрос. Число 12 содержится в 35 дважды и плюс остаток 11, поэтому произведение 5·7 в арифметике вычетов по модулю 12 равно 11. Это равносильно тому, что мы мысленно дважды обошли циферблат, и нам осталось пройти еще 11 промежутков.
   Так как в арифметике вычетов конечное число элементов, то в ней сравнительно легко найти все возможные решения любого уравнения. Например, не составляет труда перечислить все возможные решения кубического уравнения
    x 3x 2= y 2+ y
   в арифметике вычетов по модулю 5. Вот они:
    x= 0, y= 0,
    x= 0, y= 4,
    x= 1, y= 0,
    x= 1, y= 4.
 
   Хотя некоторые из этих решений не являются решениями в целых числах, в рассматриваемой арифметике вычетов все они — решения. Например, подставим значения ( x=1, y=4) в наше уравнение:
   x 3— x 2= y 2+ y,
   1 3— 1 2= 4 2+ 4,
   1 — 1 = 16 + 4,
   0 = 20.
 
   Но число 20 эквивалентно 0, так как число 5 делит число 20 с остатком 0.
   Поскольку найти число решений кубического уравнения в целых числах крайне трудно, математики решили сначала определить число решений в различных арифметиках вычетов. Для приведенного выше уравнения число решений в арифметике по модулю 5 равно четырем. Это записывают так: E 5= 4. Можно подсчитать число решений и в других арифметиках. Например, в арифметике вычетов по модулю 7 число решений равно 9, т. е. E 7= 9.
   Подводя итог своим вычислениям, математики составили список числа решений в каждой из арифметик вычетов и назвали его L-рядом эллиптической кривой (или соответствующего кубического уравнения). Что, собственно, означает здесь буква L, все давно забыли. Считается, что Lозначает Густава Лежена Дирихле, который также занимался изучением кубических уравнений. Для ясности я буду использовать обозначение « E-ряд» — ряд, полученный для кубического уравнения. Для приведенного выше уравнения E-ряд выглядит так.
   Уравнение: x 3— x 2= y 2+ y;
   E-ряд: E 1= 1, E 2= 4, E 3= 4, E 4= 8, E 5= 4, E 6= 16, E 7= 9, E 8= 16, …
   Пока не известно, сколько решений имеют кубические уравнения в обычном числовом пространстве, которое бесконечно, E-ряды заведомо лучше, чем ничего. В действительности, E-ряд содержит в себе значительную долю информации о том уравнении, которое оно описывает. Подобно тому, как биологическая ДНК несет в себе всю информацию, необходимую для построения живого организма, E-ряд несет в себе наиболее существенную информацию об эллиптической кривой. Математики питали надежду, что E-ряд — это своего рода математическая ДНК, и что при помощи его они в конечном счете смогут вычислить все, что им хотелось бы знать об эллиптической кривой.
   Работая под руководством Джона Коутса, Уайлс быстро заслужил репутацию блестящего специалиста по теории чисел, глубоко разбирающегося в арифметике эллиптических кривых. С каждым новым результатом и с каждой опубликованной статьей Уайлс, сам того не ведая, набирался опыта, который несколькими годами позже привел его к возможности доказать Великую теорему Ферма.
   В то время еще никому не было известно, что в послевоенной Японии уже произошла цепь событий, которые позволят установить неразрывную связь между эллиптическими кривыми и модулярными формами. Именно эта связь и приведет впоследствии к доказательству Великой теоремой Ферма. Поощряя Уайлса к изучению эллиптических кривых, Коутс дал ему средства, позволившие осуществить давнюю мечту.

Глава 5. Доказательство от противного

   Узоры математика, как и узоры художника или узоры поэта, должны быть красивы; идеи, как и краски или слова, должны сочетаться гармонически. Красота является первым критерием: в мире нет места для безобразной математики.
    Г. Г. Харди
 
   В январе 1954 года талантливый молодой математик из Токийского университета нанес обычный визит в факультетскую библиотеку. Горо Шимуре был нужен экземпляр журнала «Mathematische Annalen», том 24. В частности, его интересовала статья Дойринга по алгебраической теории комплексного умножения. Шимура надеялся, что теория Дойринга поможет ему выполнить чрезвычайно сложные вычисления, смысл которых был ясен лишь узкому кругу специалистов.
   К удивлению и разочарованию Шимуры, нужный ему том журнала был выдан. Его взял Ютака Танияма, с которым Шимура был едва знаком. Танияма жил в другом конце студенческого городка. Шимура отправил Танияме открытку, объясняя, что журнал ему срочно нужен, чтобы закончить сложные вычисления, и вежливо осведомился, когда тот мог бы вернуть журнал.
   Через несколько дней на рабочий стол Шимуры легла открытка. Танияма сообщал, что он работает над той же проблемой и столкнулся с той же трудностью, о которой упоминал в своей открытке Шимура. Танияма предложил встретиться для того, чтобы обменяться идеями, и, возможно, в дальнейшем совместно работать над проблемой. Так случайное совпадение заказов на один и тот же журнал в университетской библиотеке стало толчком к сотрудничеству, благодаря которому в математике была найдена одна из фундаментальных закономерностей.
   Танияма родился 12 ноября 1927 года в небольшом городке в нескольких километрах к северу от Токио. Японский иероглиф, обозначающий его имя, должен читаться как «Тойо», но большинство чужих людей, не являющихся членами семьи Таниямы, неправильно интерпретировали его как «Ютака», и, когда Танияма вырос, он принял это имя. В детстве образование Таниямы постоянно прерывалось. Он не отличался особенно крепким здоровьем, часто хворал, а став подростком, заболел туберкулезом и пропустил два года в средней школе. Разразившаяся война вызвала еще более продолжительный перерыв в его образовании.
 
   Горо Шимура, бывший на один год младше Таниямы, вынужден был совсем не учиться в военные годы. Его школу закрыли, и вместо уроков Шимура был вынужден работать на заводе, собирая детали самолетов. Каждый вечер он пытался самостоятельно заниматься по школьной программе. Особенно его влекла математика. «Разумеется, приходилось изучать многие предметы, но особенно легко мне давалась математика. Я запоем читал учебники математики. По учебникам я выучил математический анализ. Если бы я захотел изучить химию или физику, то мне потребовалось бы специальное оборудование, а у меня не было доступа ни к чему подобному. Я никогда не думал, будто обладаю какими-то способностями к математике. Просто мне было интересно».
 
   Через несколько лет после окончания войны Шимура и Танияма были уже студентами университета. К тому времени, когда они обменялись открытками по поводу тома «Mathematische Annalen», жизнь в Токио начала возвращаться в обычное русло, и два студента могли позволить себе небольшую роскошь: среди дня немного посидеть в кафе, вечером пообедать в ресторанчике, специализировавшемся на блюдах из китового мяса, а потом погулять в ботаническом саду или городском парке. Все это были идеальные места для обсуждения самых свежих математических идей.
   Хотя Шимура был не чужд некоторых причуд (он и поныне питает слабость к анекдотам о мудрецах, проповедующих дзен-буддизм), он был более консервативен и традиционен, чем его коллега. Шимура поднимался на рассвете и сразу же приступал к работе. Танияма же частенько не ложился спать, проработав всю ночь напролет. Те, кто заглядывал днем к нему в номер, нередко заставали его спящим.
   Шимура был скрупулезен и строг, Танияма небрежен, почти ленив. Удивительно, но именно эта черта в Танияме особенно импонировала Шимуре: «Он обладал особым даром совершать множество ошибок, в основном в правильном направлении. Я завидовал этой его особенности и даже пытался подражать ему, но обнаружил, что совершать хорошие ошибки очень трудно».
   Танияма был живым воплощением рассеянного гения, и это отражалось и на его внешности. Он был неспособен крепко завязать шнурки на ботинках и поэтому решил вместо того, чтобы по десять раз на день делать одно и тоже, вообще их не завязывать. Он всегда носил один и тот же весьма приметный зеленый костюм с металлическим отливом. Костюм был сшит из ткани, настолько кричащей, что остальные члены семьи отказались от нее.
   Когда Танияма и Шимура встретились в 1954 году, они оба были начинающими математиками. По традиции, существующей и до сих пор, молодых аспирантов берет «под крыло» профессор, руководящий их становлением как математиков. Танияма и Шимура отвергли такую форму ученичества. Во время войны настоящие математические исследования прекратились, и даже к 50-м годам математический факультет еще не возродился. По словам Шимуры, профессора были «усталы, измучены и разочарованы». Что же касается послевоенных студентов и аспирантов, то они были преисполнены энергии и страстно хотели учиться. Вскоре аспиранты поняли, что единственный доступный им способ изучать математику заключается в том, чтобы обучать друг друга. Они организовали регулярно действующие семинары, на которых по очереди информировали друг друга о новейших идеях, результатах и методах. Несмотря на свою вялость и апатичность, Танияма, когда речь заходила о семинарах, преисполнялся всесокрушающей энергией. Аспирантов постарше он поощрял к тому, чтобы те смелее вторгались на еще неизведанную территорию, а по отношению к аспирантам младше себя и студентам выступал в роли учителя. Научная изоляция Японии привела к тому, что эти семинары занимались задачами, которые, как правило, в Европе и Америке считалась давно пройденными. Одна вышедшая из моды тема, а именно, исследование модулярных форм, казалась особенно привлекательной Танияме и Шимуре, Модулярные формы — один из самых причудливых и чудесных объектов в математике. Современный специалист по теории чисел Эйхлер причислил их к одной из пяти фундаментальных операций, т. е. умение обращаться с модулярными формами он считал настолько же важным, как и выполнение четырех действий арифметики. Надо сказать, что далеко не все математики уверенно чувствуют себя, сталкиваясь с этой пятой операцией, в отличие от первых четырех, где они считают себя мастерами.
   Отличительной особенностью модулярных форм является их необычайно высокий уровень симметрии. Хотя большинство людей знакомо с повседневным понятием симметрии, в математике в термин «симметрия» вкладывают особый смысл. Объект считается обладающим симметрией, если его можно преобразовать дозволенным образом так, что преобразованный объект будет неотличим от исходного. Чтобы оценить необычайно высокую симметрию модулярной формы полезно сначала изучить симметрию какого-нибудь более знакомого объекта, например, простого квадрата.
   Рис. 18. Простой квадрат обладает вращательной и зеркальной симметриями
 
   Рис. 19. Плоскость, выложенная квадратами, помимо вращательной и зеркальной симметрий обладает еще и трансляционной симметрией
 
   В случае квадрата одна из форм симметрий — вращательная. Если мы мысленно проведем через точку пересечения осей xи yпрямую, перпендикулярную рисунку, то квадрат на рис. 18 можно повернуть на четверть оборота — и он будет неотличим от исходного квадрата. Квадрат будет неотличим от исходного и после поворота на пол-оборота, три четверти оборота и полный оборот.
   Помимо вращательной симметрии квадрат обладает зеркальной симметрией. Если представить себе, что зеркало расположено вдоль оси xперпендикулярно плоскости рисунка, то верхняя половина квадрата отразится точно на нижнюю и наоборот, поэтому после преобразования квадрат будет неотличим от исходного. Аналогично, мы можем поставить три других зеркала (вдоль оси yи двух диагоналей). Во всех случаях отраженный квадрат будет неотличим от исходного квадрата.
   Простой квадрат симметричен, поскольку обладает вращательной и зеркальной симметриями. Но не обладает трансляционной симметрией. Это означает, что если квадрат подвергнуть сдвигу в любом направлении, то наблюдатель тотчас же заметит перемещение, поскольку положение квадрата относительно осей xи yизменится. Но если бы вся плоскость была вымощена квадратами, как на рис. 19, то этот бесконечный набор квадратов обладал бы трансляционной симметрией. При сдвиге такой разбитой на квадраты бесконечной поверхности на расстояние, равное одной или нескольким длинам квадрата, сдвинутая мозаика была бы ничем не отличима от исходной.
   Симметрия выложенных плитками поверхностей — идея довольно простая, но, как это нередко бывает со многими простыми на первый взгляд понятиями, в ней скрыто немало тонкостей. Например, в 70-е годы британский физик и большой любитель занимательных задач-головоломок Роджер Пенроуз начал прикидывать различные варианты разбиения одной и той же поверхности на плитки различной формы. В конце концов он обнаружил две особенно интересные формы, которые он назвал воздушным змеем и дротиком (см. рис. 20). Каждая из этих форм сама по себе не годится для замощения всей поверхности без пробелов и наложений плиток друг на друга, но вместе воздушные змеи и дротики позволяют разбивать поверхность на мозаики с различным рисунком. Змеи и дротики можно сочетать бесконечным числом способов, и хотя рисунки мозаик кажутся похожими, они сильно отличаются в деталях. Одна из таких мозаик представлена на рис. 20.
   Рис. 20. Используя плитки двух различных форм Роджер Пенроуз сумел выложить ими всю плоскость. Однако мозаика Пенроуза не обладает трансляционной симметрией
 
   Еще одна замечательная особенность мозаик Пенроуза заключается в том, что они обладает весьма ограниченным уровнем симметрии. На первый взгляд может показаться, что мозаика на рис. 20 обладает трансляционной симметрией, тем не менее любая попытка совместить мозаику с самой собой завершается неудачей. Мозаики Пенроуза оказались асимметричными, и этим они так привлекли математиков, что стали исходным пунктом в развитии целого нового направления.