В одном из научных институтов Америки был создан аппарат, копирующий действия глаза лягушки.
   Дело в том, что лягушка умеет абстрагироваться от неподвижного предмета, сосредоточив все свое внимание только на предмете движущемся. Это помогает ей охотиться за
   насекомыми. Искусственный глаз лягушки занимает сегодня очень много места. Это 7 рам, размером 1х1 метр, состоящие из фотоэлементов искусственных нейронов и неоновых ламп. Число фотоэлементов огромно - свыше 1000 на каждой раме. Комбинация фотоэлементов устроена таким образом, что они взаимно погашают любое неподвижное изображение, попадающее в сферу обзора "лягушиного глаза". Но как только электрическое равновесие системы будет нарушено движущимся предметом, он будет тут же обнаружен.
   Такой прибор представляется весьма интересным и полезным. Ведь ему ничего не стоит обнаружить самолет, отличив его от неподвижных сигналов отражения гор, мачт электропередачи, заводских труб и т. п. Подвижный предмет мгновенно привлечет внимание и будет зафиксирован аппаратом. Это важно для управления воздушным движением, для радиолокации и других целей.
   Мы уже говорили о том, что создается модель живых нейронов. Существует уже около двух десятков таких моделей. Они отличаются друг от друга не только схемами, но и принципами действия. Существуют модели нейронов электронные, полупроводниковые, химические.
   Хочется верить в то, что с помощью этих моделей мы подойдем к возможности создавать "умные" машины.
   Но сумеем ли мы добиться когда-нибудь того замечательного качества, каким обладает живой мозг,- умения предвидеть будущую ситуацию, чтобы успеть подготовиться к ней?
   Ведь ни один поступок, ни одно действие не совершаем мы без того, чтобы не предвидеть в довольно ясной форме тех результатов, которые мы получим. Не будь этого, мы бы не могли существовать, вся наша жизнь стала бы неуправляемой, бессистемной и хаотичной.
   Создание "предвидения" результатов у электронных и кибернетических аппаратов - чрезвычайно важная проблема современной техники, стоящая рядом с проблемой надежности "мыслящей машины".
   Я вспоминаю свой разговор с "отцом отечественной кибернетики" академиком Акселем Ивановичем Бергом. Человек темпераментный и энергичный, он сконцентрировал мое внимание на основной теме, с которой сталкивается любой кибернетик,- на надежности.
   - Нет аппарата надежнее и экономичнее живого мозга,- говорил Аксель Иванович.- Исследователи доказали: можно удалить половину массы мозга у животного, и оно будет продолжать жить и действовать. И не потому, что эта половина не работала,- горячился академик. Нет, дело в том, что оставшаяся часть мозга немедленно перестраивается и начинает работать за обе половины.
   - Вот бы такую кибернетическую машину...- заметил я.- Утром выбросил половину шкафов, и ничего не изменилось - работает, как прежде.
   - Увы, здесь дело обстоит сложнее,- поясняет Аксель Иванович.- Как бы быстро ни работала машина, как бы ни был велик объем ее памяти, малейшая неисправность вызывает грубейшие ошибки. Если бы один-единственный раз только одна электронная лампа не передала импульс другим лампам, то, проделав более 10 миллионов арифметических действий, решив 10 миллиардов уравнений, машина заведомо даст неправильный ответ. Она должна работать с такой надежностью, чтобы ошибка не превышала 1/1000000000. Как же этого добиться? Ведь такой ошибки не может быть в нормальном, здоровом человеческом мозге.
   Выдающийся ученый прав. Здесь кибернетика должна вступить в соревнование с мозгом.
   На протяжении многих лет член-корреспондент Академии наук Э. А. Асратян занимается проблемой: как центральная нервная система восстанавливает любое нарушение?
   "Способность мозга, в особенности его высших отделов,- говорит он,- к восстановлению нарушенных функций поражает самое пылкое воображение".
   Действительно, мозг - один из самых сложных агрегатов, какие когда-либо создавала природа. Но он и самый надежный аппарат. Он работает в любых условиях, десятками лет, не давая осечки, не реагируя на температурные изменения, на положение в пространстве, на влияние внешней среды. Это сверхнадежный, сверхточный прибор. В чем же его сила и в чем секрет его фантастической надежности?
   Миллиарды нейронов - крошечных сложных устройств - составляют мозаику мозга. У каждой нервной клетки сотни и тысячи связей, или, как говорят кибернетики, "выходов", с другими клетками. А сколько выходов имеет электронная лампа? 4-6, не больше.
   Мозг состоит из двух полушарий, которые как бы дублируют друг друга, создавая исключительную надежность. Постараемся цифрами показать, в чем достоинство такого дублирования. Представьте себе, что в двух каналах происходят два события, не зависящие друг от друга. Возможность их совпадения почти исключена. И если в этом случае ошибка одного из вычислений составляет 0,01 процента, то два параллельных вычисления могут дать неверный результат в размере 0,01х0,01 = 0,0001 процента. Это значит, что ошибка может быть допущена в одном случае из 10000. Не поэтому ли чудотворец Природа разделила мозг на две параллельно работающие группы? Но есть и другие условия надежности мозга. Чтобы предохранить человеческий мозг от повреждений, чтобы дать ему возможность работать неистощимо, после возбужденного состояния клетки наступает так называемое торможение. Член-корреспондент Асратян установил, что период тормозного состояния клетки немедленно используется для ее профилактического ремонта на ходу. Но, кроме того, ежесуточно клетка ремонтируется и более основательно: сон человека позволяет полностью отдыхать мозгу.
   От перегрузки клетка тоже защищена. Это - открытое академиком Козловым так называемое "запредельное торможение". Если усилить воздействие на клетку, она будет реагировать энергично, но при очень большом уровне воздействия нервная система автоматически отключается, с тем чтобы при снятии воздействия вновь приступить к нормальной работе. Замечательное качество нервных центров-это способность перестраиваться. В лаборатории Асратяна был проделан необычный опыт. Собаке под наркозом пришили сухожилия мышц сгибателей к разгибателям и наоборот, сухожилия разгибателей - к сгибателям. Когда бедняга проснулась от наркоза, конечности ее начали действовать в обратном направлении: когда она хотела согнуть лапу, она ее разгибала. Однако это продолжалось недолго: через некоторое время произошла полная перестройка нервных центров, и животное научилось правильно владеть своими конечностями. Хочется спросить: как можно достигнуть такого совершенства в любой кибернетической машине?
   Но и это еще не все. Нервная система человека как бы двухэтажна. Верхний этаж - это кора полушарий, нижний - система саморегулировки отдельных органов. Как надежно работает последняя система, видно из такого наглядного примера. Сердце, отделенное от живого организма, может длительное время работать самостоятельно, если через него пропускать физиологический раствор.
   Исключительная надежность работы мозга и заключается в том, что существует двухэтажное строение нервной системы, своеобразное двойное подчинение органов.
   Могут ли все эти поразительные качества быть превнесены в машину? Конечно, могут.
   Сегодня малейшая поломка в кибернетической машине делает машину беспомощной. Почему бы не воспользоваться биологическими резервами мозга его способностью к ремонту и перестройке на ходу. Вот почему конструкторы задумываются о создании кибернетических машин, построенных из элементов трех типов.
   Первая группа элементов обеспечивает быструю и точную работу машины, вторая группа способна при выходе из строя заменять один элемент другим, и, наконец, третья группа элементов может работать не так быстро и точно, но она обеспечивает машину от перебоев, пока аварийная команда заменяет поврежденные основные элементы. Такая организация кибернетической машины будет в какой-то степени приближаться по своей надежности к работе мозга.
   Возможен еще один путь к надежности машины, копирующей живую нервную систему. Машина должна быть построена так, чтобы отдельные узлы ее были достаточно самостоятельными, и в то же время они должны подчиняться общему регулированию. Если из строя выйдет общий регулятор, нижестоящий узел все равно будет работать самостоятельно, как сердце при питании его физиологическим раствором. Таким образом, надежность кибернетической машины увеличится.
   Однако машина должна приспособляться к окружающим условиям, чтобы не терять своей надежности.
   Как известно, в химической, угольной, нефтяной промышленности, в промышленности, связанной с возможностью неожиданных взрывов, нельзя применять электронику. Достаточно искры от размыкания реле - и происходит взрыв. Так неужели мы должны в этих областях отказываться от применения электроники? Или нужно так усилить надежность защиты электронных устройств, что они превратятся в громоздкие, тяжелые блоки. Советские конструкторы пошли по другому пути - они создали не электрический, а пневматический мозг. Они создали машину, работающую на сжатом воздухе.
   По тончайшим трубкам воздух подходит к различным частям пневматического мозга, состоящего из отдельных элементов, по функциям своим подобных электронной лампе. Размеры этих воздушных элементов незначительны - не превышают спичечной коробки. Однако пневматический мозг, состоящий из многих сотен таких коробок, может управлять рядом химических производств. По его приказу добавляется и сокращается поступление химикатов, регулируется температура и давление при том или ином процессе. За свое удивительное изобретение конструкторы получили звание лауреатов Ленинской премии.
   В лаборатории Института автоматики и телемеханики уже создали клетку воздушного мозга размером со спичку, и работает она абсолютно надежно.
   Для управления сложнейшими процессами современного промышленного предприятия уже существуют настолько миниатюрные аппараты, что машина, состоящая из таких элементов, может свободно уместиться в школьном ранце.
   Но человеческий мозг, проигрывая машине в скорости операций, всегда останется примером надежности и компактности для конструкторов. Да и нужно ли мозгу гнаться в скорости за машиной! Замечательно высказался на эту тему один ученый.
   "Если бы мозг приобрел все достоинства электронных машин,- сказал он,мозг немедленно потерял бы все свои преимущества перед этими машинами. А их, как мы видели, немало..."
   Итак, мы вновь сталкиваемся с основной проблемой бионики: исследовать живое для того, чтобы использовать преимущества живого в мире машин, механизмов и электроники. Можно с уверенностью сказать - живой мир еще недостаточно исследован, он таит в себе огромные возможности для развития мира машин.
   19 мая, вторник
   Сегодня привезли запасные детали для электронной машины. Это большие, аккуратно запакованные ящики - отдельные органы Ки-бера. Для всех это была большая радость. Кузовкин ликовал:
   - Зачем монтировать старье, будем ставить новое!..
   Работали дружно, весело и шумно. А ведь это действительно удобно заменять отдельные ящики машинной памяти.
   Если бы можно было делать так же и для человека, думал я. Человек накапливает знания, приобретает опыт, и вдруг какая-то деталь в его сложном, мудром организме отказывается работать - наступает катастрофа. А вот если бы можно было заменить эту деталь, поставить новую...
   Кибер, конечно, слышал наш разговор на эту тему.
   Вечером я спросил его:
   - Ну, как дела, старина? Помогли тебе немножко? К" Спасибо. Хоть вы нас и ругаете за отсутствие надежности, есть у нас исключительно важное преимущество перед людьми - взаимозаменяемость отдельных частей. Сиял деталь, поставил новую - а это и незаметно. Куда вам, людям, до нас!..
   Я засмеялся:
   - Ты говорил, что учишься быть человеком. К чему же тогда? Ведь мы не ремонтируем человека такими же методами, как машину!
   К. Так что же у вас получается? Вышла из строя одна деталь - и всю человеческую машину останавливай? Нечего сказать - великое совершенство!..
   А. Конечно, в чем-то ты действительно прав. Сегодня мы еще не можем так запросто заменять вышедшие из строя детали человеческого организма. Но придет день, когда это станет совершенно обычным явлением, и здесь нам невозможно будет обойтись без современной техники. Слушай, я приведу лишь один пример. Ведутся опыты по восстановлению слуха, по борьбе с глухотой. Глухой воспринимает речь с помощью маленького микрофона.
   Каким образом? От микрофона электрические колебания поступают в радиопередатчик, а радиоволны несут сигналы к крохотному приемнику, который непосредственно соприкасается с нервами глухого человека.
   Как ты думаешь, где располагается приемник? В полости одного из зубов. В данном случае роль антенны выполняет пломба, а электрические колебания с помощью пьезокристаллов воздействуют на рыхлую соединительную ткань, заполняющую полость зуба глухого человека. И он слышит.
   Как видишь, мы имеем дело с целым рядом подмен. Звуковые волны превращаются в электромагнитные колебания и в раздражение нервной ткани. Слуховые нервы заменены нервами зуба.
   К. Зачем же так сложно? Может быть, поступить, как у нас, у машин,менять непосредственно орган на запасной.
   А. Дорогой мой, не забывай: живой организм, привыкший бороться за свое существование, не приемлет ничего "чужого", хотя бы это и было на его пользу.
   К. Ну, а как же вставные зубы, капроновые аорты, металлические кости?
   А. Во-первых, это, скорей, не чужое, а ничье. А во-вторых, это не решает вопроса. Сейчас наука бьется над проблемой пересадки живых органов.
   Вот тогда-то мы еще поспорим с вами, машинами, в области взаимозаменяемости основных запасных частей!
   Забери-ка в свою машинную копилку памяти чудесные слова Герцена, обращенные к жизни во всех ее проявлениях:
   "Жизнь вечна, жизнь идет своим чередом, она производит для себя и уничтожает изношенные формы, не жалея о них".
   Как эта мысль органически подходит к человеческой жизни, не правда ли?
   Наутро, склонившись над бумагой, я погрузился в воспоминания.
   ЗАПАСНЫЕ ЧАСТИ ЧЕЛОВЕКА
   Это было зимой 1941 года в Москве. Молодежь, вероятно, не помнит Москву этих лет, В те дни фашистские войска подступали вплотную к столице, в городе было холодно, голодно. Все, кто мог, с оружием в руках вышли на оборону Родины. На улицах было пустынно, неприветливо и тревожно.
   В холодные дни января по улицам Москвы шел молодой человек. Он не был военным. Он только что закончил авиационный институт. В его кармане была путевка на один из авиационных заводов, эвакуированный куда-то далеко-далеко, в Сибирь. Бывший студент, а ныне строитель авиационных моторов, получил первое в жизни направление на работу.
   Парень пришел на вокзал. Лишь на запасном пути стоял длинный железнодорожный состав. Это был госпиталь на колесах - пассажирские вагоны, переоборудованные под хирургические помещения, купе, в которых вместо пассажиров лежали раненые. Единственный поезд, отходивший в те дни в Сибирь...
   "Ну что ж, буду проситься в этот состав",- подумал парень. И спросил начальника поезда.
   Навстречу ему вышел пожилой офицер. На петлицах его была всем знакомая эмблема: мудрая змея, обвивающая чашу с ядом. Майор медицинской службы заинтересовался молодым человеком. То ли парень понравился ему, то ли он вспомнил о сыне, который был в те дни на фронте, то ли направление молодого специалиста на работу показалось начальнику поезда веским документом, но, махнув рукою, он сказал:
   - Хорошо! Поедете с нами.
   И вот пятнадцать дней и пятнадцать ночей по заснеженным просторам Урала и Сибири двигался поезд; в нем шла битва за жизнь людей. Эти пятнадцать дней наложили отпечаток на всю биографию молодого парня.
   Пятнадцать дней и пятнадцать ночей... Никогда он до этого
   не был в кабинете хирурга. Никогда до этих страшных дней не склонялся он над хирургическим столом, где трепетала в муках и страданиях человеческая жизнь. А здесь ему приходилось делать все... ассистировать при операциях, делать мучительные перевязки. Так молодой инженер поневоле стал санитаром.
   Все было для него ново и необычно. Возникали тысячи вопросов, на которые сразу нельзя было найти ответ, рождались сотни недоумений, объяснявшихся медицинской неграмотностью. Вставал один большой, всеподавляющий вопрос: "Почему?"
   ...Почему этому рослому, широкоплечему парню с голубой татуировкой на груди хирург спокойно отрезает руку? Огромная, могучая ладонь, каменные бицепсы... Да и ранение-то - маленькая дырочка, прорезающая живую ткань. Но врач, склонившись над спящим под наркозом гигантом, спокойно и быстро отнимает руку.
   - Никак нельзя иначе,- отвечает хирург на недоуменный взгляд молодого инженера. Пуля пробила кровеносный сосуд. Рука умерла. Кислород, который питает живую ткань, больше не поступает вместе с кровью по сосудам. Образуется гангрена - человек может погибнуть, если она распространится по всему телу.
   - Но неужели нельзя соединить пораненные кровеносные сосуды? спрашивает хирурга молодой человек.- Как инженер, могу вас заверить - мы в состоянии соединить любые трубки: стеклянные, капроновые, чугунные, стальные. Мы всегда сумеем соединить между собой трубки высокого давления, трубки, несущие химические растворы. Мы можем при этом использовать болты, сварку, склейку... А вы? Вы навсегда делаете человека инвалидом, и это только из-за своего неумения.
   Пожилой хирург только невесело улыбнулся в ответ.
   - Почему так? - возражал он молодому инженеру.- Среди хирургов есть удивительные мастера. Тончайшими шелковыми нитями, иглами тоньше человеческого волоса стык в стык соединяют они кровеносные сосуды диаметром иногда меньше миллиметра. И вот кровь по отремонтированным сосудам начинает поступать в руку. Наступает полная видимость возвращения жизни. Раненый ликует. Но проходит день, другой, третий - и вновь проступают следы гангрены на руке.
   - В чем же дело? - волнуется молодой инженер.
   - Дело объясняется очень просто,- рассказывает хирург.- Мельчайшие сгусточки крови стремительно оседают на нитях, только что пронизавших кровеносный сосуд. И вот уже плотная пробка забила горлышко кровотока опять угроза гангрены в результате образования тромба. Лучше ампутировать руку, чем рисковать жизнью человека. Не так ли?
   Молодой человек не понимал расчетливой холодности хирурга. Она казалась ему жестокой. Он негодовал.
   - Но неужели хирурги так ничего и не могут придумать? Сшивать сосуды вручную - наивно и смешно в век сварки, высшей математики и новых материалов. Надо искать новые пути, - взволнованно говорил он,- новые решения...
   - Ну что ж, ищите,- спокойно говорил ему хирург.
   - Я буду искать и найду. Даю вам честное слово - найду. И до тех пор, пока не найду, больше ничем не буду заниматься.
   А поезд все шел и шел по заснеженным дорогам Сибири, Шел на Восток, подальше от войны...
   Молодой инженер сдержал свое честное слово. Десятки, сотни экспериментов - и вот пришла победа!
   * * *
   В руках у меня небольшой никелированный аппарат. Он чем-то напоминает не то затвор от винтовки, не то сложный замок - один из тех, какие делали в средние века кузнецы-умельцы. Принцип работы этого аппарата поразительно прост. Он напоминает машинку для сшивания бумаги, которая стоит у многих на письменном столе. Стоит вам нажать сверху на рычаг, и металлическая скобочка прошивает бумажные листы к аккуратно сгибается. Готово! Плотная пачка бумаги крепко соединена.
   Именно на этом принципе, конечно видоизмененном, более точном, и основан аппарат для сшивания кровеносных сосудов.
   Чем прошивать живую ткань? Нитями? Нет. Металлическими скобами. Но из какого металла? Единственным пригодным в этом случае металлом оказался тантал. Об этом металле мало что было известно. Металл редкий. Но чудесным свойством его оказалась способность не быть чужеродным живому организму. Мало того, что живая ткань принимала металл, не вызывая ни нагноения, ни новообразования, тантал со временем медленно растворялся в организме, не оставляя никаких следов.
   Тонкие скобки из тантала, заложенные в аппарат в виде колечка, пронизали кровеносный сосуд, словно чулок, натянутый на это кольцо, и загибались, сжимая края сосуда. Место соединения получалось не только не зауженным, но даже несколько расширенным: никакой опасности тромба.
   Я стою в кабинете Василия Федотовича Гудова.
   Василий Федотович оживлен и энергичен. Он встречает меня посреди комнаты, горячо пожимает руку, подводит к столу и рассказывает, рассказывает... Слушая его, я мысленно представляю себе молодого застенчивого студента, окончившего авиационный институт, который впервые приблизился к хирургическому столу.
   ...Кто-то стучится в дверь. Увлеченные разговором, мы не обращаем внимания на стук, но он повторяется. Кажется, что кто-то скребется в дверь.
   - Да войдите же! - громко говорит Гудов.
   Дверь открывается, и совершенно неожиданно в кабинет вбегает огромная собака, немецкая овчарка.
   Я люблю больших, могучих собак, ненавижу избалованных, затасканных на руках маленьких любимцев. Именно такой гигант и вломился в кабинет, заставив меня из предосторожности встать за письменный стол.
   - Не бойтесь, Джерри умница! Он никогда вас не тронет. Как вам нравится собака?
   - Очень! - отвечаю я, протягивая руку к мохнатому гиганту.
   - Вы не замечаете ничего особенного? Я ничего не замечаю.
   - А вы присмотритесь внимательно. Взгляните на заднюю ногу.
   Я замечаю, что шерсть на задней ноге собаки располагается кольцеобразно, как бы охватывая сильную лапу животного.
   - Месяц назад мы отрезали ногу у Джерри,- говорит Гудов,- несколько дней продержали ее в холодильнике, а потом опять пришила. Как видите, все в порядке.
   И, подняв руку, Гудов заставляет пса танцевать на задних лапах. Да, действительно все в порядке.
   - Вот что позволяют нам делать аппараты для сшивания сосудов,- говорит Василий Федотович.
   Из кабинета мы пошли в палаты института. То, что мне пришлось увидеть здесь, потрясало. Живая почка, пришитая под кожу животного, нормально функционирует, выполняя свою ответственную работу. Вот собака, у которой было вынуто сердце и через час вновь возвращено на место. Эксперименты над животными смелые, дерзкие, необычные...
   Когда мы вышли из института, я обрушился на Гудова вопросами.
   - Василий Федотович, вы делаете чудеса, вы маг и волшебник. Но, я думаю, все это вы делаете не для того, чтобы лечить животных, а для того, чтобы помогать человеку. Покажите же, что делается в этом направлении.
   Гудов взглянул на часы.
   - Хорошо,- сказал он.- Одевайтесь, поедем. Мы сели в машину, Василий Федотович достал из портфеля лачку фотографий и протянул их мне.
   - Вам это будет интересно,- сказал он.
   Мне запомнилась одна фотография. Молодая девушка с красивым, перепуганным, охваченным скорбью лицом смотрела на меня с фотографии. Чьи-то крепкие пальцы держали ее руку выше кисти. А самой кисти не было... Кисть руки лежала отдельно - чужая, распухшая, почти нечеловеческая.
   - Несчастный случай,- пояснил Гудов.- Попала рукой в станок, и, как видите, он откромсал ей правую руку.
   Машина остановилась возле института имени Cклифосовского. Это сюда, под своды древнего здания, со всех концов столицы везут людей машины "скорой помощи". Это жертвы автомобильных катастроф, несчастных случаев. В таком огромном городе, как Москва, случается всякое. Чего только не бывает... То привезут мальчика, неосторожно засунувшего в нос шарик подшипника - да так, что и достать его невозможно. А однажды, как мне рассказывали, сюда привезли девушку, которая вместе с куском мяса проглотила вилку.
   Жизнь этих людей спасают, их лечат, ставят на ноги и говорят:
   - Иди, дорогой, в жизнь - и больше никогда нам не попадайся!
   Палаты института были переполнены людьми. Мне помогли надеть белый халат. Он был мал, и тесемки, завязанные на спине, стягивали меня и не давали возможности двигать руками.
   В сопровождении хирурга Андросова мы шли по длинным коридорам.
   Я был так взволнован, что даже не заметил, как мы вошли в палату.
   - Ну, как идут дела? - спросил врач у девушки, легко поднявшейся с постели.
   Я сразу узнал ее по миловидному лицу и по выражению растерянности. Да, это была та самая девушка, которая смотрела на меня с фотографии. Мы поздоровались, обменялись улыбками... И только через несколько минут настигла меня мысль, поразившая, как электрическим током: "Мы поздоровались!.. Как же это? Ведь на фотографии кисть ее руки лежала рядом, отдельно..."
   Мой взгляд искал правую руку девушки. А она подняла ее к повеселевшим глазам хирурга и энергично пыталась двигать непослушными пальцами.
   - Смотрите, доктор, двигаются. Двигаются! - радостно говорила девушка.
   "Не может быть! - думал я.- Неужели эта кисть..." И, словно прочитав мои мысли, Гудов сказал:
   - Вот видите, и подлечили лапочку.
   Через два с половиной часа, буквально оглушенный всем увиденным, вместе с врачом и инженером я вышел из института. Я был так взволнован, что хотелось обнять Андросова, Гудова, сказать им ласковые слова... Ведь они так много делают для человека.