N.

 Поршневой К. в основном состоит из рабочего цилиндра и поршня; имеет всасывающий и нагнетательный клапаны, расположенные обычно в крышке цилиндра. Для сообщения поршню возвратно-поступательного движения в большинстве поршневых К. имеется кривошипно-шатунный механизм с коленчатым валом. Поршневые К. бывают одно- и многоцилиндровые, с вертикальным, горизонтальным, V- или W-oбразным и другим расположением цилиндров, одинарного и двойного действия (когда поршень работает обеими сторонами), а также одноступенчатого или многоступенчатого сжатия. Действие одноступенчатого воздушного поршневого К. заключается в следующем. При вращении коленчатого вала 1 соединённый с ним шатун 2сообщает поршню 3возвратные движения. При этом в рабочем цилиндре 4из-за ,увеличения объёма, заключённого между днищем поршня и крышкой цилиндра 5,возникает разрежение и атмосферный воздух, преодолев своим давлением сопротивление пружины, удерживающей всасывающий клапан 9,открывает его и через воздухозаборник (с фильтром) 8поступает в рабочий цилиндр. При обратном ходе поршня воздух будет сжиматься, а затем, когда его давление станет больше давления в нагнетательном патрубке на величину, способную преодолеть сопротивление пружины, прижимающей к седлу нагнетательный клапан 7, воздух открывает последний и поступает в трубопровод 6.При сжатии газа в К. его температура значительно повышается. Для предотвращения самовозгорания смазки К. оборудуются водяным (труба 10для подвода воды) или воздушным охлаждением. При этом процесс сжатия воздуха будет приближаться к изотермическому (с постоянной температурой), который является теоретически наивыгоднейшим (см. Термодинамика ) .Одноступенчатый К., исходя из условий безопасности и экономичности его работы, целесообразно применять со степенью повышения давления при сжатии до b = 7-8. При больших сжатиях применяются многоступенчатые К., в которых, чередуя сжатие с промежуточным охлаждением, можно получать газ очень высоких давлений - выше 10 Мн/м 2 .В поршневых К. обычно предусматривается автоматическое регулирование производительности в зависимости от расхода сжатого газа для обеспечения постоянного давления в нагнетательном трубопроводе. Существует несколько способов регулирования. Простейший из них - регулирование изменением частоты вращения вала.

  Ротационные К. имеют один или несколько роторов, которые бывают различных конструкций. Значительное распространение получили ротационные пластинчатые К., имеющие ротор 2с пазами, в которые свободно входят пластины 3.Ротор расположен в цилиндре корпуса 4эксцентрично. При его вращении по часовой стрелке пространства, ограниченные пластинами, а также поверхностями ротора и цилиндра корпуса, в левой части К. будут возрастать, что обеспечит всасывание газа через отверстие 1. В правой части К. объёмы этих пространств уменьшаются, находящийся в них газ сжимается и затем подаётся из К. в холодильник 5или непосредственно в нагнетательный трубопровод. Корпус ротационного К. охлаждается водой, для подвода и отвода которой предусмотрены трубы 6и 7. Степень повышения давления в одной ступени пластинчатого ротационного К. обычно бывает от 3 до 6. Двухступенчатые пластинчатые ротационного К. с промежуточным охлаждением газа обеспечивают давление до 1,5 Мн/м 2 .

  Принципы действия ротационного и поршневого К. в основном аналогичны и отличаются лишь тем, что в поршневом все процессы происходят в одном и том же месте (рабочем цилиндре), но в разное время (из-за чего и потребовалось предусмотреть клапаны), а в ротационном К. всасывание и нагнетание осуществляются одновременно, но в различных местах, разделенных пластинами ротора. Известны другие конструкции ротационного К., в том числе винтовые, с двумя роторами в виде винтов. Для удаления воздуха с целью создания разрежения в каком-либо пространстве применяют роторные водокольцевые вакуум-насосы. Регулирование производительности ротационного К. осуществляется обычно изменением частоты вращения их ротора.

  Центробежный К. в основном состоит из корпуса и ротора, имеющего вал 1 с симметрично расположенными рабочими колёсами. Центробежный 6-ступенчатый К. разделён на три секции и оборудован двумя промежуточными холодильниками, из которых газ поступает в каналы 12и 13.Во время работы центробежного К. частицам газа, находящимся между лопатками рабочего колеса, сообщается вращательное движение, благодаря чему на них действуют центробежные силы. Под действием этих сил газ перемещается от оси К. к периферии рабочего колеса, претерпевает сжатие и приобретает скорость. Сжатие продолжается в кольцевом диффузоре из-за снижения скорости газа, то есть преобразования кинетической энергии в потенциальную. После этого газ по обратному направляющему каналу поступает в другую ступень К. и т.д.

  Получение больших степеней повышения давления газа в одной ступени (более 25-30, а у промышленных К. - 8-12) ограничено главным образом пределом прочности рабочих колёс, допускающих окружные скорости до 280-500 м/сек. Важной особенностью центробежных К. (а также осевых) является зависимость давления сжатого газа, потребляемой мощности, а также кпд от его производительности. Характер этой зависимости для каждой марки К. отражается на графиках, называемых рабочими характеристиками.

  Регулирование работы центробежных К. осуществляется различными способами, в том числе изменением частоты вращения ротора, дросселированием газа на стороне всасывания и др.

  Осевой К. имеет ротор 4,состоящий обычно из нескольких рядов рабочих лопаток 6.На внутренней стенке корпуса 2располагаются ряды направляющих лопаток 5.Всасывание газа происходит через канал 3,а нагнетание через канал 1. Одну ступень осевого К. составляет ряд рабочих и ряд направляющих лопаток. При работе осевого К. вращающиеся рабочие лопатки оказывают на находящиеся между ними частицы газа силовое воздействие, заставляя их сжиматься, а также перемещаться параллельно оси К. (откуда его название) и вращаться. Решётка из неподвижных направляющих лопаток обеспечивает главным образом изменение направления скорости частиц газа, необходимое для эффективного действия следующей ступени. В некоторых конструкциях осевых К. между направляющими лопатками происходит и дополнительное повышение давления за счёт уменьшения скорости газа. Степень повышения давления для одной ступени осевого К. обычно равна 1,2-1,3, т. е. значительно ниже, чем у центробежных К., но кпд у них достигнут самый высокий из всех разновидностей К.

  Зависимость давления, потребляемой мощности и кпд от производительности для нескольких постоянных частот вращения ротора при одинаковой температуре всасываемого газа представляют в виде рабочих характеристик. Регулирование осевых К. осуществляется так же, как и центробежных. Осевые К. применяют в составе газотурбинных установок (см. Газотурбинный двигатель ) .

 Техническое совершенство осевых, а также ротационных, центробежных и поршневых К. оценивают по их механическому кпд и некоторым относительным параметрам, показывающим, в какой мере действительный процесс сжатия газа приближается к теоретически наивыгоднейшему в данных условиях.

  Струйные К. по устройству и принципу действия аналогичны струйным насосам.К ним относят струйные аппараты для отсасывания или нагнетания газа или парогазовой смеси. Струйные К. обеспечивают более высокую степень сжатия, чем струйные насосы. В качестве рабочей среды часто используют водяной пар.

  Основные типы К., их параметры и области применения показаны в табл.

Типы компрессоров и их характеристика

Тип компрессора Предельные параметры Область применения
Поршневой V ВС= 2-5 м 3/ мин Р Н= 0,3-200 Мн/м 2(лабораторно до 7000 Мн/м 2) n= 60-1000 об/мин Nдо 5500 квт Химическая промышленность, холодильные установки, питание пневматических систем, гаражное хозяйство.
Ротационный V ВС= 0,5-300 м 3/ мин Р Н= 0,3-1,5 Мн/м 2 n= 300-3000 об/мин Nдо 1100 квт Химическая промышленность, дутье в некоторых металлургических печах и др.
Центробежный V ВС= 10-2000 м 3/ мин Р Н= 0,2-1,2 Мн/м 2 n= 1500-10000 (до 30000) об/мин Nдо 4400 квт(для авиационных - до десятков тысяч квт) Центральные компрессорные станции в металлургической, машиностроительной, горнорудной, нефтеперерабатывающей промышленности
Осевой V ВС= 100-20000 м 3/ мин Р Н= 0,2-0,6 Мн/м 2 n= 2500-20000 об/мин Nдо 4400 квт(для авиационных - до 70000 квт) Доменные и сталелитейные заводы, наддув поршневых двигателей, газотурбинных установок, авиационных реактивных двигателей и др.

  Лит.:Шерстюк А. Н., Компрессоры, М.-Л., 1959; Рис В. Ф., Центробежные компрессорные машины, 2 изд., М.- Л., 1964; Френкель М. И., Поршневые компрессоры, 3 изд., Л., 1969: Центробежные компрессорные машины, М., 1969.

  Е. А. Квитковская.

Рис. 3. Центробежный компрессор: 1 - вал; 2, 6, 8, 9, 10 и 11 - рабочие колёса; 3 и 7 - кольцевые диффузоры; 4 - обратный направляющий канал; 5 - направляющий аппарат; 12 и 13 - каналы для подвода газа из холодильников;14 - канал для всасывания газа.

Рис. 4. Осевой компрессор: 1 - канал для подачи сжатого газа; 2 - корпус; 3 - канал для всасывания газа; 4 - ротор; 5 - направляющие лопатки; 6 - рабочие лопатки.

Рис. 1. Поршневой компрессор: 1 - коленчатый вал; 2 - шатун; 3 - поршень; 4 - рабочий цилиндр; 5 - крышка цилиндра; 6 - нагнетательный трубопровод; 7 - нагнетательный клапан; 9 - воздухозаборник; 9 - всасывающий клапан; 10 - труба для подвода охлаждающей воды.

Рис. 2. Ротационный пластинчатый компрессор: 1 - отверстие для всасывания воздуха; 2 - ротор; 3 - пластина; 4 - корпус; 5 - холодильник; 6 и 7 - трубы для отвода и подвода охлаждающей воды.

Компрессорная добыча нефти

Компре'ссорная добы'ча не'фти,способ подъёма нефти из пласта на поверхность за счёт энергии сжатого природного газа или воздуха, подаваемого от компрессора в скважину. Отсюда название способа. Установка для осуществления этого способа называется газлифт (при воздухе - эрлифт). Принцип разгазирования столба жидкости для её подъёма на поверхность впервые был использован в Венгрии в 18 в. для откачки эрлифтом воды из обводнённых шахт. В 60-е гг. 19 в. компрессорная эрлифтная нефтедобыча применялась в небольших масштабах на нефтепромыслах Пенсильвании (США). Впервые промышленное применение в больших масштабах К. д. н. получила в 1894 на бакинских промыслах, по предложению В. Г. Шухова.

  Основные разновидности газлифта (эрлифта) - непрерывный и периодический. При непрерывном газлифте поступление жидкости из пласта, её движение по подъёмной колонне и выход на поверхность - постоянный по времени процесс. В этом случае работа газлифта основана на уменьшении плотности поднимаемого столба смеси. Для того чтобы обеспечить приток нефти из пласта, надо поддерживать на забое скважины определенное давление. При отсутствии газа столб жидкости, уравновешивающий это давление, не достигает устья скважины; разгазирование столба жидкости повышает уровень до устья и вызывает непрерывную подачу продукции из пласта на поверхность с сохранением требуемого давления на забое.

  К. д. н. осуществляется по двум системам непрерывного газлифта - кольцевой и центральной. Ввод газа в подъёмную колонну производится через рабочий газлифтный клапан.

  При периодическом газлифте процесс добычи состоит из периода накопления жидкости в подъемной колонне (приток из пласта) и периода подачи накопленной жидкости на поверхность за счет поступления сжатого газа в нижнюю часть подъемной колонны.  Время накопления и время подачи составляют цикл работы скважины. Применяются две системы газлифта: периодический газлифт с обычной подъёмной колонной труб, в которой попеременно происходит как накопление столба жидкости, так и её подъём и выброс на поверхность ,и периодический газлифт с камерой замещения. Камера замещения, диаметр которой больше, чем диаметр подъемных труб, позволяет эксплуатировать скважины при низком давлении в пласте, когда накопленный столб жидкости в подъемной колонне не может иметь значительной высоты. Работа установки, обслуживающей группу скважин, осуществляется по замкнутому циклу. Газожидкостная смесь, поступающая из скважин на поверхность, разделяется в ёмкостях (трапах) на жидкость и газ. Часть газа, требующаяся для подачи в скважину, направляется на приём компрессоров, а избыток газа (газ, поступающий вместе с нефтью из пласта) - к пунктам переработки и потребления. Газ, поступивший в компрессор, после сжатия направляется в скважины для подъема жидкости на поверхность. Таким образом, газ циркулирует в замкнутой системе. Если на нефтяном промысле имеется возможность получить сжатый газ из близкорасположенных нефтяных или газовых скважин, газлифт осуществляется путем подачи газа высокого давления из этих скважин. После совершения работы по подъему жидкости отработанный газ в смеси с добытым (пластовым) газом направляется на переработку и использование. Такой способ эксплуатации называется бескомпрессорным.

  В СССР К. д. н. в больших масштабах применяется на промыслах Азербайджанской ССР; бескомпрессорный способ находит применение на промыслах Краснодарского края, полуострова Мангышлак, о. Сахалин и др.

  Основные преимущества К. д. н. по сравнению с другими способами механизированной добычи нефти: отсутствие движущихся деталей в скважинном оборудовании; высокая эффективность процесса при значительном газовом факторе; простота управления процессом добычи и его автоматизации.

  Лит.:Муравьев И. М., Крылов А. П., Эксплуатация нефтяных месторождений, М. - Л., 1949; Иоаким Г., Добыча нефти и газа, пер. с рум., М,, 1966.

  А. А. Брискман.

Рис. 3. Круговой газлифтный цикл группы скважин (схема): 1 - газлифтные скважины; 2 - трубопроводы смеси жидкости и газа, поступающей из скважины; 3 - ёмкость (трап) для разделения жидкости и газа; 4 - нефтяная линия; 5 - линия избыточного газа, направляемого на переработку и потребление; 6 - линия газа низкого давления, поступающего на приём компрессоров; 7 - компрессорная станция; 8 - линия сжатого газа высокого давления, поступающего в скважины для подъёма жидкости.

Рис. 1. Схемы непрерывного газлифта (эрлифта): а - кольцевая; б - центральная; 1 - забой скважины; 2 - обсадная колонна; 3 - компрессорная колонна; 4 - разделительное устройство (пакер); 5 - рабочий газлифтный клапан; 6 - пусковые клапаны.

Рис. 2. Схема периодического газлифта: а - период накопления; б - период подачи жидкости; в - газлифт с камерой замещения; 1 - рабочий газлифтный клапан; 2 - приёмный клапан; 3 - камера замещения.

Компрессорная станция

Компре'ссорная ста'нция,стационарная установка для получения на различных промышленных предприятиях и строительных площадках сжатого воздуха или газа, используемых как энергоноситель (воздух для привода пневматического инструмента, газ для отопления) или как сырье для получения различной продукции (кислорода из воздуха, аммиака из азотоводородной смеси и т.п.). В состав К. с. обычно входят: главное здание, в котором размещаются компрессоры и вспомогательное оборудование и устройства - емкости для сжатого газа, газосборники, водо-снабжающие, воздухозаборные и охладительные установки, сети инженерных коммуникаций (водопровода, канализации, пара, горячей воды и т.д.), трансформаторные подстанции, а также бытовые помещения для работающих. К. с., как правило, размещаются в отдельно стоящих зданиях с огнестойкими перекрытиями и трудно сгораемыми перегородками. Иногда К. с. располагаются в пристройке к производственному зданию (при отсутствии в последнем взрыво- и пожароопасных производств, а также если шум и вибрации, создаваемые оборудованием, не являются помехой протекающим в производственном здании технологическим процессам).

  Е. Г. Кутухтин.

Компрессорная установка

Компре'ссорная устано'вка,совокупность устройств, необходимых для получения сжатого воздуха или другого газа. К. у. бывают стационарные и передвижные. В стационарных К. у. используют одноступенчатое или многоступенчатое сжатие воздуха. Основные элементы стационарной К. у. с одноступенчатым сжатием воздуха: фильтр, компрессор , двигатель, воздухопровод. Кроме того, в К. у. входят вентили и задвижки, измерительные приборы (манометры, термометры и др.), предохранительные и обратные клапаны, а также приборы автоматики, сигнализации и управления. В К. у. с многоступенчатым сжатием входят промежуточные воздухоохладители. Основные агрегаты К. у. имеют циркуляционную систему смазки, подаваемой шестерённым насосом через фильтр и маслоохладитель. Одна или несколько стационарных К. у. вместе со зданием, в котором они размещены, составляют сооружение, называемое компрессорной станцией.

  Передвижные К. у. обычно монтируются на автоприцепе или автомобильном шасси. Они состоят из компрессора (обычно поршневого с воздушным охлаждением), двигателя внутреннего сгорания, а также воздухозаборника с фильтром и небольшого резервуара (ресивера), к которому присоединены несколько прорезиненных шлангов для подачи сжатого воздуха к потребителям (например, пневматическим инструментам).

  Для привода компрессоров в К. у. используют электрические двигатели, двигатели внутреннего сгорания (в том числе газотурбинные) и паровые турбины.

  К. у. обслуживают доменные и сталелитейные цехи, машиностроительные заводы, строительные площадки, предприятия горнорудной, нефтеперерабатывающей и химической промышленности, газопроводы природного газа и др.

  Лит.см. при ст. Компрессор.

  Е. А. Квитковская.

Схема компрессорной установки: 1 - воздушный фильтр; 2 - всасывающий воздухопровод; 3 - напорный бак; 4 - трубопровод для воды; 5 - компрессор; 6 - влагомаслоотделитель; 7 - воздухопровод; 8 - воздухосборник; 9 - насос для подачи охлаждающей воды.

Компрессорные масла

Компре'ссорные масла',нефтяные масла, используемые для смазки компрессоров и воздуходувок; относятся к группе индустриальных масел.

Компрессорный двигатель

Компре'ссорный дви'гатель,двигатель внутреннего сгорания, как правило, дизельный, в котором топливо подаётся в цилиндр воздухом, сжатым до 6 Мн/м 2(60 кгс/см 2) .По конструкции К. д. подразделяются на крейцкопфные двигатели и тронковые двигатели,2- и 4-тактные. У К. д. с прямоточной продувкой среднее индикаторное давление при бездымном сгорании достигает 0,8-0,9 Мн/м 2(8-9 кгс/см 2) .Мощность К. д. - около 2,2-3,7 Мвт(3000-5000 л. с.), частота вращения - 180-500 об/мин.Вследствие значительной массы и габаритов, а также сложности регулировки давления воздуха при различной частоте вращения коленчатого вала К. д. в качестве транспортных (за исключением судовых) не применяются. См. также Дизель.

Компрометация

Компромета'ция(от франц. compromettre - портить репутацию, компрометировать), оглашение сведений, вызывающих недоверие к кому-либо, порочащих его, подрывающих его авторитет в коллективе, обществе.

Комптон Артур Холли

Ко'мптон(Compton) Артур Холли (10.9.1892, Вустер, Огайо, - 15.3.1962, Беркли), американский физик, член Национальной АН США. Окончил Принстонский университет (1914). В 1920-23 профессор университета Вашингтона в Сент-Луисе; 1923-45 профессор Чикагского университета; 1945-53 ректор университета Вашингтона, с 1954 почётный профессор. В 1920 в Кавендишской лаборатории (Кембридж) начал исследовать рассеяние и поглощение рентгеновских лучей. В 1922 открыл эффект изменения длины волны рентгеновских лучей, рассеиваемых электронами (см. Комптона эффект ), и дал его теорию на основе представления о свете как о потоке фотонов (Нобелевская премия, 1927). Обнаружил явление полного внутреннего отражения рентгеновских лучей от зеркальной поверхности стекол и металлов. Разработал метод вычисления распределения электронной плотности в кристаллах и отдельных атомах. В 30-е годы занимался исследованием космических лучей и обнаружил широтный эффект, свидетельствующий о корпускулярной природе первичных космических лучей. В 1941-45 принимал участие в создании атомной бомбы.

  Соч.: A quantum theory of the scattering of X-rays by light elements. «Physical Review», 1923, v. 21, № 5, p. 483-502; The total reflexion of X-rays, «Philosophical Magazin», 1923, v. 45, № 270, p. 1121-31; Atomic quest; a personal narrative, L. - [a. o.], 1956; в рус. пер. - Рентгеновские лучи. Теория и эксперимент, М. - Л., 1941 (совм. с С. Алисоном).

  Лит.:Allison S. К., Arthur Holly Compton, в кн.: Biographical memoirs, v. 38, N. Y. - L., 1965.

Комптон (город в США)

Ко'мптон(Compton), город на Западе США, в штате Калифорния; южный пригород Лос-Анджелеса. 78,6 тыс. жителей (1970). Машиностроение, резиновая, стекольная промышленность.

Комптона эффект

Ко'мптона эффе'кт,комптон-эффект, упругое рассеяние электромагнитного излучения на свободных электронах, сопровождающееся увеличением длины волны; наблюдается при рассеянии излучения малых длин волн - рентгеновского и гамма-излучения.В К. э. впервые во всей полноте проявились корпускулярные свойства излучения.

  К. э. открыт в 1922 американским физиком А. Комптоном,обнаружившим, что рассеянные в парафине рентгеновские лучи имеют большую длину волны, чем падающие. Классическая теория не могла объяснить такого сдвига длины волны. Действительно, согласно классической электродинамике,под действием периодического электрического поля электромагнитной (световой) волны электрон должен колебаться с частотой, равной частоте поля, и, следовательно, излучать вторичные (рассеянные) волны той же частоты. Таким образом, при «классическом» рассеянии (теория которого была дана английским физиком Дж. Дж. Томсоном и которое поэтому называют «томсоновским») длина световой волны не меняется.

  Первоначальная теория К. э. на основе квантовых представлений была дана А. Комптоном и независимо П. Дебаем.По квантовой теории световая волна представляет собой поток световых квантов - фотонов. Каждый фотон имеет определённую энергию E g = hu = hcll и импульс p g =( h/l) n,где l - длина волны падающего света ( u- его частота), с -скорость света, h -постоянная Планка, а n -единичный вектор в направлении распространения волны (индекс уозначает фотон). К. э. в квантовой теории выглядит как упругое столкновение двух частиц - налетающего фотона и покоящегося электрона. В каждом таком акте столкновения соблюдаются законы сохранения энергии и импульса. Фотон, столкнувшись с электроном, передает ему часть своей энергии и импульса и изменяет направление движения (рассеивается); уменьшение энергии фотона и означает увеличение длины волны рассеянного света. Электрон, ранее покоившийся, получает от фотона энергию и импульс и приходит в движение - испытывает отдачу. Направление движения частиц после столкновения, а также их энергии определяются законами сохранения энергии и импульса ( рис. 1 ).

  Совместное решение уравнений, выражающих равенства суммарной энергии и суммарного импульса частиц до и после столкновения (в предположении, что электрон до столкновения покоился), даёт для сдвига длины световой волны Dl формулу Комптона:

  Dl= l' - l= l о(1-cos J).

  Здесь l' - длина волны рассеянного света, J - угол рассеяния фотона, а l 0 = h/mc =2,426·10 -10 см= 0,024 Е - так называемая комптоновская длина волны электрона ( т -масса электрона). Из формулы Комптона следует, что сдвиг длины волны Dl не зависит от самой длины волны падающего света l. Он определяется лишь углом рассеяния фотона J и максимален при J = 180°, т. е. при рассеянии назад: Dl макс. =2l 0.

 Из тех же уравнений можно получить выражения для энергии E eэлектрона отдачи («комптоновского» электрона) в зависимости от угла его вылета j .На графически представлена зависимость энергии рассеянного фотона  от угла рассеяния J ,а также связанная с нею зависимость E eот j. Из рисунка видно, что электроны отдачи всегда имеют составляющую скорости по направлению движения падающего фотона (т. е. j не превышает 90°).

  Опыт подтвердил все теоретические предсказания. Таким образом, была экспериментально доказана правильность корпускулярных представлений о механизме К. э. и тем самым правильность исходных положений квантовой теории.

  В реальных опытах по рассеянию фотонов веществом электроны не свободны, а связаны в атомах. Если фотоны обладают большой энергией по сравнению с энергией связи электронов в атоме (фотоны рентгеновского и g-излучения), то электроны испытывают настолько сильную отдачу, что оказываются выбитыми из атома. В этом случае рассеивание фотонов происходит как на свободных электронах. Если же энергия фотона недостаточна для того, чтобы вырвать электрон из атома, то фотон обменивается энергией и импульсом с атомом в целом. Так как масса атома очень велика (по сравнению с эквивалентной массой фотона, равной, согласно