Страница:
Точно верифицировать симптомы дефицита бора сложно, так как отсутствие бора затрагивает макроминеральный метаболизм. Известно, что бор воздействует на обмен кальция и меди. Его дефицит может приводить к гиперхромной анемии и тромбоцитопении. Бор может потенцировать эффекты принимаемых эстрогенов у постклимактерических женщин. Диетический бор не затрагивает эти переменные у мужчин и женщин, не получающих эстрогены. Показано, что низкие диетические концентрации бора приводят к снижению умственной способности
Токсичность. Бор имеет низкую токсичность.
Перенасыщение бором приводит к выпадению волос, полиморфной сухой эритеме и анемии, которые проходят при нормализации уровня бора в диете. Признаки острой интоксикации включают: тошноту, рвоту, диарею, дерматит и летаргию. Кроме того, высокий прием бора с пищей стимулирует рибофлавинурию.
Суточная потребность составляет более 0,3 мг, вероятно ближе к 1 мг.
Пищевые источники. Ежедневное потребление бора людьми может изменяться в широких пределах в зависимости от количества различных групп пищи в рационе. Пищевые продукты растительного происхождения, особенно фрукты нецитрусовых, покрытые листвой овощи, орехи и бобы – богатые источники бора. Вино, сидр и пиво также имеют значительное содержание бора. Мясо, рыба и молочные продукты бедны бором.
Марганец
Молибден
Никель
Кремний
Ванадий
Другие микроэлементы
Глава 8 Пищевая и биологическая ценность продуктов питания
Оценка продуктов питания
Оценка пищевого белка
Оценка качества пищевых жиров
Пищевая ценность продуктов питания
Токсичность. Бор имеет низкую токсичность.
Перенасыщение бором приводит к выпадению волос, полиморфной сухой эритеме и анемии, которые проходят при нормализации уровня бора в диете. Признаки острой интоксикации включают: тошноту, рвоту, диарею, дерматит и летаргию. Кроме того, высокий прием бора с пищей стимулирует рибофлавинурию.
Суточная потребность составляет более 0,3 мг, вероятно ближе к 1 мг.
Пищевые источники. Ежедневное потребление бора людьми может изменяться в широких пределах в зависимости от количества различных групп пищи в рационе. Пищевые продукты растительного происхождения, особенно фрукты нецитрусовых, покрытые листвой овощи, орехи и бобы – богатые источники бора. Вино, сидр и пиво также имеют значительное содержание бора. Мясо, рыба и молочные продукты бедны бором.
Марганец
Известные биохимические функции марганца – это активация ферментов и некоторых металлоэнзимов.
Метаболизм. Абсорбция марганца из рациона предположительно равна 5 %. Всасывание марганца происходит по всей тонкой кишке. При абсорбции марганец конкурирует с железом и кобальтом. Таким образом, один из металлов, если уровень его высок, может проявлять ингибирующий эффект на всасывание других. В клетках марганец преимущественно находится в митохондриях, в таких органах как печень, почки и поджелудочная железа. Марганец почти полностью выделяется с калом.
Признаки дефицита у лабораторных животных включают: замедление роста, нарушения скелета, угнетение репродуктивной функции, атаксию у новорожденных и дефекты метаболизма углеводов и липидов.
Описан пока единственный достоверный случай дефицита марганца человека, который после употребления молочной смеси в течение длительного периода соблюдал диету. У него отмечались: потеря массы тела, замедление роста волос и ногтей, дерматит и гипохолестеринемия. Кроме того, его черные волосы приобрели красноватый оттенок и нарушился коагуляционный ответ белка на витамин К.
У пациентов с определенными типами эпилепсии отмечается снижение концентрации марганца в цельной крови. Наконец, низкие концентрации марганца сыворотки, обычно в сочетании с низкими концентрациями меди и цинка, были найдены у пациентов при нарушенном метаболизме кости, что исправлялось введением в рацион марганца, меди и цинка.
Возможно люди, подверженные стрессорному воздействию, имеют повышенную потребность в одном из марганцевых ферментов, что может привести к большей восприимчивости к дефициту марганца. Риск появления дефицита марганца увеличивается у людей, злоупотребляющих алкоголем.
Токсичность. При пероральном поступлении марганец относится к наименее ядовитым микроэлементам. Главные признаки интоксикации марганца у животных – угнетение роста, сниженный аппетит, нарушение метаболизма железа и изменение функции мозга. Сообщений о случаях интоксикации у людей, вызванной пероральным приемом пищи с высоким содержанием, нет. Интоксикация у людей наблюдается в результате хронической ингаляции больших количеств марганца на производстве. Возникают тяжелые нарушения психики, включая гиперраздражительность, гипермоторику и галлюцинации – «марганцевое безумие». При прогрессировании интоксикации развиваются изменения в экстрапирамидной системе, подобные болезни Паркинсона.
Суточная потребность в марганце для взрослых 2–5 мг.
Пищевые источники. Неочищенные хлебные злаки, орехи, покрытые листвой овощи и чай богаты марганцем, тогда как очищенное зерно, мясо и ежедневно потребляемые продукты содержат лишь небольшие его количества. Таким образом рационы, богатые пищевыми продуктами растительного происхождения, поставляют ежедневно в среднем 8,3 мг марганца, при том, что рационы в больницах поставляют менее 0,36-1,78 мг марганца в день.
Метаболизм. Абсорбция марганца из рациона предположительно равна 5 %. Всасывание марганца происходит по всей тонкой кишке. При абсорбции марганец конкурирует с железом и кобальтом. Таким образом, один из металлов, если уровень его высок, может проявлять ингибирующий эффект на всасывание других. В клетках марганец преимущественно находится в митохондриях, в таких органах как печень, почки и поджелудочная железа. Марганец почти полностью выделяется с калом.
Признаки дефицита у лабораторных животных включают: замедление роста, нарушения скелета, угнетение репродуктивной функции, атаксию у новорожденных и дефекты метаболизма углеводов и липидов.
Описан пока единственный достоверный случай дефицита марганца человека, который после употребления молочной смеси в течение длительного периода соблюдал диету. У него отмечались: потеря массы тела, замедление роста волос и ногтей, дерматит и гипохолестеринемия. Кроме того, его черные волосы приобрели красноватый оттенок и нарушился коагуляционный ответ белка на витамин К.
У пациентов с определенными типами эпилепсии отмечается снижение концентрации марганца в цельной крови. Наконец, низкие концентрации марганца сыворотки, обычно в сочетании с низкими концентрациями меди и цинка, были найдены у пациентов при нарушенном метаболизме кости, что исправлялось введением в рацион марганца, меди и цинка.
Возможно люди, подверженные стрессорному воздействию, имеют повышенную потребность в одном из марганцевых ферментов, что может привести к большей восприимчивости к дефициту марганца. Риск появления дефицита марганца увеличивается у людей, злоупотребляющих алкоголем.
Токсичность. При пероральном поступлении марганец относится к наименее ядовитым микроэлементам. Главные признаки интоксикации марганца у животных – угнетение роста, сниженный аппетит, нарушение метаболизма железа и изменение функции мозга. Сообщений о случаях интоксикации у людей, вызванной пероральным приемом пищи с высоким содержанием, нет. Интоксикация у людей наблюдается в результате хронической ингаляции больших количеств марганца на производстве. Возникают тяжелые нарушения психики, включая гиперраздражительность, гипермоторику и галлюцинации – «марганцевое безумие». При прогрессировании интоксикации развиваются изменения в экстрапирамидной системе, подобные болезни Паркинсона.
Суточная потребность в марганце для взрослых 2–5 мг.
Пищевые источники. Неочищенные хлебные злаки, орехи, покрытые листвой овощи и чай богаты марганцем, тогда как очищенное зерно, мясо и ежедневно потребляемые продукты содержат лишь небольшие его количества. Таким образом рационы, богатые пищевыми продуктами растительного происхождения, поставляют ежедневно в среднем 8,3 мг марганца, при том, что рационы в больницах поставляют менее 0,36-1,78 мг марганца в день.
Молибден
Молибденоэнзимы катализируют гидроксилирование различных субстратов. Альдегидоксидаза окисляет и нейтролизует различные пиримидины, пурины, птеридины. Ксантиноксидаза катализирует преобразование гипоксантинов в ксантины, а ксантины – в мочевую кислоту. Сульфитоксидаза катализирует преобразование сульфита в сульфат.
Метаболизм. Молибден из пищевых продуктов и в форме растворимых комплексов легко абсорбируется. У людей всасывается 25–80 % поступающего с пищей молибдена. Абсорбция происходит в желудке и по всей тонкой кишке, в большей степени в ее проксимальном отделе, чем в дистальном. На всасывание молибдена значительно влияют взаимодействия между молибденом и различными диетическими формами серы. Органы, которые содержат самые высокие количества молибдена – это печень и почки.
Большая часть молибдена быстро поступает в почки и экскретируется ими. Экскреция является главным механизмом его гомеостатического регулирования. Существенные количества этого элемента экскретируются с желчью.
Признаки дефицита. Дефицит молибдена возможен у людей, которые получают полное парентеральное питание (ПП) или подвержены стрессу (увеличена потребность в сульфитоксидазе).
Признание роли молибдена как компонента сульфитоксидазы и данные о том, что дефицит сульфитоксидазы нарушает метаболизм цистеина, были подтверждены случаем нарушения, вызванного недостатком функционирующего молибдена у человека. Существует врожденный дефект в метаболизме цистеина (дефицит сульфитоксидазы), приводящий к коме и летальному исходу. Аномалия характеризуется серьезным повреждением мозга, умственной отсталостью, вывихом хрусталика, увеличенной мочевой экскрецией сульфита, уменьшенной мочевой экскрецией сульфата.
У пациентов, получающих длительно полное ПП, описан синдром «приобретенного дефицита молибдена»: гиперметионинемия, гипоурикемия, гипероксипуринемия, гипоурикозурия и гипосульфатурия, прогрессирующие умственные расстройства (до комы).
Токсичность. Молибден – относительно неядовитый элемент. Необходимы его большие пероральные дозы, чтобы преодолеть гомеостатический контроль. Большинство признаков интоксикации молибденом аналогичны или идентичны таковым при дефиците меди (замедление роста и анемия). Профессиональные интоксикации, выявленные эпидемиологическими методами, характеризовались повышением концентрации мочевой кислоты в крови и учащении случаев подагры.
Суточная потребность в молибдене у взрослых 75-250 мкг, у лиц старше 75 лет —200 мкг.
Пищевые источники. Большинство обычных рационов поставляет приблизительно 50-100 мкг молибдена в день, то есть не обеспечивает минимальный уровень безопасного и адекватного его потребления. Самые богатые источники молибдена: молоко и молочные продукты, высушенные бобы, мясо внутренних органов (печень и почки), хлебные злаки и выпечка. Бедны молибденом овощи, фрукты, сахар, масла, жиры и рыба.
Метаболизм. Молибден из пищевых продуктов и в форме растворимых комплексов легко абсорбируется. У людей всасывается 25–80 % поступающего с пищей молибдена. Абсорбция происходит в желудке и по всей тонкой кишке, в большей степени в ее проксимальном отделе, чем в дистальном. На всасывание молибдена значительно влияют взаимодействия между молибденом и различными диетическими формами серы. Органы, которые содержат самые высокие количества молибдена – это печень и почки.
Большая часть молибдена быстро поступает в почки и экскретируется ими. Экскреция является главным механизмом его гомеостатического регулирования. Существенные количества этого элемента экскретируются с желчью.
Признаки дефицита. Дефицит молибдена возможен у людей, которые получают полное парентеральное питание (ПП) или подвержены стрессу (увеличена потребность в сульфитоксидазе).
Признание роли молибдена как компонента сульфитоксидазы и данные о том, что дефицит сульфитоксидазы нарушает метаболизм цистеина, были подтверждены случаем нарушения, вызванного недостатком функционирующего молибдена у человека. Существует врожденный дефект в метаболизме цистеина (дефицит сульфитоксидазы), приводящий к коме и летальному исходу. Аномалия характеризуется серьезным повреждением мозга, умственной отсталостью, вывихом хрусталика, увеличенной мочевой экскрецией сульфита, уменьшенной мочевой экскрецией сульфата.
У пациентов, получающих длительно полное ПП, описан синдром «приобретенного дефицита молибдена»: гиперметионинемия, гипоурикемия, гипероксипуринемия, гипоурикозурия и гипосульфатурия, прогрессирующие умственные расстройства (до комы).
Токсичность. Молибден – относительно неядовитый элемент. Необходимы его большие пероральные дозы, чтобы преодолеть гомеостатический контроль. Большинство признаков интоксикации молибденом аналогичны или идентичны таковым при дефиците меди (замедление роста и анемия). Профессиональные интоксикации, выявленные эпидемиологическими методами, характеризовались повышением концентрации мочевой кислоты в крови и учащении случаев подагры.
Суточная потребность в молибдене у взрослых 75-250 мкг, у лиц старше 75 лет —200 мкг.
Пищевые источники. Большинство обычных рационов поставляет приблизительно 50-100 мкг молибдена в день, то есть не обеспечивает минимальный уровень безопасного и адекватного его потребления. Самые богатые источники молибдена: молоко и молочные продукты, высушенные бобы, мясо внутренних органов (печень и почки), хлебные злаки и выпечка. Бедны молибденом овощи, фрукты, сахар, масла, жиры и рыба.
Никель
Поскольку никель эссенциален для некоторых животных, предполагается, что никель также необходим человеку. Связь дивалентного никеля с различными лигандами, включая аминокислоты и белки, вероятно, важна при внеклеточном транспорте, внутриклеточной связи и мочевой и желчной экскреции никеля. Предполагается, что никель участвует как структурный компонент в некоторых ферментах.
Метаболизм. Поступающий внутрь с водой никель абсорбируется на 20–25 %. Определенные пищевые продукты снижать его абсорбцию: молоко, кофе, чай, апельсиновый сок и аскорбиновая кислота. Таким образом, никель плохо абсорбируется (менее чем 10 %), если потребляется с типичными рационами. Всасывание никеля увеличивается при железодефиците, беременности и кормлении грудью. Никель транспортируется преимущественно с альбумином сыворотки. Никакая ткань или орган значимо не накапливают никель при поступлении его в физиологических дозах. Щитовидная железа и надпочечники имеют относительно высокие его концентрации. Выделяется преимущественно с калом, мочой, потом и желчью.
Признаки дефицита. До сих пор более известно о физиологической функции и потребности никеля, чем о специфических расстройствах, вызываемых им, исключая дерматит, который полностью или частично относится к дефициту никеля.
Токсичность. Угроза интоксикации никелем при пероральном его потреблении маловероятна. Из-за превосходного гомеостатического регулирования соли никеля проявляют свое ядовитое действие главным образом в виде раздражения желудочно-кишечного тракта.
Суточная потребность. Адекватное ежедневное потребление никеля должно составлять 100–300 мкг.
Пищевые источники: шоколад, орехи, высушенные бобы, горох и зерно. Обычные рационы обеспечивают менее 150 мкг ежедневно.
Метаболизм. Поступающий внутрь с водой никель абсорбируется на 20–25 %. Определенные пищевые продукты снижать его абсорбцию: молоко, кофе, чай, апельсиновый сок и аскорбиновая кислота. Таким образом, никель плохо абсорбируется (менее чем 10 %), если потребляется с типичными рационами. Всасывание никеля увеличивается при железодефиците, беременности и кормлении грудью. Никель транспортируется преимущественно с альбумином сыворотки. Никакая ткань или орган значимо не накапливают никель при поступлении его в физиологических дозах. Щитовидная железа и надпочечники имеют относительно высокие его концентрации. Выделяется преимущественно с калом, мочой, потом и желчью.
Признаки дефицита. До сих пор более известно о физиологической функции и потребности никеля, чем о специфических расстройствах, вызываемых им, исключая дерматит, который полностью или частично относится к дефициту никеля.
Токсичность. Угроза интоксикации никелем при пероральном его потреблении маловероятна. Из-за превосходного гомеостатического регулирования соли никеля проявляют свое ядовитое действие главным образом в виде раздражения желудочно-кишечного тракта.
Суточная потребность. Адекватное ежедневное потребление никеля должно составлять 100–300 мкг.
Пищевые источники: шоколад, орехи, высушенные бобы, горох и зерно. Обычные рационы обеспечивают менее 150 мкг ежедневно.
Кремний
Предполагается, что кремний функционирует как биологический структурообразующий фактор соединений, которые вносят вклад в архитектуру и упругость соединительной ткани. Соединительные компоненты ткани, в которых кремний, вероятно, играет фундаментальную роль – это коллаген, эластин и мукополисахариды.
Метаболизм кремния. Немного известно о метаболизме кремния. Увеличение потребления кремния повышает экскрецию у людей с мочой до довольно четких пределов.
Признаки дефицита. Большинство симптомов кремниевого дефицита у лабораторных животных указывает на ненормальный метаболизм соединительной ткани и кости. Признаки дефицита более выражены при низком диетическом потреблении кальция и высоком уровне пищевого алюминия. Кремниевые добавки предотвращают увеличение концентрации алюминия в мозге. Считается, что серьезный недостаток диетического кремния у человека может иметь вредные эффекты на мозг и функцию костей и суставов.
Токсичность кремния. Кремний – по существу не яд в случае перорального приема. Так, антацид магний трисиликат использовался в течение десятков лет без вредных эффектов.
Суточная потребность в кремнии находится в диапазоне от 5 до 20 мг.
Пищевые источники. Потребление кремния очень изменяется в зависимости от количества и доли в рационе продуктов животного (кремний-низких) и растительного (кремний-высоких) происхождения и от количества очищенных и обработанных пищевых продуктов в рационе. Самые богатые источники кремния – неочищенное зерно с высоким содержанием волокон, продукты из хлебных злаков и корнеплоды овощей. Обычная диета поставляет 21–46 мг кремния в день.
Метаболизм кремния. Немного известно о метаболизме кремния. Увеличение потребления кремния повышает экскрецию у людей с мочой до довольно четких пределов.
Признаки дефицита. Большинство симптомов кремниевого дефицита у лабораторных животных указывает на ненормальный метаболизм соединительной ткани и кости. Признаки дефицита более выражены при низком диетическом потреблении кальция и высоком уровне пищевого алюминия. Кремниевые добавки предотвращают увеличение концентрации алюминия в мозге. Считается, что серьезный недостаток диетического кремния у человека может иметь вредные эффекты на мозг и функцию костей и суставов.
Токсичность кремния. Кремний – по существу не яд в случае перорального приема. Так, антацид магний трисиликат использовался в течение десятков лет без вредных эффектов.
Суточная потребность в кремнии находится в диапазоне от 5 до 20 мг.
Пищевые источники. Потребление кремния очень изменяется в зависимости от количества и доли в рационе продуктов животного (кремний-низких) и растительного (кремний-высоких) происхождения и от количества очищенных и обработанных пищевых продуктов в рационе. Самые богатые источники кремния – неочищенное зерно с высоким содержанием волокон, продукты из хлебных злаков и корнеплоды овощей. Обычная диета поставляет 21–46 мг кремния в день.
Ванадий
В биологических системах наиболее важными формами ванадия являются тетра– и пентавалентные состояния, которые легко образуют комплексы с другими веществами, такими как трансферрин или гемоглобин, таким образом стабилизируя их против окисления. Предполагают, что ванадий играет роль в ферментах фосфорилтрансферазе, аденилатциклазе и протеинкиназе; как кофактор фермента в форме ванадила – в гормонах, глюкозе, липидах, кости и метаболизме зуба. Наиболее изученная галопероксидаза – пероксидаза щитовидной железы.
Метаболизм. Абсорбируется менее чем 5 % поступившего перорально ванадия (как ванадил или ванадат). Множество веществ может повышать степень токсичности ванадия, влияя на его абсорбцию, включая аскорбиновую кислоту, хром, белок, железистое железо, хлорид и гидроксид алюминия. При поступлении в кровь ванадий, очевидно, конвертируется в ванадил-трансферрин и ванадил-ферритиновые комплексы в жидкостях организма и плазме. Моча представляется главным средством экскреции для абсорбированного ванадия, а кость – главное место депо.
Признаки дефицита. Большинство сообщаемых признаков являются сомнительными. Рационы, используемые в исследованиях с отсутствием ванадия, имели изменяющееся содержание белка, аминокислот, аскорбиновой кислоты, железа, меди и возможно других нутриентов, которые могут воздействовать на ванадий. Дефицит ванадия у животных приводил к повышению частоты абортов и снижению количества молока, приблизительно 40 % детенышей погибали, увеличивался вес щитовидной железы, уменьшался рост. Дефицит ванадия не идентифицирован у людей.
Клиническая важность ванадия сомнительна. Поскольку ванадий может затрагивать метаболизм йода и функцию щитовидной железы, предполагают, что он может обладать нутриционной значимостью при стрессе, который вызывает резкое снижение нормального статуса щитовидной железы.
Токсичность. Ванадий может быть ядовитым элементом. Изучения острой интоксикации указывают, что это нейротоксичный и геморрагически-эндотелиотоксичный яд, с нефро– и гепатотоксичным компонентами. Показано, что длительное ежедневное употребление более 10 мг ванадия может привести к токсикологическим последствиям.
Суточная потребность. Ежедневное диетическое потребление 10 мкг ванадия, вероятно, соответствует потребности в нем.
Пищевые источники. Рационы обычно поставляют 6-10 мкг ванадия в день. Пищевые продукты, богатые ванадием: моллюск, грибы, петрушка, семя укропа, черный перец. Напитки, жиры и масла, свежие фрукты и свежие овощи содержат наименьшее количество ванадия.
Метаболизм. Абсорбируется менее чем 5 % поступившего перорально ванадия (как ванадил или ванадат). Множество веществ может повышать степень токсичности ванадия, влияя на его абсорбцию, включая аскорбиновую кислоту, хром, белок, железистое железо, хлорид и гидроксид алюминия. При поступлении в кровь ванадий, очевидно, конвертируется в ванадил-трансферрин и ванадил-ферритиновые комплексы в жидкостях организма и плазме. Моча представляется главным средством экскреции для абсорбированного ванадия, а кость – главное место депо.
Признаки дефицита. Большинство сообщаемых признаков являются сомнительными. Рационы, используемые в исследованиях с отсутствием ванадия, имели изменяющееся содержание белка, аминокислот, аскорбиновой кислоты, железа, меди и возможно других нутриентов, которые могут воздействовать на ванадий. Дефицит ванадия у животных приводил к повышению частоты абортов и снижению количества молока, приблизительно 40 % детенышей погибали, увеличивался вес щитовидной железы, уменьшался рост. Дефицит ванадия не идентифицирован у людей.
Клиническая важность ванадия сомнительна. Поскольку ванадий может затрагивать метаболизм йода и функцию щитовидной железы, предполагают, что он может обладать нутриционной значимостью при стрессе, который вызывает резкое снижение нормального статуса щитовидной железы.
Токсичность. Ванадий может быть ядовитым элементом. Изучения острой интоксикации указывают, что это нейротоксичный и геморрагически-эндотелиотоксичный яд, с нефро– и гепатотоксичным компонентами. Показано, что длительное ежедневное употребление более 10 мг ванадия может привести к токсикологическим последствиям.
Суточная потребность. Ежедневное диетическое потребление 10 мкг ванадия, вероятно, соответствует потребности в нем.
Пищевые источники. Рационы обычно поставляют 6-10 мкг ванадия в день. Пищевые продукты, богатые ванадием: моллюск, грибы, петрушка, семя укропа, черный перец. Напитки, жиры и масла, свежие фрукты и свежие овощи содержат наименьшее количество ванадия.
Другие микроэлементы
Результаты исследований позволяют предполагать, что бром, фтор, свинец и олово являются эссенциальными микроэлементами.
Бром. Сообщается, что рацион коз, содержащий менее 1 мг брома на 1 кг пищи, приводит к снижению роста, уровня гемоглобина и продолжительности жизни.
Фтор. Всеми признано, что фторид имеет некоторые полезные фармакологические свойства, которые помогают предотвращать зубной кариес и возможно защищает против переломов костей, связанных с остеопорозом. Безопасное и адекватное потребление фтора у взрослых – от 1,5 до 4 мг.
Свинец. Дефицит в эксперименте понижает рост, нарушает метаболизм железа, изменяет действия некоторых ферментов и концентрацию отдельных метаболитов в печени, связанных со статусом железа. Было обнаружено, что свинец увеличивает рост и улучшает гематокрит и концентрацию гемоглобина при дефиците железа у крыс, однако этот эффект был, вероятно, результатом фармакологического действия свинца. Механизм, с помощью которого свинец влияет на метаболизм железа, пока не определен.
Олово. Рацион с дефицитом олова у лабораторных животных вызывает недостаток роста, алопецию и изменение концентрации минералов в различных органах. Эти данные о роли дефицита олова нуждаются в подтверждении.
Бром. Сообщается, что рацион коз, содержащий менее 1 мг брома на 1 кг пищи, приводит к снижению роста, уровня гемоглобина и продолжительности жизни.
Фтор. Всеми признано, что фторид имеет некоторые полезные фармакологические свойства, которые помогают предотвращать зубной кариес и возможно защищает против переломов костей, связанных с остеопорозом. Безопасное и адекватное потребление фтора у взрослых – от 1,5 до 4 мг.
Свинец. Дефицит в эксперименте понижает рост, нарушает метаболизм железа, изменяет действия некоторых ферментов и концентрацию отдельных метаболитов в печени, связанных со статусом железа. Было обнаружено, что свинец увеличивает рост и улучшает гематокрит и концентрацию гемоглобина при дефиците железа у крыс, однако этот эффект был, вероятно, результатом фармакологического действия свинца. Механизм, с помощью которого свинец влияет на метаболизм железа, пока не определен.
Олово. Рацион с дефицитом олова у лабораторных животных вызывает недостаток роста, алопецию и изменение концентрации минералов в различных органах. Эти данные о роли дефицита олова нуждаются в подтверждении.
Глава 8 Пищевая и биологическая ценность продуктов питания
Пищевая и биологическая ценность продуктов питания определяется их составом, усвояемостью и целым рядом других параметров.
По виду исходного сырья различают продукты животного и растительного происхождения. Значение также имеет распределение их по преимущественной роли в реализации основных функций пищи (табл. 8.1).
Таблица 8.1
Систематизация пищевых продуктов по преимущественной роли в питании человека
Преимущественно пластическая роль продуктов животного происхождения не исключает полностью их участия в обеспечении организма энергией и биологически активными веществами, регулирующими обменные процессы. В то же время продукты растительного происхождения могут быть источниками веществ, используемых в организме как пластический материал, причем некоторые из них в этом отношении приближаются к продуктам животного происхождения (например, соя).
По виду исходного сырья различают продукты животного и растительного происхождения. Значение также имеет распределение их по преимущественной роли в реализации основных функций пищи (табл. 8.1).
Таблица 8.1
Систематизация пищевых продуктов по преимущественной роли в питании человека
Преимущественно пластическая роль продуктов животного происхождения не исключает полностью их участия в обеспечении организма энергией и биологически активными веществами, регулирующими обменные процессы. В то же время продукты растительного происхождения могут быть источниками веществ, используемых в организме как пластический материал, причем некоторые из них в этом отношении приближаются к продуктам животного происхождения (например, соя).
Оценка продуктов питания
Оценка пищевого белка
Биологическая ценность пищевого продукта отражает его способность удовлетворять потребность организма в незаменимых аминокислотах. Для ее определения используют методы оценки качества белка пищевых продуктов.
Среди химических методов наиболее распространен метод аминокислотного скора (scor – счет, подсчет). Он основан на сравнении аминокислотного состава белка оцениваемого продукта с аминокислотным составом стандартного (идеального) белка. После количественного определения химическим путем содержания каждой из незаменимых аминокислот в исследуемом белке определяют аминокислотный скор (АС) для каждой из них по формуле:
С = Снакиссл /Снакст х 100,
где Снакиссл, Снакст – соответственно содержание незаменимой аминокислоты (в мг) в 1 г исследуемого и стандартного белка.
Одновременно с определением аминокислотного скора выявляют лимитирующую для данного белка незаменимую аминокислоту, то есть ту, для которой скор является наименьшим. Пример определения аминокислотного скора белков коровьего молока и риса приведен в табл. 8.2.
Таблица 8.2
Аминокислотный состав и химический скор некоторых белков
* Содержание аминокислоты в 1 г белка, мг.
** Аминокислотный скор относительно образца ФАО/ВОЗ,%.
*** Потребность организма человека в метионине удовлетворяется на 80–89 % заменимой аминокислотой цистином, а в фенилаланине – на 70–75 % заменимой аминокислотой тирозином, поэтому обе названные пары аминокислот оцениваются в сумме.
Так, из таблицы следует, что белок коровьего молока лимитирован по серосодержащим аминокислотам (метионин+цистин), так как скор у них наименьший (94) по сравнению с другими аминокислотами. Для риса лимитирующей аминокислотой является лизин (69).
К показателям биологической ценности продуктов питания по качеству пищевых белков, определяемым простыми расчетными методами, можно отнести следующие:
– отношение содержания незаменимых аминокислот (НАК) к общему азоту белка (ОАБ) в 100 г белка, выраженное в граммах незаменимых аминокислот на 1 г азота;
– количество незаменимых аминокислот в 100 г белка.
При оценке белков с помощью этих показателей исходят из того, что у белков с высокой биологической ценностью отношение НАК/ОАБ составляет не менее 2,5, а количество незаменимых аминокислот в 100 г белка – не менее 40. Остальные белки имеют низкую биологическую ценность (табл. 8.3).
Таблица 8.3
Биологическая ценность различных белков по расчетным показателям
Современным стандартом качества пищевых белков является PDCAAS – скорректированный аминокислотный коэффициент усвояемости белков, рекомендованный для применения при оценке качества белков Объединенным экспертным советом ФАО/ВОЗ (1989).
Этот показатель включает в себя три основных параметра оценки качества белка: содержание незаменимых аминокислот, усвояемость, способность поставлять незаменимые аминокислоты в необходимом для человека количестве. При этом PDCAAS пищевых белков измеряется путем сравнения содержания незаменимых аминокислот в пище, скорректированного с учетом усвояемости и модели потребностей в аминокислотах для детей в возрасте 2–5 лет (данная возрастная группа имеет наивысшие потребности в белке).
Нескорректированный аминокислотный коэффициент:
А = НАК1 /НАК2,
где А – нескорректированный азотный коэффициент, НАК1 – содержание незаменимых аминокислот в определяемом белке, Н АК2 – содержание незаменимых аминокислот в стандартном белке (для детей 2–5 лет по данным Ф АО/ВОЗ, 1985).
PDCAAS = минимальный А × усвояемость белка.
PDCAAS прямо пропорционален важности конкретного источника белка для питания человека. Продукты, состоящие из высококачественных белков и имеющие PDCAAS=1,0, являются полноценными с точки зрения обеспечения определенного процента суточной нормы потребления белков (табл. 8.4).
Таблица 8.4
Оценка качества белка по данным Объединенного экспертного совета
FАО/WHO (1989)
Среди химических методов наиболее распространен метод аминокислотного скора (scor – счет, подсчет). Он основан на сравнении аминокислотного состава белка оцениваемого продукта с аминокислотным составом стандартного (идеального) белка. После количественного определения химическим путем содержания каждой из незаменимых аминокислот в исследуемом белке определяют аминокислотный скор (АС) для каждой из них по формуле:
С = Снакиссл /Снакст х 100,
где Снакиссл, Снакст – соответственно содержание незаменимой аминокислоты (в мг) в 1 г исследуемого и стандартного белка.
Одновременно с определением аминокислотного скора выявляют лимитирующую для данного белка незаменимую аминокислоту, то есть ту, для которой скор является наименьшим. Пример определения аминокислотного скора белков коровьего молока и риса приведен в табл. 8.2.
Таблица 8.2
Аминокислотный состав и химический скор некоторых белков
* Содержание аминокислоты в 1 г белка, мг.
** Аминокислотный скор относительно образца ФАО/ВОЗ,%.
*** Потребность организма человека в метионине удовлетворяется на 80–89 % заменимой аминокислотой цистином, а в фенилаланине – на 70–75 % заменимой аминокислотой тирозином, поэтому обе названные пары аминокислот оцениваются в сумме.
Так, из таблицы следует, что белок коровьего молока лимитирован по серосодержащим аминокислотам (метионин+цистин), так как скор у них наименьший (94) по сравнению с другими аминокислотами. Для риса лимитирующей аминокислотой является лизин (69).
К показателям биологической ценности продуктов питания по качеству пищевых белков, определяемым простыми расчетными методами, можно отнести следующие:
– отношение содержания незаменимых аминокислот (НАК) к общему азоту белка (ОАБ) в 100 г белка, выраженное в граммах незаменимых аминокислот на 1 г азота;
– количество незаменимых аминокислот в 100 г белка.
При оценке белков с помощью этих показателей исходят из того, что у белков с высокой биологической ценностью отношение НАК/ОАБ составляет не менее 2,5, а количество незаменимых аминокислот в 100 г белка – не менее 40. Остальные белки имеют низкую биологическую ценность (табл. 8.3).
Таблица 8.3
Биологическая ценность различных белков по расчетным показателям
Современным стандартом качества пищевых белков является PDCAAS – скорректированный аминокислотный коэффициент усвояемости белков, рекомендованный для применения при оценке качества белков Объединенным экспертным советом ФАО/ВОЗ (1989).
Этот показатель включает в себя три основных параметра оценки качества белка: содержание незаменимых аминокислот, усвояемость, способность поставлять незаменимые аминокислоты в необходимом для человека количестве. При этом PDCAAS пищевых белков измеряется путем сравнения содержания незаменимых аминокислот в пище, скорректированного с учетом усвояемости и модели потребностей в аминокислотах для детей в возрасте 2–5 лет (данная возрастная группа имеет наивысшие потребности в белке).
Нескорректированный аминокислотный коэффициент:
А = НАК1 /НАК2,
где А – нескорректированный азотный коэффициент, НАК1 – содержание незаменимых аминокислот в определяемом белке, Н АК2 – содержание незаменимых аминокислот в стандартном белке (для детей 2–5 лет по данным Ф АО/ВОЗ, 1985).
PDCAAS = минимальный А × усвояемость белка.
PDCAAS прямо пропорционален важности конкретного источника белка для питания человека. Продукты, состоящие из высококачественных белков и имеющие PDCAAS=1,0, являются полноценными с точки зрения обеспечения определенного процента суточной нормы потребления белков (табл. 8.4).
Таблица 8.4
Оценка качества белка по данным Объединенного экспертного совета
FАО/WHO (1989)
Оценка качества пищевых жиров
О биологической ценности продуктов питания можно судить также по их липидному компоненту, в частности, по качественному составу полиненасыщенных жирных кислот. Ранее главной характеристикой биологической ценности жиросодержащего продукта питания считалось количество в нем линолевой кислоты, синтез которой в организме не осуществляется. В последующем было установлено, что не только абсолютное количество линолевой кислоты, но и ее соотношение с другими полиненасыщенными жирными кислотами имеет существенное значение.
Более трети жирных кислот в составе мембранных липидов представлено полиненасыщенными жирными кислотами с 20 и 22 углеродными атомами, имеющими от 2 до 6 двойных связей, причем наибольшая доля в этой группе приходится на арахидоновую кислоту, содержащую 20 атомов углерода и 4 двойных (ненасыщенных) связи (20:4). В то же время в обычной пище такие жирные кислоты присутствуют в незначительных количествах. Исключение составляют лишь смесь лярда с подсолнечным маслом и оливковое масло, наиболее соответствующие по своему составу оптимальной жирнокислотной формуле клеточных мембран. Отсюда следует, что жирные кислоты пищи мало пригодны для построения клеточных мембран. Поэтому они подвергаются метаболическим превращениям в организме с последующим синтезированием полиненасыщенных жирных кислот, необходимых для построения клеточных мембран и их оптимального функционирования.
На этой основе разработан показатель биологической ценности пищевых продуктов питания (с учетом качества входящих в них полиненасыщенных жирных кислот) в виде коэффициента эффективности метаболизации полиненасыщенных жирных кислот (КЭМ). Его определяют в экспериментах на лабораторных животных, получающих в качестве основного корма пищевой продукт, биологическая ценность которого исследуется. По окончании эксперимента в липидах мембран клеток печени подопытных животных определяют количество всех жирных кислот с 20 и 22 углеродными атомами, имеющими от 2 до 6 двойных связей. КЭМ выражает отношение количества арахидоновой кислоты (как главной разновидности жирных кислот в липидах нормально функционирующих клеточных мембран) к сумме всех других полиненасыщенных жирных кислот с 20 и 22 атомами углерода, имеющими от 2 до 6 двойных связей.
Для пищевых продуктов высокой биологической ценности значение КЭМ, определяемого при исследовании жирнокислотного состава липидов мембран печеночных клеток крыс, составляет 3–4 единицы. Уменьшение этих значений свидетельствует о снижении биологической ценности потребляемых пищевых продуктов по жирнокислотному составу.
У человека в качестве объекта изучения мембранных липидов могут быть использованы эритроциты. Значение КЭМ эритроцитарных липидов у практически здоровых лиц, получающих полноценное по жирнокислотному компоненту адекватное питание, находится в пределах 1,3–1,5 единиц.
Более трети жирных кислот в составе мембранных липидов представлено полиненасыщенными жирными кислотами с 20 и 22 углеродными атомами, имеющими от 2 до 6 двойных связей, причем наибольшая доля в этой группе приходится на арахидоновую кислоту, содержащую 20 атомов углерода и 4 двойных (ненасыщенных) связи (20:4). В то же время в обычной пище такие жирные кислоты присутствуют в незначительных количествах. Исключение составляют лишь смесь лярда с подсолнечным маслом и оливковое масло, наиболее соответствующие по своему составу оптимальной жирнокислотной формуле клеточных мембран. Отсюда следует, что жирные кислоты пищи мало пригодны для построения клеточных мембран. Поэтому они подвергаются метаболическим превращениям в организме с последующим синтезированием полиненасыщенных жирных кислот, необходимых для построения клеточных мембран и их оптимального функционирования.
На этой основе разработан показатель биологической ценности пищевых продуктов питания (с учетом качества входящих в них полиненасыщенных жирных кислот) в виде коэффициента эффективности метаболизации полиненасыщенных жирных кислот (КЭМ). Его определяют в экспериментах на лабораторных животных, получающих в качестве основного корма пищевой продукт, биологическая ценность которого исследуется. По окончании эксперимента в липидах мембран клеток печени подопытных животных определяют количество всех жирных кислот с 20 и 22 углеродными атомами, имеющими от 2 до 6 двойных связей. КЭМ выражает отношение количества арахидоновой кислоты (как главной разновидности жирных кислот в липидах нормально функционирующих клеточных мембран) к сумме всех других полиненасыщенных жирных кислот с 20 и 22 атомами углерода, имеющими от 2 до 6 двойных связей.
Для пищевых продуктов высокой биологической ценности значение КЭМ, определяемого при исследовании жирнокислотного состава липидов мембран печеночных клеток крыс, составляет 3–4 единицы. Уменьшение этих значений свидетельствует о снижении биологической ценности потребляемых пищевых продуктов по жирнокислотному составу.
У человека в качестве объекта изучения мембранных липидов могут быть использованы эритроциты. Значение КЭМ эритроцитарных липидов у практически здоровых лиц, получающих полноценное по жирнокислотному компоненту адекватное питание, находится в пределах 1,3–1,5 единиц.
Пищевая ценность продуктов питания
Пищевая ценность продукта питания в целом дает наиболее полное представление о всех его полезных свойствах, включая энергетическую и биологическую ценность.
Энергетическая ценность пищевого продукта характеризует его усвояемую энергию, то есть ту долю суммарной энергии химических связей белков, жиров и углеводов, которая может высвобождаться в процессе биологического окисления и использоваться для обеспечения физиологических функций организма. Величина этой энергии зависит главным образом от степени усвоения питательных веществ данного пищевого продукта. Как следует из табл. 8.5, усвоение питательных веществ из продуктов животного происхождения выше, чем из растительных.
Таблица 8.5
Усвояемость питательных веществ (в %) из разных пищевых продуктов
Из смешанной пищи, какой являются обычные рационы питания, в среднем белки усваиваются на 92 %, жиры – на 95 %, углеводы – на 98 %. С учетом этого установлены расчетные энергетические коэффициенты питательных веществ (для белков и углеводов – 4 ккал/г, для жиров – 9 ккал/г), используемые для определения энергосодержания рационов расчетным методом по раскладке продуктов с помощью таблиц химического состава и энергетической ценности пищевых продуктов.
Мерой пищевой ценности продукта служит интегральный скор, который представляет собой ряд выраженных в процентах расчетных величин, характеризующих степень соответствия оцениваемого продукта оптимально сбалансированному суточному рациону с учетом энергосодержания и наиболее важных качественных показателей.
Интегральный скор определяют обычно в расчете на такую массу продукта, которая обеспечивает 10 % энергии суточного рациона (например 300 ккал, или 1,26 МДж, при суточном рационе в 3000 ккал, или 12,6 МДж). Для определения интегрального скора вначале находят по соответствующим таблицам энергосодержание 100 г оцениваемого продукта, после чего вычисляют его массу, обеспечивающую 300 ккал (1,26 МДж) энергии, а затем рассчитывают в найденном количестве продукта содержание важнейших питательных веществ. Полученные по каждому из этих веществ величины представляют в виде процента от общего количества соответствующего вещества, содержащегося в оптимально сбалансированном суточном рационе. В табл. 8.6 представлены значения интегрального скора некоторых продуктов питания в расчете на их энергосодержание, равное 300 ккал (1,26 МДж), по отношению к оптимально сбалансированному суточному рациону с энергосодержанием в 3000 ккал (12,6 МДж).
Энергетическая ценность пищевого продукта характеризует его усвояемую энергию, то есть ту долю суммарной энергии химических связей белков, жиров и углеводов, которая может высвобождаться в процессе биологического окисления и использоваться для обеспечения физиологических функций организма. Величина этой энергии зависит главным образом от степени усвоения питательных веществ данного пищевого продукта. Как следует из табл. 8.5, усвоение питательных веществ из продуктов животного происхождения выше, чем из растительных.
Таблица 8.5
Усвояемость питательных веществ (в %) из разных пищевых продуктов
Из смешанной пищи, какой являются обычные рационы питания, в среднем белки усваиваются на 92 %, жиры – на 95 %, углеводы – на 98 %. С учетом этого установлены расчетные энергетические коэффициенты питательных веществ (для белков и углеводов – 4 ккал/г, для жиров – 9 ккал/г), используемые для определения энергосодержания рационов расчетным методом по раскладке продуктов с помощью таблиц химического состава и энергетической ценности пищевых продуктов.
Мерой пищевой ценности продукта служит интегральный скор, который представляет собой ряд выраженных в процентах расчетных величин, характеризующих степень соответствия оцениваемого продукта оптимально сбалансированному суточному рациону с учетом энергосодержания и наиболее важных качественных показателей.
Интегральный скор определяют обычно в расчете на такую массу продукта, которая обеспечивает 10 % энергии суточного рациона (например 300 ккал, или 1,26 МДж, при суточном рационе в 3000 ккал, или 12,6 МДж). Для определения интегрального скора вначале находят по соответствующим таблицам энергосодержание 100 г оцениваемого продукта, после чего вычисляют его массу, обеспечивающую 300 ккал (1,26 МДж) энергии, а затем рассчитывают в найденном количестве продукта содержание важнейших питательных веществ. Полученные по каждому из этих веществ величины представляют в виде процента от общего количества соответствующего вещества, содержащегося в оптимально сбалансированном суточном рационе. В табл. 8.6 представлены значения интегрального скора некоторых продуктов питания в расчете на их энергосодержание, равное 300 ккал (1,26 МДж), по отношению к оптимально сбалансированному суточному рациону с энергосодержанием в 3000 ккал (12,6 МДж).