Страница:
Очевидно, что идет ли дело о физической поверхности, как в данном случае, или об иных соприкосновениях со средой, все равно; чем их больше, тем меньше концентрация актив-ностей-сопротивлений, приходящаяся в среднем на единицу такой пограничной области; и притом в «четочных формах» эта концентрация еще неравномерна, представляет от пункта к пункту больше колебаний. Следовательно, по закону относительных сопротивлений разрушение связи этих форм, их дезорганизация совершается легче.
В более общей форме можно выразить это так: отрицательный подбор интенсивнее проявляется для «форм четоч-ных». Например, охлаждение стержня есть отрицательный подбор его тепловых активностей; оно и происходит быстрее для четковидного стержня, чем для ровного.
Строение более «ровное», менее разветвляющееся, вообще противоположное «четочному», мы обозначим термином «слитность».
То же разграничение можно относить к психическим ассоциациям, с одной стороны, и идейным системам — с другой. Например, в примитивном сознании ребенка группа психических образов, относящихся к четвероногим животным, другая группа их, относящаяся к птицам, и третья, относящаяся к людям, представляют каждая по отдельности слитное целое. Но все они связываются разными, более или менее случайными сходствами: сова похожа на кошку, лягушка — на голого человека, медведь на задних лапах похож на человека в вывернутой шубе и т. д. Эти слабые связи образуют из трех групп одну «четочную» систему. Научная классификация построена так же, только связи групп менее случайны, более устойчивы. Например, видовые концепции для класса млекопитающих, класса птиц, класса рептилий и проч. представляют по отдельности сравнительно слитные комплексы; между собой же они слабее связаны абстракциями их общих признаков в «четочную» цепь родов, еще более «четочный» ряд семейств и т. д.
Разница заключается повсюду именно в том, что в формах более слитных больше связей между собственными их элементами, чем в «четочных», так что меньше простора для проникновения между ними элементов или комплексов внешней среды, как море проникает заливами и бухтами в выемки материков; «четочные» таких «выемок» представляют больше.
Итак, для комплексов более слитных отрицательный подбор менее интенсивен. А положительный? Но очевидно, что и он тоже. Там, где происходит нагревание, т. е. тепловая энергия больше ассимилируется, чем дезассимилируется, четковид-ный стержень в равное время приобретает больше тепловой энергии. Чем больше количество соприкосновений со средой, тем ассимиляции из нее соотносительно больше.
Отсюда общее решение вопроса о том, какая структура благоприятнее для сохранения и развития комплексов: под отрицательным подбором благоприятнее «слитная», под положительным — «неточная».
Это знает и черепаха, которая втягивается при всяких отрицательных, с ее точки зрения, условиях, и человек, который съеживается от холода'. Но научная, тектологическая формулировка дает возможность простого и легкого решения многих организационных задач, представляющихся сложными и трудными в обычной постановке. Примером может послужить вопрос о преимуществах «централистического» или «федеративного» типа организации при различных условиях.
Из этих двух типов «централистический», как его обыкновенно понимают, т. е. характеризующийся наличностью центра, к которому тяготеют и с которым тесно связаны, подчиняясь ему, все прочие части системы, является более слитным; «федеративный» с более слабой связью частей, относительно автономных, представляет случай «четочных форм». Например, царская Россия, бюрократически-республиканская Франция были централистичны; довоенная Англия, Соединенные Штаты, Швейцария были по сравнению с ними федеративны; в партии усиление власти руководящего центра выражает тенденцию к слитности, усиление автономии местных и специальных организаций — к четочности; религиозная секта с определенной и строгой, всеми разделяемой догмой более слит-на, чем научная или философская школа, включающая разные оттенки или течения, и т. п. Этих характеристик и нашей общей формулы достаточно, чтобы убедиться, что «федеративная» структура выгоднее при благоприятных жизненных условиях, под действием положительного подбора, «централистическая» — при неблагоприятных, когда подбор отрицательный. В первом случае автономия частей позволяет им лучше развернуться, свободнее развиться, полнее использовать приток энергии, доставляемой средой — социальной и природной; во втором их связи, более прочные и тесные, дольше удерживаются против разрушительных влияний. Это можно проиллюстрировать на бесчисленных примерах.
Государственный строй Швейцарии, Соединенных Штатов, Англии с ее широким местным самоуправлением внутри и с ее колониально-федеративными связями был возможен только благодаря исключительно благоприятным жизненным условиям, в какие их поставила историческая судьба. Наоборот, государства, развившиеся в долгих жестоких войнах, окруженные врагами, могли держаться только на централистических основах; таковы были восточные деспотии, Россия, Франция. Для политических партий обнаруживаются такие же соотношения: тяжелые внешние условия легче переносятся при более слитном строении, например разделение на фракции тогда особенно вредно, о чем свидетельствует и опыт российских партий за времена реакции. При особенном ухудшении обстановки связи центральных и местных организаций, выражающие «четочную» сторону партийного строения, неизбежно рвались и партия превращалась в ряд практически разрозненных групп. Если единство удерживалось, то лишь как единство программы или догмы, которое тогда было тем строже; это тоже слитный тип, но другого рода, именно идейно-слитный.
Иллюстрацию из психологии дают те состояния, которые Аристотель называл «макропсихией» и «микропсихией», расширением и сужением души. Приятные, радостные ощущения, соответствующие повышенному притоку энергии в нервно-психическую систему, располагают к развертыванию во все стороны общения со средой — к усилению деятельности внешних чувств, увеличению подвижности, повышению «симпатических» тенденций и т. п. Напротив, тягостные, болезненные ощущения, выражающие отрицательный подбор, вызывают как бы свертывание души, ослабление внимания к окружающему, ослабление всей воспринимающей деятельности, пониженное общение с другими людьми, стремление к покою и проч. Так организм, приспособляясь, переходит от более «четочных» соотношений к более слитным, и обратно, — психика человека по тому же закону, как тело черепахи.
Термины «четочная» и «слитная» форма приняты нами только условно, потому что не нашлось лучших. Их недостатки не ограничиваются тем, что они внушают представление о физическом строении, тогда как дело идет о каких угодно организационных сочетаниях. Но и для физических комплексов «неточность» и «слитность» вовсе не обязательно соответствуют тем конкретным образам, которые этими словами невольно вызываются. Дело идет, надо помнить, об относительном количестве соприкосновений со средой, и только об этом. Если сравнивать два цилиндрических стержня одинакового объема и одинаково ровных на всем протяжении, без всяких расширений и сужений, то между ними может все-таки быть та же разница. Один короче и толще, другой длиннее и тоньше: тогда у первого поверхность меньше, у второго — больше, и второй обнаружит сравнительно с первым все «четочные» свойства: легче ломается, быстрее нагревается и охлаждается, скорее ржавеет и проч. Но если укорачивать и утолщать первый цилиндр до того, что он примет вид диска, то у него тоже выступят «четочные» свойства. Наиболее высокую «слитность» представляет однородный по внутреннему строению шар. Но если материал не однороден по разным направлениям, как многие кристаллические тела, то наиболее слитной формой явится эллипсоид с определенным соотношением осей и т. д. [127]
Значит, «четочность» характеризуется вообще неравномерными связями в разных частях комплекса или в разных направлениях; чем выше их равномерность, тем больше «слитность».
Интересно и важно, что эти понятия вполне применимы не только в пространственных, но и во временных структурных отношениях.
Так, многие комплексы активностей изменяются во времени волнообразно, как бы расширяясь и сжимаясь. Все колебательные процессы — психические и вообще органические, молекулярные, эфирные — можно представить в виде потоков, то расширяющихся, то суживающихся на своем пути; изображая это графически, получим, очевидно, «четочные формы». И все выводы об этих формах тут остаются в силе. Например, если сравнивать волны одинаковой природы, положим эфирные, световые, то из них «четочный» характер резче выражен, очевидно, в более коротких. Раз возникши в мировой среде, все — волны так или иначе поглощаются разными ее комплексами — веществом, рассеянным в ней, а может быть, и самим эфиром, следовательно, находятся под отрицательным подбором. А отсюда следует, что для их устойчивости более благоприятны формы менее «четочные», т. е. такие, в которых длина волны больше. И действительно, чем короче вибрации, тем легче они поглощаются мельчайшими непрозрачными частицами; более длинные не поглощаются, как бы огибая эти частицы, по законам так называемой дифракции. Поскольку происходит частичное поглощение энергии лучей от неполной прозрачности среды, постольку лучи фиолетовые — из всех видимых отличающиеся наиболее короткой длины волны — должны ослабляться по сравнению с другими, особенно красными. Так это и принимается физической теорией; спектральный анализ, по-видимому, это подтверждает: в спектре наиболее отдаленных звезд фиолетовые лучи соотносительно ослаблены, как показывает его сопоставление со спектром более близких звёзд того же типа. [128]
По типу вибраций идет и жизнь нашего организма: днем он развивает больше активностей, чем ночью, летом больше, чем зимой, — ряд расширений и сужений. В жизни человечества в целом преобладает вообще положительный подбор: оно растет, силы его увеличиваются. При таких условиях «четочность» во времени должна быть выгодна для него; и действительно, ценой ночного понижения работы организма достигается дневное увеличение интенсивности ее; чем значительнее размах этого колебания, чем выше, следовательно, дневная интенсивность работы, тем легче люди преодолевают сопротивления природы. Но если организм окажется в условиях отрицательного подбора, например хронического недоедания, то соотношение будет иное: чем больше размах суточного колебания, т. е. чем интенсивнее дневная жизнь организма, тем меньше он сможет выдержать: и русский крестьянин, у которого этот размах меньше, выдержит при прочих условиях дольше, чем английский рабочий.
Здесь, как и во многих других случаях, организационные свойства времени не отличаются от тех, которые обнаруживает пространство.
Надо заметить, что вопрос о значении «четочной» и «слитной» структуры мы рассматривали применительно к неопределенной среде, к условиям положительного и отрицательного подбора вообще, принимая разнообразные и изменчивые влияния, не сосредоточенные специально на тех или иных частях комплекса. Там же, где имеется такая устойчивая концентрация внешних активностей или сопротивлений, получается, конечно, задача на определенно-изменяющиеся условия, и вопрос уже не сводится просто к большему или меньшему количеству соприкосновений. Если, например, отрицательный подбор наиболее сильно проявляется для одной части системы, тогда для сохранения целого выгодно, чтобы эта часть была значительнее развита; т. е. и при отрицательном подборе благоприятнее оказывается определенная неравномерность связей. Так, во всех машинах части, подвергающиеся усиленному трению, давлению, кручению, растягиванию, делаются или массивнее, или из более прочного, т. е. тектологически более связного, материала; а это, конечно, придает всему комплексу более «четочный» характер; равномерность же была бы невыгодна. Но это только означает, что определенные и частные соотношения всегда ограничивают, видоизменяют применение схем общих, выражающих неопределенные соотношения.
§ 5. Системы равновесия
В более общей форме можно выразить это так: отрицательный подбор интенсивнее проявляется для «форм четоч-ных». Например, охлаждение стержня есть отрицательный подбор его тепловых активностей; оно и происходит быстрее для четковидного стержня, чем для ровного.
Строение более «ровное», менее разветвляющееся, вообще противоположное «четочному», мы обозначим термином «слитность».
То же разграничение можно относить к психическим ассоциациям, с одной стороны, и идейным системам — с другой. Например, в примитивном сознании ребенка группа психических образов, относящихся к четвероногим животным, другая группа их, относящаяся к птицам, и третья, относящаяся к людям, представляют каждая по отдельности слитное целое. Но все они связываются разными, более или менее случайными сходствами: сова похожа на кошку, лягушка — на голого человека, медведь на задних лапах похож на человека в вывернутой шубе и т. д. Эти слабые связи образуют из трех групп одну «четочную» систему. Научная классификация построена так же, только связи групп менее случайны, более устойчивы. Например, видовые концепции для класса млекопитающих, класса птиц, класса рептилий и проч. представляют по отдельности сравнительно слитные комплексы; между собой же они слабее связаны абстракциями их общих признаков в «четочную» цепь родов, еще более «четочный» ряд семейств и т. д.
Разница заключается повсюду именно в том, что в формах более слитных больше связей между собственными их элементами, чем в «четочных», так что меньше простора для проникновения между ними элементов или комплексов внешней среды, как море проникает заливами и бухтами в выемки материков; «четочные» таких «выемок» представляют больше.
Итак, для комплексов более слитных отрицательный подбор менее интенсивен. А положительный? Но очевидно, что и он тоже. Там, где происходит нагревание, т. е. тепловая энергия больше ассимилируется, чем дезассимилируется, четковид-ный стержень в равное время приобретает больше тепловой энергии. Чем больше количество соприкосновений со средой, тем ассимиляции из нее соотносительно больше.
Отсюда общее решение вопроса о том, какая структура благоприятнее для сохранения и развития комплексов: под отрицательным подбором благоприятнее «слитная», под положительным — «неточная».
Это знает и черепаха, которая втягивается при всяких отрицательных, с ее точки зрения, условиях, и человек, который съеживается от холода'. Но научная, тектологическая формулировка дает возможность простого и легкого решения многих организационных задач, представляющихся сложными и трудными в обычной постановке. Примером может послужить вопрос о преимуществах «централистического» или «федеративного» типа организации при различных условиях.
Из этих двух типов «централистический», как его обыкновенно понимают, т. е. характеризующийся наличностью центра, к которому тяготеют и с которым тесно связаны, подчиняясь ему, все прочие части системы, является более слитным; «федеративный» с более слабой связью частей, относительно автономных, представляет случай «четочных форм». Например, царская Россия, бюрократически-республиканская Франция были централистичны; довоенная Англия, Соединенные Штаты, Швейцария были по сравнению с ними федеративны; в партии усиление власти руководящего центра выражает тенденцию к слитности, усиление автономии местных и специальных организаций — к четочности; религиозная секта с определенной и строгой, всеми разделяемой догмой более слит-на, чем научная или философская школа, включающая разные оттенки или течения, и т. п. Этих характеристик и нашей общей формулы достаточно, чтобы убедиться, что «федеративная» структура выгоднее при благоприятных жизненных условиях, под действием положительного подбора, «централистическая» — при неблагоприятных, когда подбор отрицательный. В первом случае автономия частей позволяет им лучше развернуться, свободнее развиться, полнее использовать приток энергии, доставляемой средой — социальной и природной; во втором их связи, более прочные и тесные, дольше удерживаются против разрушительных влияний. Это можно проиллюстрировать на бесчисленных примерах.
Государственный строй Швейцарии, Соединенных Штатов, Англии с ее широким местным самоуправлением внутри и с ее колониально-федеративными связями был возможен только благодаря исключительно благоприятным жизненным условиям, в какие их поставила историческая судьба. Наоборот, государства, развившиеся в долгих жестоких войнах, окруженные врагами, могли держаться только на централистических основах; таковы были восточные деспотии, Россия, Франция. Для политических партий обнаруживаются такие же соотношения: тяжелые внешние условия легче переносятся при более слитном строении, например разделение на фракции тогда особенно вредно, о чем свидетельствует и опыт российских партий за времена реакции. При особенном ухудшении обстановки связи центральных и местных организаций, выражающие «четочную» сторону партийного строения, неизбежно рвались и партия превращалась в ряд практически разрозненных групп. Если единство удерживалось, то лишь как единство программы или догмы, которое тогда было тем строже; это тоже слитный тип, но другого рода, именно идейно-слитный.
Иллюстрацию из психологии дают те состояния, которые Аристотель называл «макропсихией» и «микропсихией», расширением и сужением души. Приятные, радостные ощущения, соответствующие повышенному притоку энергии в нервно-психическую систему, располагают к развертыванию во все стороны общения со средой — к усилению деятельности внешних чувств, увеличению подвижности, повышению «симпатических» тенденций и т. п. Напротив, тягостные, болезненные ощущения, выражающие отрицательный подбор, вызывают как бы свертывание души, ослабление внимания к окружающему, ослабление всей воспринимающей деятельности, пониженное общение с другими людьми, стремление к покою и проч. Так организм, приспособляясь, переходит от более «четочных» соотношений к более слитным, и обратно, — психика человека по тому же закону, как тело черепахи.
Термины «четочная» и «слитная» форма приняты нами только условно, потому что не нашлось лучших. Их недостатки не ограничиваются тем, что они внушают представление о физическом строении, тогда как дело идет о каких угодно организационных сочетаниях. Но и для физических комплексов «неточность» и «слитность» вовсе не обязательно соответствуют тем конкретным образам, которые этими словами невольно вызываются. Дело идет, надо помнить, об относительном количестве соприкосновений со средой, и только об этом. Если сравнивать два цилиндрических стержня одинакового объема и одинаково ровных на всем протяжении, без всяких расширений и сужений, то между ними может все-таки быть та же разница. Один короче и толще, другой длиннее и тоньше: тогда у первого поверхность меньше, у второго — больше, и второй обнаружит сравнительно с первым все «четочные» свойства: легче ломается, быстрее нагревается и охлаждается, скорее ржавеет и проч. Но если укорачивать и утолщать первый цилиндр до того, что он примет вид диска, то у него тоже выступят «четочные» свойства. Наиболее высокую «слитность» представляет однородный по внутреннему строению шар. Но если материал не однороден по разным направлениям, как многие кристаллические тела, то наиболее слитной формой явится эллипсоид с определенным соотношением осей и т. д. [127]
Значит, «четочность» характеризуется вообще неравномерными связями в разных частях комплекса или в разных направлениях; чем выше их равномерность, тем больше «слитность».
Интересно и важно, что эти понятия вполне применимы не только в пространственных, но и во временных структурных отношениях.
Так, многие комплексы активностей изменяются во времени волнообразно, как бы расширяясь и сжимаясь. Все колебательные процессы — психические и вообще органические, молекулярные, эфирные — можно представить в виде потоков, то расширяющихся, то суживающихся на своем пути; изображая это графически, получим, очевидно, «четочные формы». И все выводы об этих формах тут остаются в силе. Например, если сравнивать волны одинаковой природы, положим эфирные, световые, то из них «четочный» характер резче выражен, очевидно, в более коротких. Раз возникши в мировой среде, все — волны так или иначе поглощаются разными ее комплексами — веществом, рассеянным в ней, а может быть, и самим эфиром, следовательно, находятся под отрицательным подбором. А отсюда следует, что для их устойчивости более благоприятны формы менее «четочные», т. е. такие, в которых длина волны больше. И действительно, чем короче вибрации, тем легче они поглощаются мельчайшими непрозрачными частицами; более длинные не поглощаются, как бы огибая эти частицы, по законам так называемой дифракции. Поскольку происходит частичное поглощение энергии лучей от неполной прозрачности среды, постольку лучи фиолетовые — из всех видимых отличающиеся наиболее короткой длины волны — должны ослабляться по сравнению с другими, особенно красными. Так это и принимается физической теорией; спектральный анализ, по-видимому, это подтверждает: в спектре наиболее отдаленных звезд фиолетовые лучи соотносительно ослаблены, как показывает его сопоставление со спектром более близких звёзд того же типа. [128]
По типу вибраций идет и жизнь нашего организма: днем он развивает больше активностей, чем ночью, летом больше, чем зимой, — ряд расширений и сужений. В жизни человечества в целом преобладает вообще положительный подбор: оно растет, силы его увеличиваются. При таких условиях «четочность» во времени должна быть выгодна для него; и действительно, ценой ночного понижения работы организма достигается дневное увеличение интенсивности ее; чем значительнее размах этого колебания, чем выше, следовательно, дневная интенсивность работы, тем легче люди преодолевают сопротивления природы. Но если организм окажется в условиях отрицательного подбора, например хронического недоедания, то соотношение будет иное: чем больше размах суточного колебания, т. е. чем интенсивнее дневная жизнь организма, тем меньше он сможет выдержать: и русский крестьянин, у которого этот размах меньше, выдержит при прочих условиях дольше, чем английский рабочий.
Здесь, как и во многих других случаях, организационные свойства времени не отличаются от тех, которые обнаруживает пространство.
Надо заметить, что вопрос о значении «четочной» и «слитной» структуры мы рассматривали применительно к неопределенной среде, к условиям положительного и отрицательного подбора вообще, принимая разнообразные и изменчивые влияния, не сосредоточенные специально на тех или иных частях комплекса. Там же, где имеется такая устойчивая концентрация внешних активностей или сопротивлений, получается, конечно, задача на определенно-изменяющиеся условия, и вопрос уже не сводится просто к большему или меньшему количеству соприкосновений. Если, например, отрицательный подбор наиболее сильно проявляется для одной части системы, тогда для сохранения целого выгодно, чтобы эта часть была значительнее развита; т. е. и при отрицательном подборе благоприятнее оказывается определенная неравномерность связей. Так, во всех машинах части, подвергающиеся усиленному трению, давлению, кручению, растягиванию, делаются или массивнее, или из более прочного, т. е. тектологически более связного, материала; а это, конечно, придает всему комплексу более «четочный» характер; равномерность же была бы невыгодна. Но это только означает, что определенные и частные соотношения всегда ограничивают, видоизменяют применение схем общих, выражающих неопределенные соотношения.
§ 5. Системы равновесия
Выражением структурной устойчивости является «закон равновесия», формулированный А. Л. Ле-Шателье для физических и химических систем, но в действительности тектологический, т. е. универсальный.
Системой равновесия можно назвать такую, которая сохраняет свое данное строение в данной среде. Обычная иллюстрация — весы в их спокойном состоянии. Если на одну чашку их произведено давление, например положена гирька, то эта чашка начинает опускаться, другая — поднимается, а коромысло из горизонтального становится наклонным: структурное изменение. Но по мере того, как оно происходит, в самой системе возникает противодействие ему: чашка с гирькой падает с замедлением и только до известного предела, за которым начинается даже обратное движение, а после колебаний устанавливается новое, измененное равновесие, определяемое простыми механическими условиями.
Иллюстрация более сложная: вода и лед в одном сосуде при 0 °C, т. е. при температуре замерзания и таяния. Если нагревать сосуд, то часть льда поглощает притекающую тепловую энергию, переходя в воду, и этим противодействует нагреванию: температура смеси поддерживается прежняя, пока не растает весь лед. А если, вместо нагревания ту же смесь подвергнуть повышенному давлению, то часть льда, переходя опять-таки в воду, объем которой меньше, тем самым противодействует повышению давления внутри смеси. Смесь жидкой и твердой ртути в случае нагревания реагирует также таянием, противодействующим изменению температуры; но на повышенное давление реакция противоположная — часть ртути замерзает. Почему? Потому что ртуть, как и огромное большинство тел, в твердом виде занимает объем меньший, чем в жидком, и следовательно, росту давления в смеси противодействует не таяние, а замерзание ртути; оно и происходит; вода, по исключению, представляет противоположные отношения объема, поэтому то же противодействие достигается обратным путем. [129]Если в насыщенном растворе какой-нибудь соли находятся ее кристаллы, то, нагревая систему, или охлаждая ее, или варьируя давление, мы получим дальнейшее растворение и осаждение с поглощением, выделением теплоты, изменением объема и давления в сторону, обратную нашему воздействию. Электрон, движущийся с постоянной скоростью в эфире, при всяком изменении этой скорости получает «дополнительную массу» в соответственном направлении; т. е. в системе «эфир — электрон» возникает противодействие изменению скорости. Если в электрическом проводнике циркулирует постоянный ток, то всякое изменение этого тока вызывает так называемую самоиндукцию, которая направлена противоположно этому изменению, уменьшает его и т. п.
Закон Ле-Шателье формулируется так: если система равновесия подвергается воздействию, изменяющему какое-либо из условий равновесия, то в ней возникают процессы, направленные так, чтобы противодействовать этому изменению.
Уже давно из опыта известно, что закон этот действителен не только для физических и химических систем, но и для многих других. Так, живые организмы в обычных условиях относятся к внешним воздействиям подобным же образом. Если человеческое тело подвергать охлаждению, в нем немедленно начинают усиливаться окислительные и другие химические процессы, развивающие теплоту; если же нагревать его извне, то повышается потоотделение с испарением, поглощающим теплоту. Таков же смысл «съеживания» от холода, причем уменьшается поверхность охлаждения; и когда черепаха прячется при всяких неблагоприятных влияниях в свой щиток, это опять-таки уменьшение поверхности внешнего воздействия. Согласно закону Вебера — Фехнера по мере роста внешнего раздражения ощущение растет не в такой же мере, а только пропорционально его логарифму, т. е. сравнительно все медленнее; [130]это означает, что вместе с силой внешнего раздражения возрастает все быстрее сопротивление ему, так что до нервных центров энергия наиболее сильных раздражений доходит в наименьшей доле, иначе эти центры с их тонкой чувствительностью, зависящей от нежного строения, быстро разрушались бы. Так, наше зрение еще воспринимает свет звезды 6-й величины; но световое раздражение от солнечного диска приблизительно в десять миллионов триллионов (10 13) раз значительнее: какой мозг был бы способен выдерживать непосредственно такие различия силы воздействий?
Можно путем простого анализа показать, что закон равновесия применим ко всякой системе, сохраняющей данное строение в данной среде. Начнем со сравнительно простого и весьма типичного примера — системы «вода и лед при 0 °C». Пусть она подвергается нагреванию. Согласно современной научной символике это значит, что колебания молекул в окружающей среде становятся более энергичными, а их удары, передающиеся молекулам воды и льда, — более сильными. Эта энергия движения частиц, выражающаяся в их «температуре», есть активность одного порядка с их сцеплением, способна с ним конъюгировать, парализуя его. Так здесь и происходит.
Нагревшиеся молекулы воды своими усилившимися ударами передают избыток своей энергии движения пограничным молекулам льда. Избыток этот парализуется активностями сцепления льда, пока не уравняется с ними; а тогда получается полная дезингрессия, которая, как мы знаем, вызывает разрыв связи: поверхностная частица льда отрывается, переходит в массу жидкой воды. Вся избыточная тепловая энергия, приобретенная частицей до того момента, ушла на борьбу с активностями сцепления, на то, чтобы парализовать их: поэтому кинетическая энергия самой частицы оказывается не больше, чем была, и по-прежнему измеряется температурой 0 °C. То же происходит и со следующими частицами льда. Таким образом, при нагревании общей массы воды в пограничной со льдом области поддерживается прежний уровень 0 °C, противодействуя этому нагреванию, пока не исчезнет весь лед.
Если дело идет не о нагревании, а о повышающемся давлении, то это означает, что кинетическая энергия частиц окружающей среды в среднем для каждой частицы не увеличивается, но увеличивается число их ударов, действующих на пограничную область данной системы. И здесь от частиц к частицам прибавляющиеся активности давления передаются внутрь ее. Они увеличивают частоту столкновений между частицами, стремясь тем самым уменьшить размах их движений. И опять-таки эти вливающиеся активности способны конъюгировать и вступать в дезингрессию с сцеплением молекул льда; при дезингрессии они отрывают их и присоединяют к жидкости, а так как объем воды меньше, чем объем льда, то давление тем самым уменьшается.
Но, как уже упоминалось, вода — исключение. Если взять другую подобную систему, например «твердая ртуть — жидкая ртуть», то наблюдается прямо противоположное. Добавочные активности давления вступают в дезингрессию не со сцеплением частиц твердого тела системы, а с активностями, противодействующими сцеплению в жидкости. Давление уменьшает амплитуду (размах) движения частиц жидкости, так что эта амплитуда становится меньше расстояния между частицами, и они колеблются, уже не заходя друг за друга, не перемешиваясь свободно, а удерживаясь около одного среднего положения: так именно движутся частицы твердого тела. Происходит замерзание некоторой доли жидкости; при этом объем ее, однако, уменьшается, что, как в предыдущем случае таяния льда, уменьшает давление.
Почему же активности одного рода — сила давления — парализуют путем дезингрессии в двух разных случаях не одинаковые, а прямо противоположные активности, как бы выбирая те, которые надо, по закону Ле-Шателье? Дело именно в выборе и есть, только не в сознательном, разумеется, а в стихийном подборе.
Молекулярные движения научная теория представляет в виде бесчисленных и разнообразно направленных «бесконечно малых» активностей. Если в систему вступают извне новые такие активности, то, очевидно, следует принять всевозможные их сочетания с прежними, всевозможные элементарные их столкновения, их конъюгации, дезингрессии. Но из этих сочетаний одни будут устойчивы, другие — неустойчивы; первые будут удерживаться, вторые — устраняться подбором.
Так, в системе «вода — лед» активности внешнего давления должны вступать в дезингрессии частью с движением молекул жидкости, переводя их в твердое состояние, частью со сцеплением молекул льда, расплавляя его. Но так как лед занимает больше объема, чем вода, из которой он получился, то в случаях первого рода от этого давление будет возрастать, в случаях же второго рода оно будет уменьшаться. Спрашивается, какие из этих изменений окажутся устойчивее?
Ответ зависит от строения системы, в которой эти процессы происходят; пока оно неизвестно, не исключена ни та, ни другая возможность. Но надо вспомнить, что такие же точно процессы шли в системе и раньше, до вступления новых активностей: отдельные частицы воды переходили в лед, увеличивая внутреннее давление, отдельные частицы льда — в воду, уменьшая давление. Если бы те и другие из этих изменений были более устойчивыми, то вся система отнюдь не явилась бы системой равновесия, ее структура непрерывно преобразовывалась бы: в первом случае в одну сторону, во втором — в другую. Этого не было: те изменения, которые переходили известную границу, немедленно оказывались менее устойчивыми и устранялись подбором. Структура систем равновесия для современного научного мышления тем и характеризуется, что они заключают в себе противоположные процессы, взаимно нейтрализующиеся на некотором уровне. Дело представляют таким образом, что на этом уровне напряжения противоположно направленных актив-ностей равны; когда же один из двух процессов, усиливаясь, поднимается над этим уровнем, то напряжение соответственных активностей становится более значительным и поток их направляется в обратную сторону, как вода, поднявшись выше своего среднего уровня, падает вниз. Так поддерживается равновесие, а с ним и устойчивость системы в обычных условиях.
Теперь можно судить заранее о том, что получится, когда вступающие извне активности давления в различных конъюга-циях и дезингрессиях обусловливают превращение некоторых частиц воды в лед, некоторых частиц льда в воду. Изменения первого рода, еще увеличивая давление, создают новую разность напряжений, которая направляет поток активностей в обратную сторону; следовательно, эти изменения неустойчивы, подбором устраняются. Изменения второго рода, уменьшая давление, которое уже повышено над средним уровнем, уменьшают и разность напряжений и обратного потока активностей не вызывают; а потому они устойчивее первых, подбор для них благоприятнее. Результат именно тот, какой соответствует закону Ле-Шателье: обнаруживается процесс, уменьшающий эффект внешнего воздействия, как бы противодействующий ему.
В примере с ртутью, напротив, переход твердых частиц в жидкое состояние повышает давление, переход жидких в твердое — понижает. Поэтому при внешнем давлении процессы первого рода как увеличивающие разность напряжений будут менее устойчивы, процессы же второго рода как ее уменьшающие — более устойчивы. Общий результат подбора — обратный предыдущему, опять в согласии с законом Ле-Шателье. И то же, очевидно, должно иметь место для всякой системы равновесия, какие бы активности ее ни составляли, какие бы противоположные процессы в ней ни нейтрализовали друг друга. Например, в нашем организме постоянно происходят процессы, освобождающие и поглощающие теплоту, в приблизительном равновесии по отношению к данной среде; если она изменяется в сторону нагревания, усиливаются процессы, поглощающие теплоту; если в сторону охлаждения, то противоположные — теплообразующие.
Но все это относится именно к системам равновесия. С неуравновешенными системами дело обстоит совершенно иначе. В них если и идут изменения одновременно в двух противоположных направлениях, то одна из двух групп их устойчивее, а потому целое преобразовывается шаг за шагом в ее сторону. Какие же результаты получаются при внешнем воздействии на такого рода комплексы?
Иллюстрацией может послужить смесь водорода и кислорода, называемая также гремучим газом. При обыкновенной температуре она кажется вполне уравновешенной системой, никакими нынешними методами нельзя непосредственно обнаружить в ней происходящего химического изменения. На деле оно, однако, происходит: смесь превращается в водяной пар, т. е. процессы соединения водорода с кислородом преобладают над обратным. Но реакция здесь идет так медленно, что нужны, по приблизительному расчету, основанному на наблюдении хода ее при высоких температурах и на формуле изменения скорости реакций Вант-Гоффа, сотни миллиардов лет, чтобы она завершилась. Это система ложного равновесия, как ее обозначают; она не уравновешена химически, а также в смысле температуры, потому что при реакции выделяется теплота и смесь должна, хотя неуловимо, самонагреваться.
Системой равновесия можно назвать такую, которая сохраняет свое данное строение в данной среде. Обычная иллюстрация — весы в их спокойном состоянии. Если на одну чашку их произведено давление, например положена гирька, то эта чашка начинает опускаться, другая — поднимается, а коромысло из горизонтального становится наклонным: структурное изменение. Но по мере того, как оно происходит, в самой системе возникает противодействие ему: чашка с гирькой падает с замедлением и только до известного предела, за которым начинается даже обратное движение, а после колебаний устанавливается новое, измененное равновесие, определяемое простыми механическими условиями.
Иллюстрация более сложная: вода и лед в одном сосуде при 0 °C, т. е. при температуре замерзания и таяния. Если нагревать сосуд, то часть льда поглощает притекающую тепловую энергию, переходя в воду, и этим противодействует нагреванию: температура смеси поддерживается прежняя, пока не растает весь лед. А если, вместо нагревания ту же смесь подвергнуть повышенному давлению, то часть льда, переходя опять-таки в воду, объем которой меньше, тем самым противодействует повышению давления внутри смеси. Смесь жидкой и твердой ртути в случае нагревания реагирует также таянием, противодействующим изменению температуры; но на повышенное давление реакция противоположная — часть ртути замерзает. Почему? Потому что ртуть, как и огромное большинство тел, в твердом виде занимает объем меньший, чем в жидком, и следовательно, росту давления в смеси противодействует не таяние, а замерзание ртути; оно и происходит; вода, по исключению, представляет противоположные отношения объема, поэтому то же противодействие достигается обратным путем. [129]Если в насыщенном растворе какой-нибудь соли находятся ее кристаллы, то, нагревая систему, или охлаждая ее, или варьируя давление, мы получим дальнейшее растворение и осаждение с поглощением, выделением теплоты, изменением объема и давления в сторону, обратную нашему воздействию. Электрон, движущийся с постоянной скоростью в эфире, при всяком изменении этой скорости получает «дополнительную массу» в соответственном направлении; т. е. в системе «эфир — электрон» возникает противодействие изменению скорости. Если в электрическом проводнике циркулирует постоянный ток, то всякое изменение этого тока вызывает так называемую самоиндукцию, которая направлена противоположно этому изменению, уменьшает его и т. п.
Закон Ле-Шателье формулируется так: если система равновесия подвергается воздействию, изменяющему какое-либо из условий равновесия, то в ней возникают процессы, направленные так, чтобы противодействовать этому изменению.
Уже давно из опыта известно, что закон этот действителен не только для физических и химических систем, но и для многих других. Так, живые организмы в обычных условиях относятся к внешним воздействиям подобным же образом. Если человеческое тело подвергать охлаждению, в нем немедленно начинают усиливаться окислительные и другие химические процессы, развивающие теплоту; если же нагревать его извне, то повышается потоотделение с испарением, поглощающим теплоту. Таков же смысл «съеживания» от холода, причем уменьшается поверхность охлаждения; и когда черепаха прячется при всяких неблагоприятных влияниях в свой щиток, это опять-таки уменьшение поверхности внешнего воздействия. Согласно закону Вебера — Фехнера по мере роста внешнего раздражения ощущение растет не в такой же мере, а только пропорционально его логарифму, т. е. сравнительно все медленнее; [130]это означает, что вместе с силой внешнего раздражения возрастает все быстрее сопротивление ему, так что до нервных центров энергия наиболее сильных раздражений доходит в наименьшей доле, иначе эти центры с их тонкой чувствительностью, зависящей от нежного строения, быстро разрушались бы. Так, наше зрение еще воспринимает свет звезды 6-й величины; но световое раздражение от солнечного диска приблизительно в десять миллионов триллионов (10 13) раз значительнее: какой мозг был бы способен выдерживать непосредственно такие различия силы воздействий?
Можно путем простого анализа показать, что закон равновесия применим ко всякой системе, сохраняющей данное строение в данной среде. Начнем со сравнительно простого и весьма типичного примера — системы «вода и лед при 0 °C». Пусть она подвергается нагреванию. Согласно современной научной символике это значит, что колебания молекул в окружающей среде становятся более энергичными, а их удары, передающиеся молекулам воды и льда, — более сильными. Эта энергия движения частиц, выражающаяся в их «температуре», есть активность одного порядка с их сцеплением, способна с ним конъюгировать, парализуя его. Так здесь и происходит.
Нагревшиеся молекулы воды своими усилившимися ударами передают избыток своей энергии движения пограничным молекулам льда. Избыток этот парализуется активностями сцепления льда, пока не уравняется с ними; а тогда получается полная дезингрессия, которая, как мы знаем, вызывает разрыв связи: поверхностная частица льда отрывается, переходит в массу жидкой воды. Вся избыточная тепловая энергия, приобретенная частицей до того момента, ушла на борьбу с активностями сцепления, на то, чтобы парализовать их: поэтому кинетическая энергия самой частицы оказывается не больше, чем была, и по-прежнему измеряется температурой 0 °C. То же происходит и со следующими частицами льда. Таким образом, при нагревании общей массы воды в пограничной со льдом области поддерживается прежний уровень 0 °C, противодействуя этому нагреванию, пока не исчезнет весь лед.
Если дело идет не о нагревании, а о повышающемся давлении, то это означает, что кинетическая энергия частиц окружающей среды в среднем для каждой частицы не увеличивается, но увеличивается число их ударов, действующих на пограничную область данной системы. И здесь от частиц к частицам прибавляющиеся активности давления передаются внутрь ее. Они увеличивают частоту столкновений между частицами, стремясь тем самым уменьшить размах их движений. И опять-таки эти вливающиеся активности способны конъюгировать и вступать в дезингрессию с сцеплением молекул льда; при дезингрессии они отрывают их и присоединяют к жидкости, а так как объем воды меньше, чем объем льда, то давление тем самым уменьшается.
Но, как уже упоминалось, вода — исключение. Если взять другую подобную систему, например «твердая ртуть — жидкая ртуть», то наблюдается прямо противоположное. Добавочные активности давления вступают в дезингрессию не со сцеплением частиц твердого тела системы, а с активностями, противодействующими сцеплению в жидкости. Давление уменьшает амплитуду (размах) движения частиц жидкости, так что эта амплитуда становится меньше расстояния между частицами, и они колеблются, уже не заходя друг за друга, не перемешиваясь свободно, а удерживаясь около одного среднего положения: так именно движутся частицы твердого тела. Происходит замерзание некоторой доли жидкости; при этом объем ее, однако, уменьшается, что, как в предыдущем случае таяния льда, уменьшает давление.
Почему же активности одного рода — сила давления — парализуют путем дезингрессии в двух разных случаях не одинаковые, а прямо противоположные активности, как бы выбирая те, которые надо, по закону Ле-Шателье? Дело именно в выборе и есть, только не в сознательном, разумеется, а в стихийном подборе.
Молекулярные движения научная теория представляет в виде бесчисленных и разнообразно направленных «бесконечно малых» активностей. Если в систему вступают извне новые такие активности, то, очевидно, следует принять всевозможные их сочетания с прежними, всевозможные элементарные их столкновения, их конъюгации, дезингрессии. Но из этих сочетаний одни будут устойчивы, другие — неустойчивы; первые будут удерживаться, вторые — устраняться подбором.
Так, в системе «вода — лед» активности внешнего давления должны вступать в дезингрессии частью с движением молекул жидкости, переводя их в твердое состояние, частью со сцеплением молекул льда, расплавляя его. Но так как лед занимает больше объема, чем вода, из которой он получился, то в случаях первого рода от этого давление будет возрастать, в случаях же второго рода оно будет уменьшаться. Спрашивается, какие из этих изменений окажутся устойчивее?
Ответ зависит от строения системы, в которой эти процессы происходят; пока оно неизвестно, не исключена ни та, ни другая возможность. Но надо вспомнить, что такие же точно процессы шли в системе и раньше, до вступления новых активностей: отдельные частицы воды переходили в лед, увеличивая внутреннее давление, отдельные частицы льда — в воду, уменьшая давление. Если бы те и другие из этих изменений были более устойчивыми, то вся система отнюдь не явилась бы системой равновесия, ее структура непрерывно преобразовывалась бы: в первом случае в одну сторону, во втором — в другую. Этого не было: те изменения, которые переходили известную границу, немедленно оказывались менее устойчивыми и устранялись подбором. Структура систем равновесия для современного научного мышления тем и характеризуется, что они заключают в себе противоположные процессы, взаимно нейтрализующиеся на некотором уровне. Дело представляют таким образом, что на этом уровне напряжения противоположно направленных актив-ностей равны; когда же один из двух процессов, усиливаясь, поднимается над этим уровнем, то напряжение соответственных активностей становится более значительным и поток их направляется в обратную сторону, как вода, поднявшись выше своего среднего уровня, падает вниз. Так поддерживается равновесие, а с ним и устойчивость системы в обычных условиях.
Теперь можно судить заранее о том, что получится, когда вступающие извне активности давления в различных конъюга-циях и дезингрессиях обусловливают превращение некоторых частиц воды в лед, некоторых частиц льда в воду. Изменения первого рода, еще увеличивая давление, создают новую разность напряжений, которая направляет поток активностей в обратную сторону; следовательно, эти изменения неустойчивы, подбором устраняются. Изменения второго рода, уменьшая давление, которое уже повышено над средним уровнем, уменьшают и разность напряжений и обратного потока активностей не вызывают; а потому они устойчивее первых, подбор для них благоприятнее. Результат именно тот, какой соответствует закону Ле-Шателье: обнаруживается процесс, уменьшающий эффект внешнего воздействия, как бы противодействующий ему.
В примере с ртутью, напротив, переход твердых частиц в жидкое состояние повышает давление, переход жидких в твердое — понижает. Поэтому при внешнем давлении процессы первого рода как увеличивающие разность напряжений будут менее устойчивы, процессы же второго рода как ее уменьшающие — более устойчивы. Общий результат подбора — обратный предыдущему, опять в согласии с законом Ле-Шателье. И то же, очевидно, должно иметь место для всякой системы равновесия, какие бы активности ее ни составляли, какие бы противоположные процессы в ней ни нейтрализовали друг друга. Например, в нашем организме постоянно происходят процессы, освобождающие и поглощающие теплоту, в приблизительном равновесии по отношению к данной среде; если она изменяется в сторону нагревания, усиливаются процессы, поглощающие теплоту; если в сторону охлаждения, то противоположные — теплообразующие.
Но все это относится именно к системам равновесия. С неуравновешенными системами дело обстоит совершенно иначе. В них если и идут изменения одновременно в двух противоположных направлениях, то одна из двух групп их устойчивее, а потому целое преобразовывается шаг за шагом в ее сторону. Какие же результаты получаются при внешнем воздействии на такого рода комплексы?
Иллюстрацией может послужить смесь водорода и кислорода, называемая также гремучим газом. При обыкновенной температуре она кажется вполне уравновешенной системой, никакими нынешними методами нельзя непосредственно обнаружить в ней происходящего химического изменения. На деле оно, однако, происходит: смесь превращается в водяной пар, т. е. процессы соединения водорода с кислородом преобладают над обратным. Но реакция здесь идет так медленно, что нужны, по приблизительному расчету, основанному на наблюдении хода ее при высоких температурах и на формуле изменения скорости реакций Вант-Гоффа, сотни миллиардов лет, чтобы она завершилась. Это система ложного равновесия, как ее обозначают; она не уравновешена химически, а также в смысле температуры, потому что при реакции выделяется теплота и смесь должна, хотя неуловимо, самонагреваться.