И. И. Борисова, В. Н. Рождественский.

Настенное зеркало. Стекло, резьба по дереву, золочение. Россия. Середина 18 в. Исторический музей. Москва.

А. Н. Воронихин. Камин с зеркалом в Строгановском дворце в Ленинграде. Конец 18 в.

Тыльная сторона зеркала эпохи Фатимидов. Бронза. 11-12 вв. Музей Бенаки. Афины.

Рис. 2. Спектральные коэффициенты отражения металлических плёнок.

Туалетное зеркало. Стекло, сталь с полировкой и золочением. Тула. Конец 18 в. Павловский парк и дворец-музей художественного убранства русских дворцов 18-19 вв.

Рис. 1 к ст. Зеркало.

Зеркало из Коринфа. Бронза. 6 в. до н. э. Национальный археологический музей. Афины.

Тыльная сторона японского (?) зеркала. Бронза, черный лак, золото, серебро. 8 в. Резиденция Шосоин. Нара.

Тыльная сторона этрусского зеркала. Бронза. 5 в. до н. э. Британский музей. Лондон.

Королевская дорожная шкатулка. Стекло, дерево, кожа, бархат, серебро с золочением. Аугсбург. 1755-57. Музей земли Вюртемберг. Штутгарт.

Туалет-комодик. Стекло, дерево, резьба по кости. Холмогоры. Конец 18 в. Эрмитаж. Ленинград.

Зеркало Марии Медичи. Стекло, золото, камеи, самоцветы. Венеция. Ок. 1600. Лувр. Париж.

Тыльная сторона скифского зеркала из Келермесского кургана. Серебро с золочением. 6 в. до н. э. Эрмитаж. Ленинград.

Ф. О. Шехтель. Камин с зеркалом в особняке Дерожинской в Москве. 1902.

Фарфоровый камин с зеркалом. Вена. Около 1740. Австрийский музей прикладного искусства. Вена.

Зеркало вод

Зе'ркало вод,водная поверхность рек, озёр и др. водоёмов или поверхность подземных ненапорных вод. В последнем случае за З. в. принимается верхняя граница (поверхность) безнапорных подземных вод в водоносном пласте. Зеркало подземных вод наклонено в направлении движения воды и в сглаженном виде отражает рельеф поверхности. В случае, если подземные воды заполняют замкнутые понижения водоупорного ложа, их поверхность принимает горизонтальное положение. Очертания зеркала подземных вод в плане изображаются на карте с помощью гидроизогипс.

Зеркало горения

Зе'ркало горе'ния,поверхность слоя горящего топлива в слоевых топках.Одна из характеристик слоевых топок - количество тепла на 1 м 2 3 .г. [в современных топках составляет 2,5-6,3 Гдж/м 2· ч(600-1500 тыс. ккал/м 2· ч)] .

Зеркало скольжения

Зе'ркало скольже'ния,гладкая поверхность горных пород, возникающая обычно при тектонических перемещениях и образовании надвигов, сбросов и др. разрывных дислокаций. Кроме полировки, являющейся следствием трения соприкасающихся поверхностей разрыва сплошности пород, на З. с. наблюдаются штрихи и бороздки, расположенные в направлении последнего перемещения по разрыву.

Зеркальная апланатическая антенна

Зерка'льная апланати'ческая анте'нна,двухзеркальная антенна с управляемым изменением (сканированием) направления максимума диаграммы направленности, при котором форма диаграммы направленности остаётся постоянной. З. а. а. применяют преимущественно в радиолокации и радионавигации для волн сантиметрового диапазона. В З. а. а. сканирование осуществляется перемещением облучателя по некоторой оптимальной фокальной кривой при неподвижных зеркалах ( рис. ). Энергия, подводимая к облучателю, направляется на вспомогательное зеркало, от которого она отражается на главное зеркало. Размеры последнего определяют ширину диаграммы направленности. Вспомогательное зеркало выполняется в виде системы линейных проводов, ориентированных параллельно вектору напряжённости электрической составляющей электромагнитного поля облучателя. Вектор напряжённости электрической составляющей поля, отражённого от главного зеркала, направлен перпендикулярно проводам вспомогательного зеркала и поэтому свободно проходит через него. Такой поворот плоскости поляризации поля, отражённого от главного зеркала, осуществляется соответствующим выполнением последнего. Соотношение фокусных расстояний различных лучей определяет собой степень искажений диаграммы направленности при сканировании. Искажения получаются минимальными (антенна становится апланатической) при одинаковых фокусных расстояниях всех лучей.

  Лит.:Фрадин А. З., Антенны сверхвысоких частот, М., 1957, с. 295-301.

  О. Н. Терёшин, Г. К. Галимов.

Схема хода лучей в зеркальной апланатической антенне: А - облучатель; В - вспомогательное зеркало; С - главное зеркало; B 1, B 2, B 3- точки отражения лучей от вспомогательного зеркала; C 1, C 2, C 3- точки отражения лучей от главного зеркала; D 1, D 2, D 3- точки пересечения продолжений лучей AB 1, AB 2, AB 3с соответствующими им лучами C 1D 1, C 2D 2, C 3D 3; AD 1, AD 2, AD 3- фокусные расстояния лучей, определяемых соответственно углами j 1, j 2, j 3; D - фокальная окружность.

Зеркальная лампа

Зерка'льная ла'мпа,лампа накаливания, часть поверхности колбы которой имеет зеркальное покрытие. Форма колбы выбирается такой, чтобы за счёт отражения от зеркального слоя получить требуемое распределение света. Невысокая точность формы колбы, получаемой выдуванием из стекломассы, вызывает ограниченную точность воспроизведения кривой распределения света. Для исключения бликов, особенно заметных при освещении на малых расстояниях, часть колбы, через которую выходит световой поток лампы, делают матовой. Зеркальными выполняют и некоторые специальные лампы, требующие достаточно сложной кривой распределения света.

Зеркальное отражение

Зерка'льное отраже'ниеотносительно данной плоскости ее, преобразование пространства, при котором точке Р,расположенной по одну сторону от плоскости a, соответствует точка P’,расположенная по др. сторону от a так, что плоскость a перпендикулярна к отрезку PP’и проходит через его середину. З. о. оставляет неподвижными точки плоскости a .Аналогичным образом определяется З. о. плоскости относительно данной её прямой. См. также Симметрия.

Рис. к ст. Зеркальное отражение.

Зеркально-линзовые системы

Зерка'льно-ли'нзовые систе'мы,катадиоптрические системы, оптические системы, содержащие как отражающие поверхности ( зеркала ) ,так и линзы.В некоторых З.-л. с. зеркала выполняют чисто конструктивные функции (изменение направления светового пучка, уменьшение габаритов прибора и т.п.), не влияя на качество изображения. Примером таких систем могут служить зеркально-линзовые конденсоры микроскопов (см. Микроскоп ) .В др. случаях зеркала играют основную роль в образовании изображений, а линзы служат главным образом для исправления аберраций, вносимых зеркалами (см. Аберрации оптических систем ). Оптические свойства зеркал не меняются при изменении длины волны падающего света (т. е. зеркала ахроматичны), поэтому З.-л. с. широко применяются в случаях, когда оптическая система должна обладать большим фокусным расстоянием и большим диаметром (объективы телескопов, длиннофокусные фотографические объективы, геодезические инструменты высокой разрешающей силы).

  Одна из основных областей применения З.-л. с. - астрономия (см. Зеркально-линзовый телескоп, Максутова телескоп, Менисковые системы, Шмидта телескоп, Супер-Шмидт) .Сочетание зеркал разной формы и различных комбинаций линзовых компенсаторов позволило создать З.-л. с. с большими углом зрения и светосилой ( рис. 1 , а, б), уменьшить длину астрономических приборов ( рис. 1 , в).

  З.-л. с. используются в качестве светосильных (относительное отверстие до 1: 0,8) фотографических объективов ( рис. 2 , а) и телеобъективов.У этих систем сравнительно небольшое поле зрения, однако их разрешающая способность,как правило, выше, чем у линзовых объективов с такими же характеристиками. Поле зрения может быть несколько увеличено построением объектива по схеме рис. 2 , б .

 С середины 20 в. З.-л. с. начали применяться при конструировании объективов микроскопов. Типичные схемы приведены на рис. 3 , а, б. Такие объективы обычно взаимозаменяемы с линзовыми, но обладают рядом преимуществ, особенно при исследовании в лучах, находящихся за пределами видимой области спектра (малость остаточной хроматической аберрации З.-л. с., обусловленная ахроматичностью зеркал, позволяет производить фотографирование в ультрафиолетовых лучах по визуальной фокусировке).

  Ахроматичность и высокий коэффициент отражения зеркал в широкой спектральной области обусловили использование З.-л. с. и в др. приборах, работающих в ультрафиолетовой и инфракрасной областях спектра (в частности, в спектральных приборах ); входящие в состав таких систем линзы изготовляют из специальных материалов (кварц, флюорит, фтористый литий и др.).

  Лит.:Тудоровский А. И., Теория оптических приборов, 2 изд., ч. 2. М. - Л., 1952; Максутов Д. Д., Астрономическая оптика, М. - Л., 1946; Слюсарев Г. Г., Методы расчёта оптических систем, 2 изд., Л., 1969.

  Г. Г. Слюсарев.

Рис. 1. Оптические схемы астрономических зеркально-линзовых систем с линзовыми компенсаторами аберраций: а - сверхсветосильный объектив с большим углом зрения (до 30°), применяемый для фотосъёмки движущихся небесных тел, например метеоров; исправлены все аберрации за исключением кривизны поля изображения; б - телескоп с параболоидальным зеркалом; исправление комы компенсатором У. Росса увеличивает поле зрения системы; в - система Г. Г. Слюсарева и В. С. Соколовой с параболическим большим зеркалом и сферическим малым; исправлены все аберрации, кроме дисторсии: длина системы значительно меньше её фокусного расстояния.

Рис. 2. Оптические схемы зеркально-линзовых фотографических объективов: а - объектив конструкции Д. С. Волосова и Д. Ю. Гальперна с асферическим зеркалом и одним афокальным компенсатором; б - объектив, построенный по усложнённой схеме Кассегрена с двумя сферическими зеркалами и двумя афокальными компенсаторами (один - в параллельном пучке, второй - в сходящемся).

Рис. 3. Оптические схемы иммерсионных зеркально-линзовых объективов микроскопов: а - конструкции В. А. Панова; б - конструкции Д. С. Волосова.

Зеркально-линзовый телескоп

Зерка'льно-ли'нзовый телеско'п,катадиоптрический телескоп, оптический инструмент, в котором изображение строится сложным объективом, содержащим как зеркала, так и линзы. Коррекционные линзы сравнительно небольшого диаметра используются во всех современных рефлекторах для увеличения полезного поля зрения, однако к числу З.-л. т. их не относят. Зеркально-линзовыми принято считать только такие телескопы, в которых линзовые элементы сравнимы по размеру с главным зеркалом и предназначены для коррекции изображения (оно строится главным зеркалом). К З.-л. т. относятся Шмидта телескоп (камера Шмидта,, 1931), Максутова телескоп (менисковый телескоп, 1941) и некоторые др. В телескопе Шмидта аберрации сферического главного зеркала устраняются с помощью специальной коррекционной пластинки сложного профиля, установленной во входном зрачке. В телескопе Максутова аберрации главного сферического или эллиптического зеркала исправляются мениском, установленным перед зеркалом. Для наблюдений метеоров и искусственных спутников Земли применяют З.-л. т. типа супер-Шмидт (1947) - сочетание систем Шмидта с менисковыми системами Максутова.

  В рефлекторах системы Ричи - Кретьена используют сравнительно небольшие линзовые корректоры, устанавливаемые в сходящемся пучке перед фокусом телескопа; впервые такой корректор был предложен в 1935 для 5-метрового рефлектора Маунт-Паломарской астрономической обсерватории (США). Однако в узком понимании термина такие системы не относятся к З.-л. т. См. также Зеркально-линзовые системы.

  Лит.:Максутов Д. Д., Астрономическая оптика, М. - Л., 1946.

  Н. Н. Михельсон.

Зеркальные антенны

Зерка'льные анте'нны,антенны, в которых для фокусирования высокочастотной электромагнитной энергии используется явление зеркального отражения от криволинейных металлических поверхностей (зеркал). По размерам зеркало значительно превосходит длину волны. Основные модификации З. а. определяются количеством отражателей: известны одно-, двух- и трёхзеркальные антенны. Конструктивно З. а. выполняют в виде металлических или металлизированных поверхностей различной формы. Для снижения массы зеркал и уменьшения давления ветра (парусности) на их поверхность зеркала нередко изготавливают не из сплошного материала, а из сетки проводов или параллельных пластин, а также из перфорированных металлических листов. Применяют З. а. следующих типов: параболические антенны, Кассегрена антенны,рупорно-параболические антенны, сферические антенны, перископические антенны, зеркальные апланатические антенны и др. См. также Антенна.

  О. Н. Терёшин, Г. К. Галимов.

Зеркальные утки

Зерка'льные у'тки,породная группа уток мясо-яичного направления. Выведена на Кучинском племзаводе Московской области путём воспроизводительного скрещивания пекинских уток, хаки-кемпбелл и местных. Конституция крепкая, туловище удлинённое, немного приподнятое, грудь выпуклая. Оперение светло-серое, блестящее, у селезней грудь коричнево-красная, голова чёрная с зелёным отливом. Масса молодняка в 60-дневном возрасте около 2 кг,взрослых селезней 3,5 кг(наибольшая 4 кг), уток 3-3,5 кг.Яйценоскость 150 яиц, наивысшая 234 яйца. Масса яиц 80 г.Выводимость яиц 74-75%. Разводят З. у. в основном в Орловской, Липецкой и Белгородской областях.

Зеркальные ядра

Зерка'льные я'дра,пара ядер, отличающихся тем, что при одинаковом суммарном числе нейтронов и протонов число нейтронов в одном из них равно числу протонов во втором. Примеры З. я.: ядро трития

содержащее 1 протон и 2 нейтрона, и ядро

содержащее 2 протона и 1 нейтрон. Др. примеры:

(см. Ядро атомное, Изотопы).

Зеркальный карп

Зерка'льный карп,самая распространённая форма разводимого в прудах карпа (культурная форма сазана ). На теле имеются отдельные крупные чешуйки - «зеркальца» (отсюда название).

Илл. к ст. Зеркальный карп.

Зеркальный телескоп

Зерка'льный телеско'п,то же, что рефлектор в астрономии.

Зеркальный фотоаппарат

Зерка'льный фотоаппара'т,фотоаппарат, оснащенный зеркальным видоискателем,который может располагаться вне съёмочной камеры и иметь собственный объектив (например, фотоаппараты «Любитель», «Нева», «Роллейфлекс» и др.) либо устанавливаться непосредственно в съёмочной камере с наводкой через основной объектив («Зенит», «Салют», «Киев-10», «Экзакта», «Практика» и т.п.). На схеме (см. рис. ) показаны различные фазы образования изображения во внутрикамерном зеркальном видоискателе. Видоискатели современных З. ф. для быстрой и точной установки объектива на резкость оснащают дополнительно клиновым фокусирующим устройством. В З. ф. с внутрикамерным видоискателем наблюдаемое изображение совпадает с изображением, которое образуется на фотоплёнке, т.к. оба создаются одним объективом. Эта особенность З. ф. позволяет фотографу точно выбрать границы кадра, установить для выбранного объекта съёмки глубину изображаемого пространства,оценить освещённость объекта и т.д. З. ф. особенно удобны при работе со сменными объективами, т.к. зеркальный видоискатель исключает необходимость юстировки фотоаппарата при смене объективов. См. также Фотографический аппарат.

Схема образования изображения во внутрикамерном видоискателе: 1 - объект съёмки (в объективе); 2 - зеркально обращенное изображение (на зеркале видоискателя); 3 - перевёрнутое изображение (в пентапризме); 4 - изображение объекта съёмки (в окуляре видоискателя).

Зеркальный чугун

Зерка'льный чугу'н,чугун, содержащий 10-25% марганца, имеющий в изломе характерный зеркальный блеск. Применяется при выплавке стали. См. Чугун.

Зеркальце

Зе'ркальце(биологическое), 1) блестящая пигментная оболочка глаза у некоторых животных, отражающая свет на сетчатку и этим усиливающая световое раздражение зрительных клеток. З. обусловливает кажущееся свечение глаза в почти полной темноте. У позвоночных (некоторые рыбы, пресмыкающиеся, птицы, почти все хищные и водные млекопитающие) З. располагается на внутренней поверхности сосудистой оболочки глаза; у многих рыб и некоторых пресмыкающихся - в клетках пигментного эпителия сетчатки (в виде кристаллов блестящего пигмента). У беспозвоночных с линзовыми глазами (некоторые моллюски, кольчатые черви и членистоногие) З. образовано пигментными клетками отражательного слоя. 2) Выделяющиеся по окраске, иногда с зеркальным блеском, участки оперения на крыльях в области второстепенных маховых перьев у самцов птиц, особенно у многих видов уток. Имеют сигнальное значение, в том числе в брачных играх. 3) Органы выделения воска у рабочих пчёл (по два З. на каждом из 4-7 стернитов брюшка). Состоят из слоя гиподермальных клеток и покрывающей их прозрачной кутикулы, через которую выпотевает выделяемый железистыми клетками гиподермы воск. 4) Часть звукового (стрекочущего) аппарата у самцов некоторых кузнечиков. Тонкая гладкая и прозрачная пластинка с вздутыми в виде валика краями, расположенная на поверхности правого крыла, покрытого левым. З. служит резонатором, усиливающим звуки, возникающие во время стрекотания в результате трения левого крыла о валик правого.

Зернистость почернения

Зерни'стость почерне'ния,неоднородность равномерно экспонированного и проявленного фотографического слоя, обнаруживаемая в увеличенном фотографическом изображении. При больших масштабах увеличения видна первичная структура почернения (микрозернистость), состоящая из отдельных серебряных «зёрен», получившихся в результате восстановления проявителем (см. Проявление фотографическое ) отдельных микрокристаллов галоидного серебра фотографического материала. Размеры зёрен обычно превышают размеры кристаллов галоидного серебра, из которых они образовались, достигая иногда нескольких мкм.При небольших масштабах увеличения (в 5-30 раз) обнаруживается вторичная структура почернения, которую, собственно, и называют З. п., а также макрозернистостью, гранулярностью, фотографическим шумом. Она вызывается следующими причинами: наложением друг на друга проекций отдельных серебряных зёрен, расположенных на разной глубине очень тонкого (7-26 мкм) проявленного слоя; совместным восстановлением нескольких случайно слипшихся микрокристаллов галоидного серебра; иногда срастанием серебряных зёрен в процессе их образования при проявлении.

  З. п. ухудшает качество фотографического изображения, снижая эстетическое восприятие художественного снимка, полученного печатью с малоформатного негатива, и киноизображения на экране, затрудняя или делая даже невозможным распознавание мелких деталей на сложных снимках, в особенности технического назначения, и усложняя микрофотометрическую обработку спектрограмм, астрофотографий и др. видов специальных фотографических изображений. З. п. в основном определяется размерами микрокристаллов галоидного серебра и сильно возрастает с ростом экспозиции и степени проявленности слоя, но, как правило, мало зависит от состава проявителя. Наименьшей З. п. обладают фотографические изображения, полученные на низкочувствительных материалах при наименьших возможных экспозициях и при невысокой степени проявленности.

  Ю. Н. Гороховский.

Зернистые лейкоциты

Зерни'стые лейкоци'ты,белые кровяные клетки; то же, что гранулоциты.

Зерно

Зерно',1) плод хлебных злаков и семя зерновых бобовых культур. 2) Продукт зернового производства. З. является одним из основных продуктов питания человека, сырьём для мукомольной, крупяной, пивоваренной, крахмало-паточной, спиртовой, комбикормовой промышленности, концентрированным кормом для с.-х. животных. Продукты переработки З. используют в хлебопекарной, макаронной, кондитерской промышленности. З. - наиболее важная часть государственных продовольственных резервов и предмет экспорта.

  З. хлебных злаков (см. Зерновые культуры ) - сухой односемянный плод (зерновка), голый у пшеницы, ржи, кукурузы, голозёрных форм ячменя и овса и плёнчатый (покрыт цветковыми плёнками) у овса, ячменя, риса, проса и др. Основную массу З. составляет эндосперм, из которого при помоле получают наиболее ценную часть муки. Клетки большей части его массы заполнены крахмалом и белковыми веществами. Краевой слой эндосперма - алейроновый - богат белками и жиром. Наибольшее содержание белков - в слое, прилегающем к алейроновому. При сортовых помолах алейроновый слой отделяют в отруби, т.к. он плохо усваивается организмом человека. В зависимости от размеров, формы и расположения крахмальных зёрен, свойств и распределения белков З. может быть стекловидным, полустекловидным и мучнистым. В нижней части З. расположен зародыш-зачаток будущего растения. В нём много белка, жира, сахаров, витаминов, ферментов. При сортовых помолах зародыш удаляют, т.к. он с трудом измельчается, а содержащийся в нём жир легко прогоркает, вызывая порчу муки при хранении. Снаружи З. покрыто плодовой и семенной оболочками, которые также при сортовом помоле в основном попадают в отруби. Весовое соотношение частей З. пшеницы (в %): эндосперм 81,1-84,2; алейроновый слой 6,8-8,6; зародыш 1,4-3,2; оболочки 3,1-5,6; у овса соответственно - 51-61; 4-6; 3-4; 2-4 и, кроме того, цветковые плёнки 20-40.

  Зрелое З. зерновых бобовых культур лишено эндосперма. Оно покрыто семенной оболочкой (кожурой), под которой расположен зародыш, состоящий из мясистых семядолей, зародышевых стебля, корня и почечки. Весовое соотношение основных частей З. наиболее распространённых зеонобобовых культур (в %): оболочка 6,4-11; семядоли 87,2-92,5; корень, стебель и почечка 1,1-2,5. Средний химический состав З. (при влажности 14%) приведён в таблице.

  Основная часть углеводов З. составляет крахмал,гидролиз которого имеет большое значение при приготовлении теста. Клетчатка и гемицеллюлоза входят в состав клеточных оболочек. Из сахаров содержатся мальтоза, глюкоза и фруктоза. Белки З. хлебных злаков относятся главным образом к проламинам и глютелинам. Основные белки пшеницы глиадин и глютенин образуют клейковину, от количества и качества которой зависят упругость теста, пористость и объём хлеба. Клейковина ржи (выделяется в особых условиях) и ячменя (содержится не во всех сортах) обладает худшими физическими свойствами. Белки зернобобовых культур состоят главным образом из глобулинов и небольшого количества альбуминов. Они более полноценны, чем белки хлебных злаков. Жиры, в которые входят в основном ненасыщенные жирные кислоты, содержатся в наибольшем количестве в зародыше, а у арахиса и сои - в семядолях. В составе золы З. - фосфор, калий, магний, кальций, кремний и др. элементы (в виде окислов). Ферменты главным образом сосредоточены в зародыше, из них наибольшее значение имеют a-амилаза, b-амилаза, a-глюкозидаза (мальтаза), b-фруктофуранозидаза (сахараза), липазы, протеазы, каталаза и др. В З. содержатся (наибольшее количество - в зародыше и периферических слоях) витамины: тиамин (B 1), рибофлавин (B 2), пиридоксин (B 6), никотинамид (PP), аскорбиновая кислота (С); только в проросшем зерне - пантотеновая кислота, а также пигмент каротин - источник витамина ретинола (А).

  Качество З. оценивают по следующим показателям: свежесть, цвет, запах, вкус, кислотность, засорённость, заражённость хлебных запасов вредителями и болезнями, влажность, натура (масса 1