Страница:
Конкретный, хотя и весьма забавный вариант космического полета предложил английский писатель и теолог Фрэнсис Годвин (1562-1633), чья книга "Человек на Луне, или Необыкновенное путешествие, совершенное Домиником Гонсалесом, испанским искателем приключений, или Испанский посол" была опубликована посмертно в 1638 году. Герой Годвина спасается с тонущего корабля на упряжке диких лебедей, специально тренированных для дальних перелетов. Лебеди с огромной скоростью уносят его на Луну. Там герой обнаруживает высокоразвитую цивилизацию - людей ростом до 10 метров в одежде неизвестных на Земле расцветок, потомков народа, который 3077 лет назад пришел с Земли... Роман Годвина, лежащий в русле Лукиановской традиции, фактически изображает социальную утопию - мир, где царят справедливость и вечная весна, где нет убийств и обмана, прямо-таки заповедник высоких помыслов и безграничной духовности. Но, кроме того, в романе много блестящих проектов, разработкой которых научная фантастика и сама наука занимаются уже более трех веков. Так, лунная медицина позволяет восстанавливать утраченные органы, а особые камни обеспечивают невиданное техническое могущество лунной цивилизации. Камень эболюс позволяет уменьшать или увеличивать вес в зависимости от того, какой стороной он повернут, - чем не мечта об управляемой гравитации! Макробус служит сильнейшим источником света (предчувствие лазера?), а полеастус работает как универсальный термоэлемент.
Наследственный фонд идей о космических полетах, доставшийся наступающей эпохе научного мировоззрения, неплохо подытожил другой английский писатель Джон Уилкинс (1614-1672) в своей "Математической магии": "Четыре различных способа назову я, посредством коих полет в небеса был или будет осуществлен. Два первых достигаются с помощью иных материй, остальные - с помощью нашей силы: 1. С помощью духов или ангелов. 2. С помощью птиц небесных. 3. С помощью искусственных крыльев, пристегнутых непосредственно к телу. 4. На летающих колесницах".
Итак, летающие колесницы! Ясно, что колеса не играют принципиальной роли для движения в воздухе или в космическом пространстве, но вот как обеспечить полет, как устроить двигатель для небесного экипажа?
Самое любопытное, что вещее слово было сказано почти одновременно с выходом книги Уилкинса - в 1650 году молодой француз Сирано де Бержерак Савиньен (1619-1655) завершил свой знаменитый "Иной свет, или Комическую историю о государствах и империях Луны", изданный, однако, лишь 6 лет спустя.
"Иной свет" - это, прежде всего, уникальный фейерверк фантазии, блестящей игры с мысленными конструкциями, и еще - сатиры, сатиры, беспощадно разящей всякий интеллектуальный застой. В романе Бержерака подчас не так-то легко разделить пародию на домыслы ученейших схоластов и глубокие прогнозы образованного человека, скептическую насмешку и плодотворный бунт воображения.
Сначала герой Бержерака совершает забавный пробный перелет из окрестностей Парижа в Канаду: "Я обвешался множеством склянок с росою, а солнечные лучи устремились на них столь яростно, что тепло, притягивавшее склянки, подобно тому, как оно притягивает влагу, образуя огромные тучи, подняло меня на такую высоту, что я оказался выше средней сферы". Наконец, из Канады он отправляется на Луну на аппарате, представляющем собой настоящую многоступенчатую ракету-носитель: "Как только пламя уничтожало один ряд ракет - они были расположены по шесть штук - благодаря запалу, помещенному в конце каждого ряда, загорался другой ряд; таким образом, по мере того как селитра загоралась, опасность отдалялась и вместе с тем возрастала. Наконец селитра вся сгорела, и машина перестала действовать..."
Похоже, вот он - старт ракетно-космических идей! Да, хотя об этом можно говорить лишь с известной натяжкой. Когда вышли из строя пороховые ракеты, герой Бержерака успешно завершил путешествие лишь благодаря тому, что перед полетом случайно натерся... бычьим мозгом, и луна на Ущербе, высасывая эту мазь, притянула космонавта. Ракета попала в явно гротескный ряд со склянками росы и астрологической мазью, и это недаром. Собственно говоря, пороховые ракеты были изобретены в Китае примерно в 10 веке, они использовались преимущественно для организации фейерверков и немного в военном деле (в этом плане ракетные снаряды исторически старше обычной ствольной артиллерии). Позднее ракеты попали и в Европу, но применялись опять-таки в основном в развлекательных целях.
Что же имел в виду Бержерак - забавную игрушку, что-то вроде склянки с росой, или в приведенном фрагменте заключено выношенное научно-техническое предвидение? Согласиться со вторым вариантом очень непросто, тем более что впоследствии в ряд бержераковского космического транспорта попадают птицы, на которых прибыл на Луну некий испанец*, а потом и кое-что позабавней. Луну бержераковский герой воспринимает как рай - разумеется, с должной иронией. Соответственно подаются и некоторые поступки обитателей рая. Библейский Адам бежит оттуда на Землю, остерегаясь гнева Господня, притом оригинальным способом - за счет потери веса от воспламенения воображения, Ева - притягиваясь к Адаму, Енох возносится на Луну в дыме жертвенного костра, используя плащ для обеспечения мягкой посадки. Наконец, пророк Илия взлетает на железной телеге, подбрасывая вверх магнитное ядро, к коему телега непрерывно притягивается - совсем уж вариант в духе будущего Мюнхгаузена! Да и сам герой возвращается на Землю, будучи утащен дьяволом...
*Это прямой отголосок знакомства с романом Годвина. Возможно, образ Луны как земного рая - пародия на годвиновские социально-утопические идеи. Но интересно, что именно в объяснении причин полета испанца звучит лейтмотив бержераковского произведения: "...истинной причиной его странствий по Земле и конечного переселения на Луну было то, что он нигде не нашел страны, где существовала бы свобода - хотя бы для воображения".
Можно долго ломать историко-научные и литературоведческие копья, но попробуем выделить главное - именно в романе Бержерака впервые - вольно или невольно - формулируется прообраз вполне реалистической космической программы, реалистической не только по целям (полет на Луну, обнаружение внеземной цивилизации), но и по средствам (многоступенчатые ракеты). Разумеется, это проект писателя, фантаста и сатирика, а не профессионального ученого, лишь контур проекта, однако контур, успешно проявленный будущим.
А будущее было не за горами. Уж Декарт рассуждал о достаточно быстром пушечном снаряде, способном не возвратиться после выстрела на Землю. В ньютоновской механике эта идея получает вполне четкое развитие. Вообразим себе пушку, стреляющую все более быстрыми снарядами, которые пролетают все большую дугу земной окружности, пока, наконец, не достигают самой пушки, облетев земной шар по окружности. Но ведь это настоящий приповерхностный спутник, и важно то, что в рамках ньютоновской механики нетрудно вычислить его минимальную скорость (1-ю космическую), как и скорость снаряда, способного уйти от Земли в межпланетное пространство (2-ю космическую). Но эти огромные - порядка 10 км/с - скорости, резко превосходящие все, что было достигнуто в артиллерийской стрельбе (не говоря уж о неспешном транспорте того времени), казались серьезнейшим, а подчас и непреодолимым препятствием для любого космического проекта. Нужен был целый комплекс открытий в математике, механике, химии - по сути, новый уровень технологической цивилизации, чтобы пройти путь от идеи пороховых ракет и общей оценки необходимых скоростей до реального запуска космического корабля...
Два с половиной века после Бержерака фантасты искали конкурентоспособные неракетные транспортные решения. В 1703 году Дэвид Рассен отправил своих героев на Луну с помощью гигантских качелей, установленных на высокой горе. Лет через 40 Эберхард Киндерман стал литературным первооткрывателем марсианской трассы, заставив взлететь корабль на вакуумной сфере.
И опять повезло социально-сатирической фантастике - в 1752 году, примерно к столетию выхода бержераковского романа, блестящий лидер французского Просветительства Франсуа-Мари Вольтер (1694-1778) выпустил в свет своего "Микромегаса". По-видимому, здесь впервые идея космических путешествий вырвалась в межзвездный и даже галактический масштаб. Вольтеровский Микромегас, существо 40-километрового роста, обладатель тысячи органов чувств, срок жизни которого доходит до 10 миллионов лет, отправляется в путешествие с родной планеты вблизи Сириуса. Способ его перемещения весьма оригинален - в какой-то степени шутка Вольтера предвосхищает перспективные идеи фантастов 20 века, ибо Микромегас "...оседлав солнечный луч, иной раз прибегнув к помощи какой-нибудь кометы, переправлялся вместе со своими слугами с планеты на планету". Так, изъездив весь Млечный Путь, он однажды оказывается на Сатурне и обнаруживает там "карликов", раз в 20 меньших его самого. Потом вместе с одним из обитателей Сатурна Микромегас устремляется к Земле, и тут новые друзья лишь с большим трудом выясняют, что планета-малютка обитаема, более того - на ней есть разумные создания...
В 19 веке Эдгар По послал Ганса Пфалля на Луну на воздушном шаре, заполненном неким таинственным газом (в 37,4 раза легче водорода), Жюль Верн выстрелил капсулой с экипажем из гигантской пушки "Колумбиады", а его соотечественник Паскаль Груссе (писатель-коммунар, печатавшийся под псевдонимом Андре Лори) решил проблему предельно изящно - его герои притянули Луну мощным магнитом*. Даже в 20-х годах нашего века практически одновременно со стендовыми испытаниями первых реальных ракет Андрей Платонов придумывает своеобразную центробежную пращу, развивающую до 16 тысяч оборотов в секунду, и с ее помощью гениальный неудачник инженер Крейцкопф забрасывается к Луне...
* Любопытно, что еще бержераковские селениты хотели притянуть Землю, хотя и не говорили конкретно о магнитах. Зато у Джонатана Свифта в одном из путешествий Гулливера встречается летающий остров Лапута, управляемый как раз магнитом...
Но все средства, за исключением полушуточных бержераковских ракет, так или иначе, уходили в архив - они опровергались элементарными расчетами*. Впрочем, и ракета казалась ученым 19 века средством довольно фантастическим - те скорости и мощности двигателя, которые требовались для отрыва от Земли, были далеки от реальных возможностей техники. А главное, космический полет представлялся скорее результатом какого-то эффектного открытия гениального одиночки, плодом частного мастерства в духе характерного для 19 века представления об истории науки и техники, представления, возросшего на примерах открытия законов природы с помощью "мотка проволоки, веревочки и сургуча", на примерах изобретения станков и машин талантливыми умельцами. Еще не было оснований воспринять грядущий космический старт как промежуточный финиш огромной научно-технической программы, где сведены в единую систему десятки областей науки и производства, где складываются воедино усилия многотысячных коллективов. Духовная атмосфера проблемы еще определялась психологией жюльверновских героев - изобрел, построил, полетел, и по их следам шли уэллсовский физик Кейвор и толстовский инженер Лось... Поэтому, когда в 1865 году французский писатель Ашиль Эро впервые забросил космонавтов на Венеру с помощью многоступенчатой ракеты, уже вовсе не шуточной, его идея отнюдь не воспринималась как сигнал о надвигающемся прорыве в космос, прорыве, до которого тогда оставалось менее столетия.
* Не будем забывать, что даже самые древние, "трижды опровергнутые" идеи сыграли свою роль - хотя и не обязательно в космонавтике. Возносясь на лифте на 9-й этаж своего дома или на смотровую площадку Эйфелевой башни, стоит вспомнить о создателях мифов про светила-древолазы и о творцах зиккуратов. Изучение принципов птичьего полета привело русского ученого Николая Егоровича Жуковского (1847 -1921) к теории самолетного крыла, а воздушные шары действительно оказались полезными для полетов внутри атмосферы. Древние идеи, трансформированные научным мировоззрением, живут вокруг нас и приносят огромную пользу - стоит лишь немного подумать над генезисом телефона, карманного компьютера или обычного карандаша, чтобы историческая машина времени стала демонстрировать удивительные метаморфозы человеческой мечты. Некоторые общие идеи - вроде вольтеровского использования светового луча или небесных тел как космических кораблей - до сих пор в определенной степени опережают время и считаются вполне перспективными, разумеется, с учетом современных представлений.
Между тем, к последней трети 19 века естественные науки достигли достаточной зрелости, чтобы приступить к планомерной осаде проблемы полета в безвоздушном космическом пространстве. Реактивный аппарат должен был стать решающим ударным звеном в этой осаде, ибо в нем заключался единственный тип движения, не требующий опоры в окружающей среде и вообще в таковой не нуждающийся. Подъемную силу самолета или воздушного шара не создать в слишком разреженной атмосфере. Для ракеты наоборот - чем выше окружающий вакуум, тем лучше.
Видимо, первым, кто осознал это на вполне научной основе, стал замечательный русский ученый Константин Эдуардович Циолковский (1857 -1935). На его долю выпала очень нелегкая судьба. В результате тяжелой болезни он с 9 лет стал глохнуть и к 14 годам практически полностью утратил слух. Весьма основательное общее и специальное физико-математическое образование Циолковский приобрел самостоятельно, и с 1880 года стал учительствовать в Калужской губернии, а позднее - в Калуге. Спектр увлечений молодого провинциального учителя поразителен - он разрабатывает основы кинетической теории газов, занимается биомеханикой и астрофизикой, предлагает проекты управляемого металлического дирижабля и поезда на воздушной подушке, обтекаемого аэроплана и аэродинамической трубы.
Но главное увлечение Циолковского, со временем превратившее его в подлинного пророка космической эры, было связано с принципом реактивного движения. Исходные шаги в этом направлении были сделаны им в 1883 году в рукописи "Свободное пространство", которую в то время так и не удалось опубликовать.
Систематическая и многоплановая работа приводит к впечатляющим результатам - в последнее десятилетие 19 века Циолковский строит теорию реактивного движения и намечает контуры реалистической программы космических исследований. Так, в изданной в 1895 году научно-фантастической книге "Грезы о Земле и Небе" он формулирует вполне оправдавшуюся впоследствии идею - на первом этапе исследований необходимо запускать искусственный спутник Земли. К фантастическому жанру Циолковский будет обращаться еще не раз, не стремясь, однако, достичь бержераковских литературных высот или жюльверновской занимательности. Для него фантастика - лишь одно из средств выразить свое видение будущего и привлечь внимание общественности к вполне научным проектам. Разумеется, искусственный спутник Земли и даже целая орбитальная станция - нечто менее впечатляющее в сравнении с полетами экипажей на Луну, Марс или далекие звезды, но суть в том, что спутники и орбитальные станции - технически необходимый этап любой реалистической программы выходы в космическое пространство. Заатмосферные баллистические броски и вывод спутников предшествуют межпланетным путешествиям подобно тому, как каботажные плавания исторически предшествовали прямому пересечению морей и плаваниям трансокеанским.
В 1903 году Циолковский публикует знаменитое "Исследование мировых пространств реактивными приборами", где дана развернутая картина космических исследований. В последующие десятилетия эта картина дополняется и уточняется - возникают проекты мощных ЖРД (жидкостных реактивных двигателей) на предельно эффективном химическом топливе, разработки конкретных проектов ракет и стационарных орбитальных станций, идеи замкнутого биологического цикла в космических кораблях и специальных систем мягкой посадки...
Уже в 20-х годах рождается расчет многоступенчатой ракеты - проект, который показал реальность достижения космических скоростей с помощью химического топлива. Именно та конструкция, которую Циолковский назвал "космическим поездом", и оказалась ключом к последующему запуску спутников и межпланетных кораблей.
Но, пожалуй, самым важным достижением Циолковского стала комплексность его программы, своеобразная космическая философия. Он впервые рассмотрел выход в космос, исходя не из любопытства одиночки или группки энтузиастов, а как крупнейшую социальную задачу, затрагивающую все человечество. Для духовно одинокого на протяжении многих десятилетий калужского учителя главное заключалось в решении земных проблем общества, и выход в космос он считал неизбежным этапом общечеловеческой эволюции, этапом, который позволит преодолеть пространственную ограниченность, грядущие демографические и экологические трудности. Ему грезилась трехмерная цивилизация, не ограниченная поверхностью земного шара, а свободно организующая все пространство Солнечной системы в обширную и обильную среду обитания. Лишь такого громадного масштаба сверхзадача способна была стимулировать устойчивый и даже нарастающий интерес общества к космическим полетам.
В этом плане можно сказать, что Циолковский творил истоки новых взаимоотношений человечества с Вселенной, истоки уже посткоперниковского мировоззрения. Большая область Вселенной - Солнечная система - начала выступать в иной ипостаси: не только как предмет визуально-астрономического изучения, но как потенциальная среда обитания, качественно отличная от той, которой человечество пользовалось на протяжении всей своей истории, среда, насыщенная искусственными конструкциями, творимая руками и разумом человека.
Именно такая точка зрения станет стартом для последней части этой книги, где нам необходимо будет разобраться в целях устремления к звездам и к поиску внеземных цивилизаций. А пока попробуем завершить краткое путешествие в историю космонавтики.
Циолковский был во многом первым, но отнюдь не единственным исследователем, обратившим внимание на возможности ракетных полетов.
Еще в 1881 году Николай Иванович Кибальчич (1853 -1881), руководитель лаборатории взрывчатых веществ "Народной воли", находясь в заключении по делу об убийстве императора Александра II, разработал проект управляемого аппарата с пороховым реактивным двигателем.
В самом конце 19 века преподаватель Петербургского университета, а впоследствии заведующий кафедрой Петербургского политехнического института Иван Всеволодович Мещерский (1859 -1935) построил подробную теорию движения точечного тела переменной массы*, а Николай Иванович Тихомиров (1860-1930), в будущем один из основателей советской ракетной школы, предложил проект "самодвижущихся мин реактивного действия".
* Эта теория была в основном завершена публикацией работы "Уравнения движения точки переменной массы в общем случае" (1904) и потом развивалась Мещерским и многими другими авторами в разработке частных задач.
С начала 20 века к решению ракетной проблемы устремляется целое созвездие талантливых людей. В 1907 году этой проблемой увлекся американский инженер (а тогда еще студент Вустерского политехнического института) Роберт Годдард (1882-1945). Ему же в 1921 году впервые удалось осуществить стендовые испытания ЖРД на кислородно-эфирном топливе и через 5 лет провести в Вустере пробный запуск первой ЖРД-ракеты, работающей на газолине и жидком кислороде. Годдард стал своеобразным ракетным Эдисоном при жизни и по оставшимся архивным материалам на его имя было выдано 214 патентов в области ракетостроения!
Большой вклад в разработку идеи межпланетных полетов внес француз Робер Эно-Пельтри (1881 - 1957), создатель первого самолета-моноплана. Он первым приступил к разработке моделей оптимальных траекторий движения космического аппарата и схем испытания топливных смесей. Заглядывая в далекое будущее космонавтики, Эно-Пельтри построил теорию движения релятивистской ракеты и выдвинул идею использования ядерных двигателей.
В СССР Фридрих Артурович Цандер (1887 - 1933) и Сергей Павлович Королев (1906-1966) в 1931 году организуют знаменитый ГИРД - Группу по изучению реактивного движения, где проводятся успешные испытания ряда двигателей, и через 2 года стартует первая советская ЖРД-ракета ГИРД-09. В том же 1933 году ГИРД сливается с тихомировской гидродинамической лабораторией в Ракетный научно-исследовательский институт (РНИИ), организацию, заложившую глубокие теоретические и экспериментальные основы будущих советских космических программ.
В Германии начинают экспериментировать с реактивными аппаратами Герман Оберт (р. 1894), сумевший в 20-х годах независимо повторить результаты Циолковского, и Вернер фон Браун (1912-1977).
В 30-е годы проблемы создания ракет начинают переходить в более практическую плоскость. Этому в немалой степени способствовал интерес военных - реактивные снаряды стали рассматриваться как потенциально эффективное средство ведения боевых действий, идущее на смену традиционной ствольной артиллерии, или, во всяком случае, как средство, способное решать те задачи, которые не под силу артиллерии и авиации. Это не слишком приятная полоса в истории создания космической техники, но она имела место и объективно обеспечила приток в эту сферу огромных финансовых, интеллектуальных и промышленных ресурсов. Как говорится, из песни слова не выкинешь, не отбросишь и того, что первая ракета дальнего действия Фау-2 была создана Вернером фон Брауном в 1944 году в военно-исследовательском центре Пенемюнде с целью переломить ход второй мировой войны и предотвратить разгром фашистских режимов. Страшно подумать о том, что немецкие ученые-ядерщики могли проявить не меньшую патриотическую инициативу и снабдить пресловутые Фау соответствующими зарядами...
В течение первого послевоенного десятилетия были разработаны достаточно мощные двигатели, эффективные топливно-окислительные смеси и надежные системы управления. Баллистические ракеты поднялись на сотни километров, и стало ясно, что рубежи первой и второй космической скорости вполне преодолимы.
4 октября 1957 года (дата, практически совпадающая со столетием рождения Циолковского) - начало космической эры. В этот день на орбиту был выведен первый советский искусственный спутник Земли. Этот сравнительно скромный аппарат - шар радиусом 29 см и массой 83,6 кг, начиненный радиоаппаратурой и двигавшийся на высотах от 228 до 947 км,- настоящий подвиг коллектива, возглавляемого Королевым, организатором и руководителем первых советских космических программ.
Примерно через месяц на орбиту вышел второй советский ИСЗ, который стал и первым биологическим спутником - на его борту находилась собака Лайка. Это был необходимый этап для осуществления выхода человека в космическое пространство.
Этот важнейший шаг был сделан 12 апреля 1961 года, когда на орбиту ИСЗ вышел корабль "Восток-1", пилотируемый Юрием Алексеевичем Гагариным (1934-1968). За 108 минут исторического полета человечество вслед за советским космонавтом перешагнуло порог неведомого, порог древней мечты.
А 21 июля 1969 года первым ступил на поверхность Луны американский космонавт Нейл Армстронг (р. 1930), пробывший вне лунной кабины 8476 секунд - почти 2,5 часа*.
*Полет космического корабля "Аполлон-II" проходил с 16 по 24 июля 1969 года с тремя космонавтами на борту - Армстронгом, Эдвином Олдрином и Майклом Коллинзом. Олдрин и Армстронг спускались в лунном отсеке, и Олдрин провел на поверхности Луны около полутора часов, а Коллинз находился в орбитальном отсеке - на орбите искусственного спутника Луны, ожидая товарищей.
Таковы, на мой взгляд, 4 важнейшие вехи космической эры. На самом деле и между отмеченными здесь достижениями и после них были получены замечательные результаты.
Советские и американские аппараты осуществляли посадку не только на Луне, но и на Марсе и на Венере. "Маринер-10" подходил к Меркурию, "Луна-1" стала первым искусственным спутником Солнца, "Пионер-10" прошел вблизи Юпитера и, передав на Землю важную информацию, впервые отправился в межзвездное путешествие, унося на борту золотую табличку, на которой записаны сведения о нашей планете - своеобразную визитную карточку землян, предназначенную неведомой инопланетной цивилизации. Вслед за ним устремились "Пионер-11", 1-й и 2-й "Вояджеры", чтобы собрать информацию о Юпитере, Сатурне, Уране, Нептуне и тоже унести послания землян за пределы Солнечной системы.
Наследственный фонд идей о космических полетах, доставшийся наступающей эпохе научного мировоззрения, неплохо подытожил другой английский писатель Джон Уилкинс (1614-1672) в своей "Математической магии": "Четыре различных способа назову я, посредством коих полет в небеса был или будет осуществлен. Два первых достигаются с помощью иных материй, остальные - с помощью нашей силы: 1. С помощью духов или ангелов. 2. С помощью птиц небесных. 3. С помощью искусственных крыльев, пристегнутых непосредственно к телу. 4. На летающих колесницах".
Итак, летающие колесницы! Ясно, что колеса не играют принципиальной роли для движения в воздухе или в космическом пространстве, но вот как обеспечить полет, как устроить двигатель для небесного экипажа?
Самое любопытное, что вещее слово было сказано почти одновременно с выходом книги Уилкинса - в 1650 году молодой француз Сирано де Бержерак Савиньен (1619-1655) завершил свой знаменитый "Иной свет, или Комическую историю о государствах и империях Луны", изданный, однако, лишь 6 лет спустя.
"Иной свет" - это, прежде всего, уникальный фейерверк фантазии, блестящей игры с мысленными конструкциями, и еще - сатиры, сатиры, беспощадно разящей всякий интеллектуальный застой. В романе Бержерака подчас не так-то легко разделить пародию на домыслы ученейших схоластов и глубокие прогнозы образованного человека, скептическую насмешку и плодотворный бунт воображения.
Сначала герой Бержерака совершает забавный пробный перелет из окрестностей Парижа в Канаду: "Я обвешался множеством склянок с росою, а солнечные лучи устремились на них столь яростно, что тепло, притягивавшее склянки, подобно тому, как оно притягивает влагу, образуя огромные тучи, подняло меня на такую высоту, что я оказался выше средней сферы". Наконец, из Канады он отправляется на Луну на аппарате, представляющем собой настоящую многоступенчатую ракету-носитель: "Как только пламя уничтожало один ряд ракет - они были расположены по шесть штук - благодаря запалу, помещенному в конце каждого ряда, загорался другой ряд; таким образом, по мере того как селитра загоралась, опасность отдалялась и вместе с тем возрастала. Наконец селитра вся сгорела, и машина перестала действовать..."
Похоже, вот он - старт ракетно-космических идей! Да, хотя об этом можно говорить лишь с известной натяжкой. Когда вышли из строя пороховые ракеты, герой Бержерака успешно завершил путешествие лишь благодаря тому, что перед полетом случайно натерся... бычьим мозгом, и луна на Ущербе, высасывая эту мазь, притянула космонавта. Ракета попала в явно гротескный ряд со склянками росы и астрологической мазью, и это недаром. Собственно говоря, пороховые ракеты были изобретены в Китае примерно в 10 веке, они использовались преимущественно для организации фейерверков и немного в военном деле (в этом плане ракетные снаряды исторически старше обычной ствольной артиллерии). Позднее ракеты попали и в Европу, но применялись опять-таки в основном в развлекательных целях.
Что же имел в виду Бержерак - забавную игрушку, что-то вроде склянки с росой, или в приведенном фрагменте заключено выношенное научно-техническое предвидение? Согласиться со вторым вариантом очень непросто, тем более что впоследствии в ряд бержераковского космического транспорта попадают птицы, на которых прибыл на Луну некий испанец*, а потом и кое-что позабавней. Луну бержераковский герой воспринимает как рай - разумеется, с должной иронией. Соответственно подаются и некоторые поступки обитателей рая. Библейский Адам бежит оттуда на Землю, остерегаясь гнева Господня, притом оригинальным способом - за счет потери веса от воспламенения воображения, Ева - притягиваясь к Адаму, Енох возносится на Луну в дыме жертвенного костра, используя плащ для обеспечения мягкой посадки. Наконец, пророк Илия взлетает на железной телеге, подбрасывая вверх магнитное ядро, к коему телега непрерывно притягивается - совсем уж вариант в духе будущего Мюнхгаузена! Да и сам герой возвращается на Землю, будучи утащен дьяволом...
*Это прямой отголосок знакомства с романом Годвина. Возможно, образ Луны как земного рая - пародия на годвиновские социально-утопические идеи. Но интересно, что именно в объяснении причин полета испанца звучит лейтмотив бержераковского произведения: "...истинной причиной его странствий по Земле и конечного переселения на Луну было то, что он нигде не нашел страны, где существовала бы свобода - хотя бы для воображения".
Можно долго ломать историко-научные и литературоведческие копья, но попробуем выделить главное - именно в романе Бержерака впервые - вольно или невольно - формулируется прообраз вполне реалистической космической программы, реалистической не только по целям (полет на Луну, обнаружение внеземной цивилизации), но и по средствам (многоступенчатые ракеты). Разумеется, это проект писателя, фантаста и сатирика, а не профессионального ученого, лишь контур проекта, однако контур, успешно проявленный будущим.
А будущее было не за горами. Уж Декарт рассуждал о достаточно быстром пушечном снаряде, способном не возвратиться после выстрела на Землю. В ньютоновской механике эта идея получает вполне четкое развитие. Вообразим себе пушку, стреляющую все более быстрыми снарядами, которые пролетают все большую дугу земной окружности, пока, наконец, не достигают самой пушки, облетев земной шар по окружности. Но ведь это настоящий приповерхностный спутник, и важно то, что в рамках ньютоновской механики нетрудно вычислить его минимальную скорость (1-ю космическую), как и скорость снаряда, способного уйти от Земли в межпланетное пространство (2-ю космическую). Но эти огромные - порядка 10 км/с - скорости, резко превосходящие все, что было достигнуто в артиллерийской стрельбе (не говоря уж о неспешном транспорте того времени), казались серьезнейшим, а подчас и непреодолимым препятствием для любого космического проекта. Нужен был целый комплекс открытий в математике, механике, химии - по сути, новый уровень технологической цивилизации, чтобы пройти путь от идеи пороховых ракет и общей оценки необходимых скоростей до реального запуска космического корабля...
Два с половиной века после Бержерака фантасты искали конкурентоспособные неракетные транспортные решения. В 1703 году Дэвид Рассен отправил своих героев на Луну с помощью гигантских качелей, установленных на высокой горе. Лет через 40 Эберхард Киндерман стал литературным первооткрывателем марсианской трассы, заставив взлететь корабль на вакуумной сфере.
И опять повезло социально-сатирической фантастике - в 1752 году, примерно к столетию выхода бержераковского романа, блестящий лидер французского Просветительства Франсуа-Мари Вольтер (1694-1778) выпустил в свет своего "Микромегаса". По-видимому, здесь впервые идея космических путешествий вырвалась в межзвездный и даже галактический масштаб. Вольтеровский Микромегас, существо 40-километрового роста, обладатель тысячи органов чувств, срок жизни которого доходит до 10 миллионов лет, отправляется в путешествие с родной планеты вблизи Сириуса. Способ его перемещения весьма оригинален - в какой-то степени шутка Вольтера предвосхищает перспективные идеи фантастов 20 века, ибо Микромегас "...оседлав солнечный луч, иной раз прибегнув к помощи какой-нибудь кометы, переправлялся вместе со своими слугами с планеты на планету". Так, изъездив весь Млечный Путь, он однажды оказывается на Сатурне и обнаруживает там "карликов", раз в 20 меньших его самого. Потом вместе с одним из обитателей Сатурна Микромегас устремляется к Земле, и тут новые друзья лишь с большим трудом выясняют, что планета-малютка обитаема, более того - на ней есть разумные создания...
В 19 веке Эдгар По послал Ганса Пфалля на Луну на воздушном шаре, заполненном неким таинственным газом (в 37,4 раза легче водорода), Жюль Верн выстрелил капсулой с экипажем из гигантской пушки "Колумбиады", а его соотечественник Паскаль Груссе (писатель-коммунар, печатавшийся под псевдонимом Андре Лори) решил проблему предельно изящно - его герои притянули Луну мощным магнитом*. Даже в 20-х годах нашего века практически одновременно со стендовыми испытаниями первых реальных ракет Андрей Платонов придумывает своеобразную центробежную пращу, развивающую до 16 тысяч оборотов в секунду, и с ее помощью гениальный неудачник инженер Крейцкопф забрасывается к Луне...
* Любопытно, что еще бержераковские селениты хотели притянуть Землю, хотя и не говорили конкретно о магнитах. Зато у Джонатана Свифта в одном из путешествий Гулливера встречается летающий остров Лапута, управляемый как раз магнитом...
Но все средства, за исключением полушуточных бержераковских ракет, так или иначе, уходили в архив - они опровергались элементарными расчетами*. Впрочем, и ракета казалась ученым 19 века средством довольно фантастическим - те скорости и мощности двигателя, которые требовались для отрыва от Земли, были далеки от реальных возможностей техники. А главное, космический полет представлялся скорее результатом какого-то эффектного открытия гениального одиночки, плодом частного мастерства в духе характерного для 19 века представления об истории науки и техники, представления, возросшего на примерах открытия законов природы с помощью "мотка проволоки, веревочки и сургуча", на примерах изобретения станков и машин талантливыми умельцами. Еще не было оснований воспринять грядущий космический старт как промежуточный финиш огромной научно-технической программы, где сведены в единую систему десятки областей науки и производства, где складываются воедино усилия многотысячных коллективов. Духовная атмосфера проблемы еще определялась психологией жюльверновских героев - изобрел, построил, полетел, и по их следам шли уэллсовский физик Кейвор и толстовский инженер Лось... Поэтому, когда в 1865 году французский писатель Ашиль Эро впервые забросил космонавтов на Венеру с помощью многоступенчатой ракеты, уже вовсе не шуточной, его идея отнюдь не воспринималась как сигнал о надвигающемся прорыве в космос, прорыве, до которого тогда оставалось менее столетия.
* Не будем забывать, что даже самые древние, "трижды опровергнутые" идеи сыграли свою роль - хотя и не обязательно в космонавтике. Возносясь на лифте на 9-й этаж своего дома или на смотровую площадку Эйфелевой башни, стоит вспомнить о создателях мифов про светила-древолазы и о творцах зиккуратов. Изучение принципов птичьего полета привело русского ученого Николая Егоровича Жуковского (1847 -1921) к теории самолетного крыла, а воздушные шары действительно оказались полезными для полетов внутри атмосферы. Древние идеи, трансформированные научным мировоззрением, живут вокруг нас и приносят огромную пользу - стоит лишь немного подумать над генезисом телефона, карманного компьютера или обычного карандаша, чтобы историческая машина времени стала демонстрировать удивительные метаморфозы человеческой мечты. Некоторые общие идеи - вроде вольтеровского использования светового луча или небесных тел как космических кораблей - до сих пор в определенной степени опережают время и считаются вполне перспективными, разумеется, с учетом современных представлений.
Между тем, к последней трети 19 века естественные науки достигли достаточной зрелости, чтобы приступить к планомерной осаде проблемы полета в безвоздушном космическом пространстве. Реактивный аппарат должен был стать решающим ударным звеном в этой осаде, ибо в нем заключался единственный тип движения, не требующий опоры в окружающей среде и вообще в таковой не нуждающийся. Подъемную силу самолета или воздушного шара не создать в слишком разреженной атмосфере. Для ракеты наоборот - чем выше окружающий вакуум, тем лучше.
Видимо, первым, кто осознал это на вполне научной основе, стал замечательный русский ученый Константин Эдуардович Циолковский (1857 -1935). На его долю выпала очень нелегкая судьба. В результате тяжелой болезни он с 9 лет стал глохнуть и к 14 годам практически полностью утратил слух. Весьма основательное общее и специальное физико-математическое образование Циолковский приобрел самостоятельно, и с 1880 года стал учительствовать в Калужской губернии, а позднее - в Калуге. Спектр увлечений молодого провинциального учителя поразителен - он разрабатывает основы кинетической теории газов, занимается биомеханикой и астрофизикой, предлагает проекты управляемого металлического дирижабля и поезда на воздушной подушке, обтекаемого аэроплана и аэродинамической трубы.
Но главное увлечение Циолковского, со временем превратившее его в подлинного пророка космической эры, было связано с принципом реактивного движения. Исходные шаги в этом направлении были сделаны им в 1883 году в рукописи "Свободное пространство", которую в то время так и не удалось опубликовать.
Систематическая и многоплановая работа приводит к впечатляющим результатам - в последнее десятилетие 19 века Циолковский строит теорию реактивного движения и намечает контуры реалистической программы космических исследований. Так, в изданной в 1895 году научно-фантастической книге "Грезы о Земле и Небе" он формулирует вполне оправдавшуюся впоследствии идею - на первом этапе исследований необходимо запускать искусственный спутник Земли. К фантастическому жанру Циолковский будет обращаться еще не раз, не стремясь, однако, достичь бержераковских литературных высот или жюльверновской занимательности. Для него фантастика - лишь одно из средств выразить свое видение будущего и привлечь внимание общественности к вполне научным проектам. Разумеется, искусственный спутник Земли и даже целая орбитальная станция - нечто менее впечатляющее в сравнении с полетами экипажей на Луну, Марс или далекие звезды, но суть в том, что спутники и орбитальные станции - технически необходимый этап любой реалистической программы выходы в космическое пространство. Заатмосферные баллистические броски и вывод спутников предшествуют межпланетным путешествиям подобно тому, как каботажные плавания исторически предшествовали прямому пересечению морей и плаваниям трансокеанским.
В 1903 году Циолковский публикует знаменитое "Исследование мировых пространств реактивными приборами", где дана развернутая картина космических исследований. В последующие десятилетия эта картина дополняется и уточняется - возникают проекты мощных ЖРД (жидкостных реактивных двигателей) на предельно эффективном химическом топливе, разработки конкретных проектов ракет и стационарных орбитальных станций, идеи замкнутого биологического цикла в космических кораблях и специальных систем мягкой посадки...
Уже в 20-х годах рождается расчет многоступенчатой ракеты - проект, который показал реальность достижения космических скоростей с помощью химического топлива. Именно та конструкция, которую Циолковский назвал "космическим поездом", и оказалась ключом к последующему запуску спутников и межпланетных кораблей.
Но, пожалуй, самым важным достижением Циолковского стала комплексность его программы, своеобразная космическая философия. Он впервые рассмотрел выход в космос, исходя не из любопытства одиночки или группки энтузиастов, а как крупнейшую социальную задачу, затрагивающую все человечество. Для духовно одинокого на протяжении многих десятилетий калужского учителя главное заключалось в решении земных проблем общества, и выход в космос он считал неизбежным этапом общечеловеческой эволюции, этапом, который позволит преодолеть пространственную ограниченность, грядущие демографические и экологические трудности. Ему грезилась трехмерная цивилизация, не ограниченная поверхностью земного шара, а свободно организующая все пространство Солнечной системы в обширную и обильную среду обитания. Лишь такого громадного масштаба сверхзадача способна была стимулировать устойчивый и даже нарастающий интерес общества к космическим полетам.
В этом плане можно сказать, что Циолковский творил истоки новых взаимоотношений человечества с Вселенной, истоки уже посткоперниковского мировоззрения. Большая область Вселенной - Солнечная система - начала выступать в иной ипостаси: не только как предмет визуально-астрономического изучения, но как потенциальная среда обитания, качественно отличная от той, которой человечество пользовалось на протяжении всей своей истории, среда, насыщенная искусственными конструкциями, творимая руками и разумом человека.
Именно такая точка зрения станет стартом для последней части этой книги, где нам необходимо будет разобраться в целях устремления к звездам и к поиску внеземных цивилизаций. А пока попробуем завершить краткое путешествие в историю космонавтики.
Циолковский был во многом первым, но отнюдь не единственным исследователем, обратившим внимание на возможности ракетных полетов.
Еще в 1881 году Николай Иванович Кибальчич (1853 -1881), руководитель лаборатории взрывчатых веществ "Народной воли", находясь в заключении по делу об убийстве императора Александра II, разработал проект управляемого аппарата с пороховым реактивным двигателем.
В самом конце 19 века преподаватель Петербургского университета, а впоследствии заведующий кафедрой Петербургского политехнического института Иван Всеволодович Мещерский (1859 -1935) построил подробную теорию движения точечного тела переменной массы*, а Николай Иванович Тихомиров (1860-1930), в будущем один из основателей советской ракетной школы, предложил проект "самодвижущихся мин реактивного действия".
* Эта теория была в основном завершена публикацией работы "Уравнения движения точки переменной массы в общем случае" (1904) и потом развивалась Мещерским и многими другими авторами в разработке частных задач.
С начала 20 века к решению ракетной проблемы устремляется целое созвездие талантливых людей. В 1907 году этой проблемой увлекся американский инженер (а тогда еще студент Вустерского политехнического института) Роберт Годдард (1882-1945). Ему же в 1921 году впервые удалось осуществить стендовые испытания ЖРД на кислородно-эфирном топливе и через 5 лет провести в Вустере пробный запуск первой ЖРД-ракеты, работающей на газолине и жидком кислороде. Годдард стал своеобразным ракетным Эдисоном при жизни и по оставшимся архивным материалам на его имя было выдано 214 патентов в области ракетостроения!
Большой вклад в разработку идеи межпланетных полетов внес француз Робер Эно-Пельтри (1881 - 1957), создатель первого самолета-моноплана. Он первым приступил к разработке моделей оптимальных траекторий движения космического аппарата и схем испытания топливных смесей. Заглядывая в далекое будущее космонавтики, Эно-Пельтри построил теорию движения релятивистской ракеты и выдвинул идею использования ядерных двигателей.
В СССР Фридрих Артурович Цандер (1887 - 1933) и Сергей Павлович Королев (1906-1966) в 1931 году организуют знаменитый ГИРД - Группу по изучению реактивного движения, где проводятся успешные испытания ряда двигателей, и через 2 года стартует первая советская ЖРД-ракета ГИРД-09. В том же 1933 году ГИРД сливается с тихомировской гидродинамической лабораторией в Ракетный научно-исследовательский институт (РНИИ), организацию, заложившую глубокие теоретические и экспериментальные основы будущих советских космических программ.
В Германии начинают экспериментировать с реактивными аппаратами Герман Оберт (р. 1894), сумевший в 20-х годах независимо повторить результаты Циолковского, и Вернер фон Браун (1912-1977).
В 30-е годы проблемы создания ракет начинают переходить в более практическую плоскость. Этому в немалой степени способствовал интерес военных - реактивные снаряды стали рассматриваться как потенциально эффективное средство ведения боевых действий, идущее на смену традиционной ствольной артиллерии, или, во всяком случае, как средство, способное решать те задачи, которые не под силу артиллерии и авиации. Это не слишком приятная полоса в истории создания космической техники, но она имела место и объективно обеспечила приток в эту сферу огромных финансовых, интеллектуальных и промышленных ресурсов. Как говорится, из песни слова не выкинешь, не отбросишь и того, что первая ракета дальнего действия Фау-2 была создана Вернером фон Брауном в 1944 году в военно-исследовательском центре Пенемюнде с целью переломить ход второй мировой войны и предотвратить разгром фашистских режимов. Страшно подумать о том, что немецкие ученые-ядерщики могли проявить не меньшую патриотическую инициативу и снабдить пресловутые Фау соответствующими зарядами...
В течение первого послевоенного десятилетия были разработаны достаточно мощные двигатели, эффективные топливно-окислительные смеси и надежные системы управления. Баллистические ракеты поднялись на сотни километров, и стало ясно, что рубежи первой и второй космической скорости вполне преодолимы.
4 октября 1957 года (дата, практически совпадающая со столетием рождения Циолковского) - начало космической эры. В этот день на орбиту был выведен первый советский искусственный спутник Земли. Этот сравнительно скромный аппарат - шар радиусом 29 см и массой 83,6 кг, начиненный радиоаппаратурой и двигавшийся на высотах от 228 до 947 км,- настоящий подвиг коллектива, возглавляемого Королевым, организатором и руководителем первых советских космических программ.
Примерно через месяц на орбиту вышел второй советский ИСЗ, который стал и первым биологическим спутником - на его борту находилась собака Лайка. Это был необходимый этап для осуществления выхода человека в космическое пространство.
Этот важнейший шаг был сделан 12 апреля 1961 года, когда на орбиту ИСЗ вышел корабль "Восток-1", пилотируемый Юрием Алексеевичем Гагариным (1934-1968). За 108 минут исторического полета человечество вслед за советским космонавтом перешагнуло порог неведомого, порог древней мечты.
А 21 июля 1969 года первым ступил на поверхность Луны американский космонавт Нейл Армстронг (р. 1930), пробывший вне лунной кабины 8476 секунд - почти 2,5 часа*.
*Полет космического корабля "Аполлон-II" проходил с 16 по 24 июля 1969 года с тремя космонавтами на борту - Армстронгом, Эдвином Олдрином и Майклом Коллинзом. Олдрин и Армстронг спускались в лунном отсеке, и Олдрин провел на поверхности Луны около полутора часов, а Коллинз находился в орбитальном отсеке - на орбите искусственного спутника Луны, ожидая товарищей.
Таковы, на мой взгляд, 4 важнейшие вехи космической эры. На самом деле и между отмеченными здесь достижениями и после них были получены замечательные результаты.
Советские и американские аппараты осуществляли посадку не только на Луне, но и на Марсе и на Венере. "Маринер-10" подходил к Меркурию, "Луна-1" стала первым искусственным спутником Солнца, "Пионер-10" прошел вблизи Юпитера и, передав на Землю важную информацию, впервые отправился в межзвездное путешествие, унося на борту золотую табличку, на которой записаны сведения о нашей планете - своеобразную визитную карточку землян, предназначенную неведомой инопланетной цивилизации. Вслед за ним устремились "Пионер-11", 1-й и 2-й "Вояджеры", чтобы собрать информацию о Юпитере, Сатурне, Уране, Нептуне и тоже унести послания землян за пределы Солнечной системы.