Страница:
ФИЗИЧЕСКИЙ ОБРАЗ ВСЕЛЕННОЙ
В физическом понимании Вселенной существует немало интересных проблем, решение которых в ближайшем будущем представляется не слишком вероятным. Любопытно все-таки, что удается кое-что сказать о проблемах, отделенных от нас вроде бы огромным техническим (если не общепознавательным!) барьером.
Одна из них - возможно, важнейшая - неудовлетворительность современной концепции пространства-времени. Все, что мы пока умеем делать,- это локализовать трудности в экспериментально недоступных областях.
Попробуем взглянуть на ситуацию с пространственно-временными измерениями с точки зрения самых общих ограничений, которым должны подчиняться системы отсчета. Важнейшее положение специальной теории относительности заключается в том, что всякая система отсчета должна быть снабжена средством синхронизации часов с другими системами. До получения конкретного сигнала мы не можем знать показаний часов в интересующей нас точке пространства. В качестве сигнального средства может использоваться любой носитель энергии, например, самый быстрый - световой луч. Но в таком случае скорость передачи любой информации не может превышать скорости этого носителя, то есть v ? с. Собственно эйнштейновские мысленные эксперименты (подтвержденные впоследствии всей совокупностью экспериментов реальных) можно рассматривать как первый шаг в программе построения реальных систем отсчета, снабженных средствами информационного обмена. В ньютоновской механике этот шаг сделан не был - не конкретизировался синхронизирующий сигнал, из-за чего отсутствовали ограничения на скорость, а фактическая область применения ограничивались условия v " с.
Следующий шаг связан с учетом тяготения в окрестности системы отсчета. Имея источник и приемник излучения и, конечно, блоки их снабжения и обслуживания, реальная система отсчета должна обладать массой, но все-таки выпускать излучение - хотя бы синхронизирующие сигналы. Поэтому необходимо, чтобы скорость отрыва от нее была несколько меньше скорости света, а отсюда легко вывести, что физический радиус системы должен быть больше гравитационного R > Rg = 2GM/c2 . Следовательно, вся внутренняя область черной дыры не может служить моделью системы отсчета - в этом заключено самое общее выражение ее информационной несвязанности с внешним миром.
Испускание сигнала влияет на систему. Направленный сигнал - это импульс, например, света. Выбрасывая его, система должна приобрести ускорение
а ~?P/M? < c/? - последнее условие из-за того, что за характерное время ? она не разгонится до сверхсветовой скорости. Поскольку импульс не может передаваться всему телу системы за время, меньшее времени распространения светового сигнала в ее объеме, получим простое условие ? > R/c > 2GM/c3. Следовательно, реактивное ускорение системы всегда ограничено: a< c4/2GM, и соответственно фундаментально ограничена сила, действующая на нее: F < c4/2G. Ни один информационный сигнал не может приводить к силовой реакции на источник, превосходящий планковский масштаб силы FP = c4/2G = 6.1043 Н!
Аналогичное заключение получаем и в случае изотропного сигнала. Так или иначе, излучая энергию, система теряет полную массу. Ее физический радиус убывает, и его скорость убывания не может превосходить скорость света. В свою очередь, гравитационный радиус не может убывать быстрее физического. Отсюда получаем ограничение на темп изменения массы (?tM < c3/2G) и на светимость (L < c5/2G).
Таким образом, мощность излучения сигнала ограничена планковской мощностью LP.
Световые потоки нужны нам в частности для определения координат объектов (тех же систем отсчета) и хода часов. Точность регистрации координаты ограничена длиной волны излучения ?x ( ?, но, с другой стороны, световой квант всегда передает объекту импульс ?р ~ h/?, откуда и возникают квантовомеханические соотношения неопределенностей ?р.?x ( h, т. е. невозможность одновременной точной регистрации импульса и координаты тела. Точность измерения координаты за промежуток времени ?t тоже ограничена: ?x.?t ? h/?р/?t ? h / FP = 2G h / c4 = lP2/c. Это означает, что понятие координаты в данный момент времени теряет смысл. Аналогично, используя соотношение неопределенностей для энергии и времени ?E.?t ( h, придем к ограничению точности измерения времени ?t? tP = v2G h /c5. Таким образом, основные пространственно-временные понятия - координата и момент времени оказываются неприменимыми в планковской области. Нет способа реализации соответствующей физической системы отсчета, то есть невозможно передать информацию (и получить ее) из области масштаба lP.
Если все три фундаментальные константы h , G и с сохранят свою неизменность, мы придем к ситуации, где геометрические построения окажутся беспомощными и современное пространство-время должно быть замещено какой-то более общей структурой. Поэтому, например, современное рассмотрение первых мгновений рождения Вселенной и завершающей стадии коллапса при t ( tp заведомо некорректно. Некорректно также экстраполировать массы элементарных частиц за планковский предел mР = v h c /2G, а массы звезд - ниже этого предела. Не видно, как объект с размерами меньшими lP мог бы дать сигнал о своем существовании, отсутствуют также и сигналы, которые способны нести информацию об изменениях состояния любой системы за время меньшее tP. В современном понимании Вселенной tP играет роль эволюционного кванта предела, за который не удается экстраполировать какие-либо эволюционные представления.
Пока мы не знаем, какая структура придет на смену обычному пространству. Было бы любопытно провести программу построения теории гравитации, последовательно исходя из ограниченности мощностей и сил, и выяснить, насколько она была бы эквивалентна эйнштейновской теории, и насколько удобно было бы сочетать ее впоследствии с квантовыми моделями.
Между тем уровень реальности систем отсчета можно повышать и дальше. Мы пока задали только минимальный набор приборных средств для общения системы отсчета с внешним миром. Надо учитывать также поступление информации наблюдательно (канал взаимодействия прибор-наблюдатель), уровень сложности самого наблюдателя - его теоретическую программу, то есть средства интерпретации результатов наблюдений. Тут наверняка возникнут существенные ограничения, следующие из общей теории связи.
Надо учитывать также, что информация попадает на конкретный тип биологической структуры и перерабатывается там. Вся картина процессов в предельно больших и предельно малых масштабах проецируется не в пустое пространство, а на информационную структуру наблюдателя вида Homo sapiens (или какого-то иного вида), и законы этой проекции должны быть крайне нетривиальны. В конечном итоге, в законе проекции должны как-то отражаться все основные условия существования наблюдателя и даже его эволюционный путь, то есть в развертке каждого эксперимента присутствовал бы весь мир, включая космологическое начало.
Пока мы очень слабо представляем, как далеко можно продвинуться по этому труднейшему пути. Эскиз программы нужен был для того, чтобы перебросить мост (штриховой контур моста!) через идейную пропасть, отделяющую традиционные исследовательские приемы в духе обобщения геометрии от приемов типа антропогенного принципа. Мне кажется, что принципы такого рода пытаются уловить сразу конечный результат, который, так или иначе, требует самосогласованности всей картины мира для каждого наблюдателя. Но по пути к этому результату наверняка разбросано множество интереснейших ограничений, расшифровывающих возможности реальных наблюдателей.
Нетривиальность ситуации можно уловить, рассматривая, например, передачу информации об эксперименте, поставленном на нашей планете, иной цивилизации, владеющей принципиально иным языком и образной системой, в чьей практике объект эксперимента по каким-то причинам не присутствует. Здесь неопределенность их понимания объекта в любом случае заметно выше общей неопределенности в понимании нашей цивилизацией. Не исключено, что для достаточно далеких эволюционных ветвей область общего видения Вселенной крайне мала, и ничего вроде единой научной космологии (строгой в нашем современном понимании) в масштабах Вселенной не существует. Общезначимой может оказаться только деятельность по стыковке различных систем практики, в той степени, в какой эта стыковка необходима и допустима. При высокой космогонической активности цивилизаций, принадлежащих весьма далеким эволюционным линиям, это могло бы привести к крайне различной организации смежных участков Вселенной. И попытка проникнуть в соседний участок требовала бы очень глубокого понимания далеких систем мировосприятия и в какой-то степени подчинения тем законам игры, которые из них следуют.
Впрочем, за правилом, согласно которому объект (звезда, планета, частица) таков, какова изучающая его цивилизация, мы имели возможность проследить во время исторических путешествий. Оно, в общем, неплохо работает и свидетельствует о том, что простенькая система отсчета, состоящая из фонарика, часов и духообразного наблюдателя, обретая плоть, превращается сначала в физическое тело, способное генерировать и поглощать энергию, обретает информационную биологическую подсистему (разумного наблюдателя) и, в конце концов, становится полным социокультурным комплексом.
Такое усложнение одного из основных и, казалось бы, по определению, простейших физических понятий не покажется чрезмерным в свете той программы перестройки астрофизики и космогонии, которая обсуждалась в предыдущей главе. Проблема ограничений информационного характера и вообще всего того, что вытекает из конкретной модели наблюдателя, выглядит малозначительной, лишь пока мы не попытались всерьез посмотреть на Вселенную с учетом разумной деятельности ее обитателей. С физической точки зрения, такая Вселенная обретает не просто аномалии в звездных спектрах и движениях некоторых тел, но и как бы новые спектры социокультурного типа. В далеком будущем развитого Контакта мы во многом будем воспринимать ее сквозь социокультурные спектрограммы скорее как мыслящее существо, чем величественный конгломерат атомов. Важна будет не только наша оценка какого-то явления галактического масштаба, но и то, как его воспринимают и фиксируют в своей системе различные "мыслящие участки Вселенной" - иные цивилизации. Объективность такого уровня непременно потребует взаимного перевода образов и понятий, а, следовательно, и задания правил перехода между различными социокультурными системами отсчета. Потребуется и какой-то общедоступный язык типа нашей математики, однако он может включить в себя приемы в духе целостного моделирования сложных объектов и сверхплотных информационных потоков и во многом отличаться от современных логико-формальных схем.
Где-то на пути от современно недоукомплектованной системы отсчета к системе отсчета социокультурной физика, возможно, утратит многие черты предельно точной естественной науки, но ее приобретения наверняка окупят потери. Ибо приведение уровня претензий в соответствие с действительностью всегда приносит пользу методам познания и носителями этих методов.
НА ГРАНИ ФАНТАСТИКИ
При обсуждении проблемы Контакта часто всплывает вопрос о еще не открытых законах науки. Подумаем, в самом деле, что осталось бы от наших дискуссий, проводись они лет сто назад?
Ни радио, ни мощные источники когерентного излучения - лазеры известны тогда не были, никто не знал, как поддерживают свое долгое и яркое существование звезды, наконец, не летали ракеты и даже самолеты (учесть, что писалось это все-таки в начале 80-х ХХ века).
В этих условиях сама постановка задачи межзвездного сигнального Контакта выглядела бы несколько странной. Астрономы быстро догадались бы, что для надежной связи понадобится что-то вроде настоящих звезд, но такие проекты (цивилизация II типа и т. п.) были бы расценены как слишком далекая мечта с обязательной оговоркой - возможно, неосуществимая, ибо источники энергии неизвестны и неясно даже, как подойти к их исследованию... Ну, а элементарные и экологически губительные проекты гигантских костров и таежных треугольников не в счет - дальше соседних планет таким способом никого о своем существовании не оповестишь.
Разумеется, в обрисованной ситуации единственная серьезная возможность - транспортный Контакт. Поскольку принцип ракетного движения в определенной степени был известен (он целиком лежит в рамках ньютоновой механики), вариант считался бы осуществимым и, пожалуй, не слишком фантастическим с точки зрения сроков. Участники дискуссии вполне резонно указали бы, что полет к ближайшим звездам в радиусе 20 парсек займет чуть больше 22 лет, если допустить ускорение 2g (туда и обратно в режимах разгон-торможение). Конечно, всплыли бы проблемы энергетики и огромной стартовой массы, но оставалась возможность уповать на те же еще не открытые звездные источники энергии.
Из этой воображаемой дискуссии можно извлечь пару хороших уроков.
Во-первых, разгон ракеты на первом же участке в 10 пс привел бы к восьмикратному превышению скорости света. Рассчитать это на основе классической механики легко (v= v2ar), но как догадаться о том, что превышение недопустимо, и вообще о непригодности великолепных ньютоновских формул при больших скоростях? Вскоре после дискуссии будут открыты законы теории относительности, и все станет на свои места. Станет ясно, что в смысле сроков полета несколькими десятилетиями не отделаешься, что нужно рассматривать расщепление цивилизации и т. д., и т. п.
Во-вторых, еще через несколько десятилетий физики поймут природу термоядерных реакций и научатся устраивать вспышки звездной температуры. Но окажется, что даже идеальные варианты управляемых термоядерных реакторов будущего проблемы межзвездных транспортных Контактов не решат. Они должны быть полезны для земной энергетики 21 века, для освоения Солнечной системы, но вряд ли сумеют сыграть решающую роль в полетах галактических масштабов.
Суть уроков в том, что источник надежды иногда подводит, а, казалось бы, бесспорные истины сталкиваются с качественно новым уровнем понимания и неузнаваемо преобразуются.
Обсуждая средства Контакта, мы, возможно, кое-где впали в аналогичные ошибки. Не исключено, что аннигиляционные реакторы вообще не смогут работать на реактивном транспорте, а развитие теории пространства-времени подкинет принципиально новые идеи движения. В общем, к линейной экстраполяции современных технических достижений надо относиться с опаской. Полезно помнить, что фундамент научных законов, на которых покоятся представления о транспортном и сигнальном Контакте, тоже систематически реконструируется и это вполне нормальный процесс.
Но попробуем обсудить отклонения от прогнозов на более высоком уровне, когда дело не сводится к действию в каких-то областях Вселенной еще неизвестных законов физики.
Можно ставить вопрос шире: универсальна ли наша физика, не следует ли вообразить себе совсем иные ее варианты?
В такой постановке проблема выглядит фантастично, гораздо фантастичней любых межгалактических полетов. При всем том, она очень интересна и глубока и, как мы убедимся вскоре, в какой-то степени уже существует.
Чтобы конкретно почувствовать ситуацию многих физик, начнем издалека.
Нетрудно уловить, например, ситуацию многих биологий. Можно полагать, что в несколько иных условиях в итоге первого миллиарда лет эволюции на Земле мог бы закрепиться иной генетический код. Планета, где жизнь развивается на той же белково-нуклеиновой основе, но с несколько иным кодом, дала бы нам пример другой биологии. Известную классификацию живых существ пришлось бы, конечно, сильно расширить, однако у нее нашелся бы общий корень - на уровне протобионтов с еще не сформированным генетическим аппаратом. Единой основой служила бы при этом биохимическая структура общий набор молекулярных блоков. Видимо, развитые формы жизни с иным кодом были бы экологически несовместимы с земными формами.
Можно представить себе и принципиально иной вариант биохимического реактора, где в основу жизни заложены иные молекулярные блоки. Наглядный пример на эту тему строится путем замены двухвалентного иона кислорода аминовой группой NH. Это сразу меняет вид обоих пиримидиновых оснований ДНК - цитозина и тимина. Соответственно, подставив вместо одновалентного гидроксила ОН амин NH2, получим качественно новый аналог пуринового основания - гуанина. Незатронутым остается только второе пуриновое основание ДНК - аденин. Такие же замены ведут к новой структуре белков группа СООН в аминокислотах переходит в группу CNHNH2. Таким образом выстраиваются сколь угодно сложные бескислородные "белково-нуклеиновые" комплексы. Не видно причин, по которым на аминовой основе не могли бы возникнуть весьма сложные формы жизни*. Другой очевидный вариант фтористый аналог белково-нуклеиновых комплексов, где фтор замещает кислород, а плавиковая кислота (HF) - обычную воду. Оценить характер сложных организмов, возникших на аминовой или фтористой основе, очень трудно, ясно только, что такие существа в биологическом отношении были бы полностью изолированы от нас, хотя возможности информационного Контакта оставались бы достаточно широкими. Учет многих биохимий заметно увеличивает шансы встретить жизнь и разум во Вселенной, хотя речь идет об уже довольно далеких от нас эволюционных ветвях. Классификация организмов теперь не могла бы вестись чисто биологическим путем, однако важно, что для них существует единая химическая основа на атомно-молекулярном уровне.
*Роль воды играл бы здесь аммиак.
Поверить в то, что известные нам законы строения химических соединений могут привести к очень далеким по свойствам биологическим системам, не так уж трудно. Тем более развесистая эволюционная крона должна получаться на уровне, скажем, технологически развитых социальных структур. Во всем этом нет ничего слишком необычного. Земные образцы метаболизма и репродукции живых организмов не обязательно наилучшие и тем более единственно возможные во Вселенной. Соответственно с их относительностью мы можем допускать и совершенно нереализуемые в земных условиях пути социализации. Кое-что в этом смысле выдвинуто фантастами - мы имеем в виду, прежде всего, лемовский Солярис и хойловское Черное облако как примеры социальных структур с практически неиндивидуализированными элементами*. Естественно допустить, что далекие ветви социализации связаны с совершенно иными типами передачи небиологической наследственной информации, то есть их система обучения и науки может резко отличаться от известной нам, совершенно иной характер может носить и их технологическая активность.
* Я не уверен, что такие структуры следует рассматривать как самые мощные формы разума. Скорее всего, будущая теория очень сложных систем выведет какой-то оптимальный вариант или набор вариантов с определенным балансом между уровнями социализации и индивидуализации. Разумеется, этот баланс может зависеть от строения основных биомолекул.
Интересные перспективы открываются при обсуждении искусственных систем типа компьютеров. С одной стороны, они открывают особую эволюционную ветвь организмов, где запись и переработка информации осуществляется на уровне технических микроэлементов. С другой - главное стремление создателей компьютеров заключается в перезаписи информации на молекулярный уровень, что по современным представлениям выглядит самым компактным и выгодным способом содержания информационных массивов. Молекулярные структуры, которые лягут в основу будущих разумных машин, могут заметно отличаться от известных белково-нуклеиновых комплексов и порождать новую биохимическую (киберхимическую?) линию эволюции.
Короче говоря, широчайший спектр возможностей эволюции, начиная с биохимического уровня и выше,- явление вполне допустимое и, вероятно, во многом доступное обсуждению.
Но попробуем отступить немного назад и поискать более ранние разветвления общей эволюции. Биохимические, биологические и социокультурные разбежки в конечном итоге можно рассматривать как обширную крону на едином химическом стволе. Едином ли? Не могли ли физические условия в отдельных областях Вселенной привести к устойчивой репродукции совсем иных атомно-молекулярных структур?
Очевидно, речь идет об условиях, изменяющих параметры и, возможно, состав атомов и молекул. Такого типа условия известны и в какой-то степени изучены.
При определенных температурных режимах и высоком давлении можно ожидать появления необычных молекулярных структур - в недрах планет или на поверхности черных карликов. Было бы интересно выяснить, допустима ли в этих случаях какая-то полимеризация и длительное существование более или менее сложных квазиорганических соединений, иными словами - исходные условия для зарождения жизни. Другая любопытная ситуация - соединения атомов, деформированных сильными внешними полями.
Наконец, можно рассматривать атомы, где роль некоторых орбитальных частиц играют не электроны, а мюон, ?-лептон и даже адроны. Мюонные атомы изучены неплохо. Поскольку масса мюона в 200 раз больше массы электрона, размеры такого атома во столько же раз меньше, а объем уменьшается уже в 8 млн. раз. Еще большие изменения имеют место при орбитировании ?- или К-мезонов. Мезоатомная химия требует особых условий наблюдения - мюон живет около 2.10-6 секунды, а ?-мезон, который ко всему прочему способен сильно взаимодействовать с ядром,- всего 2,6.10-8 с. Это большие времена лишь по ядерным масштабам (то есть в единицах 10-23 с). Однако можно вообразить ситуацию с относительным изобилием, скажем, мюонов, когда мезоатомные структуры постоянно возобновляются и это оказывает существенное влияние на ход химических реакций - создаются необычные каталитические условия. Еще один вариант - атомы с необычными ядрами, включающими, например, гипероны или переходящими в сверхплотное состояние. В вакууме гипероны распадаются довольно быстро, но на поверхности нейтронных звезд, где гравитационный потенциал может достигать огромных величин (до ?~0,1 с2), некоторые каналы распадов должны запираться и гиперядра станут стабильными. Вообще поверхности нейтронных звезд, в соответствии с довольно давними гипотезами Коккони, Моррисона и Дайсона, подозрительны с точки зрения особой химии, которая может там разыгрываться.
Речь идет о гипотезе так называемой "ядерной жизни". В соответствии с ней, на поверхности нейтронных звезд могут возникать сложные ядерные структуры молекулярного типа, что и позволяет говорить о кодировании информации по аналогии с обычным атомно-молекулярным уровнем. Сами ядерные молекулы простейшего типа были открыты еще в 1960 г. в экспериментах Чок-Риверской Лаборатории (США) при изучении столкновений ядер углерода. Наряду со слиянием двух ядер углерода в ядро марганца (12С6 + 12С6 > 24Mg12) возникали своеобразные слабо связанные двууглеродные состояния гантелевидной формы. По обычным меркам ядерные молекулы крайне неустойчивы - их время жизни порядка 10-21 с, но оно весьма велико в масштабе характерного времени ядерных реакций (10-23 с), и с этой точки зрения вполне можно говорить о существовании особых объектов, чья структура сложнее отдельных ядер. Сейчас ведется активное исследование различных ядерных молекул на новых ускорителях тяжелых ионов, но, разумеется, делать выводы о появлении особой ветви жизни пока рано. Тут лишь начинается прорыв в область химии на ядерном уровне, и получены лишь примитивнейшие соединения. Пока не обнаружено чего-либо, напоминающего эффект полимеризации, так что до прямой проверки гипотезы очень далеко. Однако понятно, что в условиях мощной энергетики пульсаров при обилии ядерного вещества могут возникать и эффекты, пока недоступные нашему эксперименту. Остается только мечтать о тех временах, когда мы сумеем (в духе экспериментов Юри-Миллера для условий древнейшей Земли) смоделировать соответствующую обстановку для пульсаров...
Надо понимать, что, вступая в очерченную несколькими штрихами область иных химий, мы попадаем на значительно более зыбкую почву, чем это было в ситуации со многими биологиями. Уровень четкости аналогий здесь резко падает, и, заводя, скажем, речь о каких-то живых и разумных существах, развившихся в подобных условиях, мы, не имеющие ясного представления даже о любителях принимать аммиачные ванны, рискуем удариться в не омраченную научными доводами фантастику. Но такова судьба всех очень далеких экстраполяций.
Иные химии, основанные на необычных атомах, могут оказаться и пустым номером, не порождая достаточно гибких структур. Однако если они и дают что-то, соответствующее самым широким представлениям о жизни и разуме, возникают очень серьезные проблемы нашей, так сказать, относительной коммуникабельности.
Мы знаем, что Контакт можно осуществить, имея какую-то общую зону практической деятельности. На простейших пересечениях практики (пища, ее добыча, орудия охоты и труда, жилища) строились первичные контакты народов Земли. И этот фрагмент географической модели Контакта обнадеживает в том плане, что достаточно близкие нам по практике инопланетяне будут поняты и поймут нас. Уже гипотеза разных биологий порождает немалые трудности - зоны пересекающейся практики могут оказаться весьма ограниченными, и взаимопонимание сильно затруднится. Что же говорить тогда об эволюционных ветвях разных химий? Здесь, пожалуй, теряется даже надежда на какую-то схожесть технологических систем, то есть непонятен сам характер их способов преобразования окружающей среды - эта среда очень уж отличается от всего известного в окрестностях Земли. Что может означать, например, искусственная фаза в жизни нейтронной звезды или черного карлика, до каких тонкостей мы должны довести теорию их строения, чтобы выяснить природу такой фазы? Видимо, немалое еще время эти вопросы будут непосредственно волновать одних фантастов...
В физическом понимании Вселенной существует немало интересных проблем, решение которых в ближайшем будущем представляется не слишком вероятным. Любопытно все-таки, что удается кое-что сказать о проблемах, отделенных от нас вроде бы огромным техническим (если не общепознавательным!) барьером.
Одна из них - возможно, важнейшая - неудовлетворительность современной концепции пространства-времени. Все, что мы пока умеем делать,- это локализовать трудности в экспериментально недоступных областях.
Попробуем взглянуть на ситуацию с пространственно-временными измерениями с точки зрения самых общих ограничений, которым должны подчиняться системы отсчета. Важнейшее положение специальной теории относительности заключается в том, что всякая система отсчета должна быть снабжена средством синхронизации часов с другими системами. До получения конкретного сигнала мы не можем знать показаний часов в интересующей нас точке пространства. В качестве сигнального средства может использоваться любой носитель энергии, например, самый быстрый - световой луч. Но в таком случае скорость передачи любой информации не может превышать скорости этого носителя, то есть v ? с. Собственно эйнштейновские мысленные эксперименты (подтвержденные впоследствии всей совокупностью экспериментов реальных) можно рассматривать как первый шаг в программе построения реальных систем отсчета, снабженных средствами информационного обмена. В ньютоновской механике этот шаг сделан не был - не конкретизировался синхронизирующий сигнал, из-за чего отсутствовали ограничения на скорость, а фактическая область применения ограничивались условия v " с.
Следующий шаг связан с учетом тяготения в окрестности системы отсчета. Имея источник и приемник излучения и, конечно, блоки их снабжения и обслуживания, реальная система отсчета должна обладать массой, но все-таки выпускать излучение - хотя бы синхронизирующие сигналы. Поэтому необходимо, чтобы скорость отрыва от нее была несколько меньше скорости света, а отсюда легко вывести, что физический радиус системы должен быть больше гравитационного R > Rg = 2GM/c2 . Следовательно, вся внутренняя область черной дыры не может служить моделью системы отсчета - в этом заключено самое общее выражение ее информационной несвязанности с внешним миром.
Испускание сигнала влияет на систему. Направленный сигнал - это импульс, например, света. Выбрасывая его, система должна приобрести ускорение
а ~?P/M? < c/? - последнее условие из-за того, что за характерное время ? она не разгонится до сверхсветовой скорости. Поскольку импульс не может передаваться всему телу системы за время, меньшее времени распространения светового сигнала в ее объеме, получим простое условие ? > R/c > 2GM/c3. Следовательно, реактивное ускорение системы всегда ограничено: a< c4/2GM, и соответственно фундаментально ограничена сила, действующая на нее: F < c4/2G. Ни один информационный сигнал не может приводить к силовой реакции на источник, превосходящий планковский масштаб силы FP = c4/2G = 6.1043 Н!
Аналогичное заключение получаем и в случае изотропного сигнала. Так или иначе, излучая энергию, система теряет полную массу. Ее физический радиус убывает, и его скорость убывания не может превосходить скорость света. В свою очередь, гравитационный радиус не может убывать быстрее физического. Отсюда получаем ограничение на темп изменения массы (?tM < c3/2G) и на светимость (L < c5/2G).
Таким образом, мощность излучения сигнала ограничена планковской мощностью LP.
Световые потоки нужны нам в частности для определения координат объектов (тех же систем отсчета) и хода часов. Точность регистрации координаты ограничена длиной волны излучения ?x ( ?, но, с другой стороны, световой квант всегда передает объекту импульс ?р ~ h/?, откуда и возникают квантовомеханические соотношения неопределенностей ?р.?x ( h, т. е. невозможность одновременной точной регистрации импульса и координаты тела. Точность измерения координаты за промежуток времени ?t тоже ограничена: ?x.?t ? h/?р/?t ? h / FP = 2G h / c4 = lP2/c. Это означает, что понятие координаты в данный момент времени теряет смысл. Аналогично, используя соотношение неопределенностей для энергии и времени ?E.?t ( h, придем к ограничению точности измерения времени ?t? tP = v2G h /c5. Таким образом, основные пространственно-временные понятия - координата и момент времени оказываются неприменимыми в планковской области. Нет способа реализации соответствующей физической системы отсчета, то есть невозможно передать информацию (и получить ее) из области масштаба lP.
Если все три фундаментальные константы h , G и с сохранят свою неизменность, мы придем к ситуации, где геометрические построения окажутся беспомощными и современное пространство-время должно быть замещено какой-то более общей структурой. Поэтому, например, современное рассмотрение первых мгновений рождения Вселенной и завершающей стадии коллапса при t ( tp заведомо некорректно. Некорректно также экстраполировать массы элементарных частиц за планковский предел mР = v h c /2G, а массы звезд - ниже этого предела. Не видно, как объект с размерами меньшими lP мог бы дать сигнал о своем существовании, отсутствуют также и сигналы, которые способны нести информацию об изменениях состояния любой системы за время меньшее tP. В современном понимании Вселенной tP играет роль эволюционного кванта предела, за который не удается экстраполировать какие-либо эволюционные представления.
Пока мы не знаем, какая структура придет на смену обычному пространству. Было бы любопытно провести программу построения теории гравитации, последовательно исходя из ограниченности мощностей и сил, и выяснить, насколько она была бы эквивалентна эйнштейновской теории, и насколько удобно было бы сочетать ее впоследствии с квантовыми моделями.
Между тем уровень реальности систем отсчета можно повышать и дальше. Мы пока задали только минимальный набор приборных средств для общения системы отсчета с внешним миром. Надо учитывать также поступление информации наблюдательно (канал взаимодействия прибор-наблюдатель), уровень сложности самого наблюдателя - его теоретическую программу, то есть средства интерпретации результатов наблюдений. Тут наверняка возникнут существенные ограничения, следующие из общей теории связи.
Надо учитывать также, что информация попадает на конкретный тип биологической структуры и перерабатывается там. Вся картина процессов в предельно больших и предельно малых масштабах проецируется не в пустое пространство, а на информационную структуру наблюдателя вида Homo sapiens (или какого-то иного вида), и законы этой проекции должны быть крайне нетривиальны. В конечном итоге, в законе проекции должны как-то отражаться все основные условия существования наблюдателя и даже его эволюционный путь, то есть в развертке каждого эксперимента присутствовал бы весь мир, включая космологическое начало.
Пока мы очень слабо представляем, как далеко можно продвинуться по этому труднейшему пути. Эскиз программы нужен был для того, чтобы перебросить мост (штриховой контур моста!) через идейную пропасть, отделяющую традиционные исследовательские приемы в духе обобщения геометрии от приемов типа антропогенного принципа. Мне кажется, что принципы такого рода пытаются уловить сразу конечный результат, который, так или иначе, требует самосогласованности всей картины мира для каждого наблюдателя. Но по пути к этому результату наверняка разбросано множество интереснейших ограничений, расшифровывающих возможности реальных наблюдателей.
Нетривиальность ситуации можно уловить, рассматривая, например, передачу информации об эксперименте, поставленном на нашей планете, иной цивилизации, владеющей принципиально иным языком и образной системой, в чьей практике объект эксперимента по каким-то причинам не присутствует. Здесь неопределенность их понимания объекта в любом случае заметно выше общей неопределенности в понимании нашей цивилизацией. Не исключено, что для достаточно далеких эволюционных ветвей область общего видения Вселенной крайне мала, и ничего вроде единой научной космологии (строгой в нашем современном понимании) в масштабах Вселенной не существует. Общезначимой может оказаться только деятельность по стыковке различных систем практики, в той степени, в какой эта стыковка необходима и допустима. При высокой космогонической активности цивилизаций, принадлежащих весьма далеким эволюционным линиям, это могло бы привести к крайне различной организации смежных участков Вселенной. И попытка проникнуть в соседний участок требовала бы очень глубокого понимания далеких систем мировосприятия и в какой-то степени подчинения тем законам игры, которые из них следуют.
Впрочем, за правилом, согласно которому объект (звезда, планета, частица) таков, какова изучающая его цивилизация, мы имели возможность проследить во время исторических путешествий. Оно, в общем, неплохо работает и свидетельствует о том, что простенькая система отсчета, состоящая из фонарика, часов и духообразного наблюдателя, обретая плоть, превращается сначала в физическое тело, способное генерировать и поглощать энергию, обретает информационную биологическую подсистему (разумного наблюдателя) и, в конце концов, становится полным социокультурным комплексом.
Такое усложнение одного из основных и, казалось бы, по определению, простейших физических понятий не покажется чрезмерным в свете той программы перестройки астрофизики и космогонии, которая обсуждалась в предыдущей главе. Проблема ограничений информационного характера и вообще всего того, что вытекает из конкретной модели наблюдателя, выглядит малозначительной, лишь пока мы не попытались всерьез посмотреть на Вселенную с учетом разумной деятельности ее обитателей. С физической точки зрения, такая Вселенная обретает не просто аномалии в звездных спектрах и движениях некоторых тел, но и как бы новые спектры социокультурного типа. В далеком будущем развитого Контакта мы во многом будем воспринимать ее сквозь социокультурные спектрограммы скорее как мыслящее существо, чем величественный конгломерат атомов. Важна будет не только наша оценка какого-то явления галактического масштаба, но и то, как его воспринимают и фиксируют в своей системе различные "мыслящие участки Вселенной" - иные цивилизации. Объективность такого уровня непременно потребует взаимного перевода образов и понятий, а, следовательно, и задания правил перехода между различными социокультурными системами отсчета. Потребуется и какой-то общедоступный язык типа нашей математики, однако он может включить в себя приемы в духе целостного моделирования сложных объектов и сверхплотных информационных потоков и во многом отличаться от современных логико-формальных схем.
Где-то на пути от современно недоукомплектованной системы отсчета к системе отсчета социокультурной физика, возможно, утратит многие черты предельно точной естественной науки, но ее приобретения наверняка окупят потери. Ибо приведение уровня претензий в соответствие с действительностью всегда приносит пользу методам познания и носителями этих методов.
НА ГРАНИ ФАНТАСТИКИ
При обсуждении проблемы Контакта часто всплывает вопрос о еще не открытых законах науки. Подумаем, в самом деле, что осталось бы от наших дискуссий, проводись они лет сто назад?
Ни радио, ни мощные источники когерентного излучения - лазеры известны тогда не были, никто не знал, как поддерживают свое долгое и яркое существование звезды, наконец, не летали ракеты и даже самолеты (учесть, что писалось это все-таки в начале 80-х ХХ века).
В этих условиях сама постановка задачи межзвездного сигнального Контакта выглядела бы несколько странной. Астрономы быстро догадались бы, что для надежной связи понадобится что-то вроде настоящих звезд, но такие проекты (цивилизация II типа и т. п.) были бы расценены как слишком далекая мечта с обязательной оговоркой - возможно, неосуществимая, ибо источники энергии неизвестны и неясно даже, как подойти к их исследованию... Ну, а элементарные и экологически губительные проекты гигантских костров и таежных треугольников не в счет - дальше соседних планет таким способом никого о своем существовании не оповестишь.
Разумеется, в обрисованной ситуации единственная серьезная возможность - транспортный Контакт. Поскольку принцип ракетного движения в определенной степени был известен (он целиком лежит в рамках ньютоновой механики), вариант считался бы осуществимым и, пожалуй, не слишком фантастическим с точки зрения сроков. Участники дискуссии вполне резонно указали бы, что полет к ближайшим звездам в радиусе 20 парсек займет чуть больше 22 лет, если допустить ускорение 2g (туда и обратно в режимах разгон-торможение). Конечно, всплыли бы проблемы энергетики и огромной стартовой массы, но оставалась возможность уповать на те же еще не открытые звездные источники энергии.
Из этой воображаемой дискуссии можно извлечь пару хороших уроков.
Во-первых, разгон ракеты на первом же участке в 10 пс привел бы к восьмикратному превышению скорости света. Рассчитать это на основе классической механики легко (v= v2ar), но как догадаться о том, что превышение недопустимо, и вообще о непригодности великолепных ньютоновских формул при больших скоростях? Вскоре после дискуссии будут открыты законы теории относительности, и все станет на свои места. Станет ясно, что в смысле сроков полета несколькими десятилетиями не отделаешься, что нужно рассматривать расщепление цивилизации и т. д., и т. п.
Во-вторых, еще через несколько десятилетий физики поймут природу термоядерных реакций и научатся устраивать вспышки звездной температуры. Но окажется, что даже идеальные варианты управляемых термоядерных реакторов будущего проблемы межзвездных транспортных Контактов не решат. Они должны быть полезны для земной энергетики 21 века, для освоения Солнечной системы, но вряд ли сумеют сыграть решающую роль в полетах галактических масштабов.
Суть уроков в том, что источник надежды иногда подводит, а, казалось бы, бесспорные истины сталкиваются с качественно новым уровнем понимания и неузнаваемо преобразуются.
Обсуждая средства Контакта, мы, возможно, кое-где впали в аналогичные ошибки. Не исключено, что аннигиляционные реакторы вообще не смогут работать на реактивном транспорте, а развитие теории пространства-времени подкинет принципиально новые идеи движения. В общем, к линейной экстраполяции современных технических достижений надо относиться с опаской. Полезно помнить, что фундамент научных законов, на которых покоятся представления о транспортном и сигнальном Контакте, тоже систематически реконструируется и это вполне нормальный процесс.
Но попробуем обсудить отклонения от прогнозов на более высоком уровне, когда дело не сводится к действию в каких-то областях Вселенной еще неизвестных законов физики.
Можно ставить вопрос шире: универсальна ли наша физика, не следует ли вообразить себе совсем иные ее варианты?
В такой постановке проблема выглядит фантастично, гораздо фантастичней любых межгалактических полетов. При всем том, она очень интересна и глубока и, как мы убедимся вскоре, в какой-то степени уже существует.
Чтобы конкретно почувствовать ситуацию многих физик, начнем издалека.
Нетрудно уловить, например, ситуацию многих биологий. Можно полагать, что в несколько иных условиях в итоге первого миллиарда лет эволюции на Земле мог бы закрепиться иной генетический код. Планета, где жизнь развивается на той же белково-нуклеиновой основе, но с несколько иным кодом, дала бы нам пример другой биологии. Известную классификацию живых существ пришлось бы, конечно, сильно расширить, однако у нее нашелся бы общий корень - на уровне протобионтов с еще не сформированным генетическим аппаратом. Единой основой служила бы при этом биохимическая структура общий набор молекулярных блоков. Видимо, развитые формы жизни с иным кодом были бы экологически несовместимы с земными формами.
Можно представить себе и принципиально иной вариант биохимического реактора, где в основу жизни заложены иные молекулярные блоки. Наглядный пример на эту тему строится путем замены двухвалентного иона кислорода аминовой группой NH. Это сразу меняет вид обоих пиримидиновых оснований ДНК - цитозина и тимина. Соответственно, подставив вместо одновалентного гидроксила ОН амин NH2, получим качественно новый аналог пуринового основания - гуанина. Незатронутым остается только второе пуриновое основание ДНК - аденин. Такие же замены ведут к новой структуре белков группа СООН в аминокислотах переходит в группу CNHNH2. Таким образом выстраиваются сколь угодно сложные бескислородные "белково-нуклеиновые" комплексы. Не видно причин, по которым на аминовой основе не могли бы возникнуть весьма сложные формы жизни*. Другой очевидный вариант фтористый аналог белково-нуклеиновых комплексов, где фтор замещает кислород, а плавиковая кислота (HF) - обычную воду. Оценить характер сложных организмов, возникших на аминовой или фтористой основе, очень трудно, ясно только, что такие существа в биологическом отношении были бы полностью изолированы от нас, хотя возможности информационного Контакта оставались бы достаточно широкими. Учет многих биохимий заметно увеличивает шансы встретить жизнь и разум во Вселенной, хотя речь идет об уже довольно далеких от нас эволюционных ветвях. Классификация организмов теперь не могла бы вестись чисто биологическим путем, однако важно, что для них существует единая химическая основа на атомно-молекулярном уровне.
*Роль воды играл бы здесь аммиак.
Поверить в то, что известные нам законы строения химических соединений могут привести к очень далеким по свойствам биологическим системам, не так уж трудно. Тем более развесистая эволюционная крона должна получаться на уровне, скажем, технологически развитых социальных структур. Во всем этом нет ничего слишком необычного. Земные образцы метаболизма и репродукции живых организмов не обязательно наилучшие и тем более единственно возможные во Вселенной. Соответственно с их относительностью мы можем допускать и совершенно нереализуемые в земных условиях пути социализации. Кое-что в этом смысле выдвинуто фантастами - мы имеем в виду, прежде всего, лемовский Солярис и хойловское Черное облако как примеры социальных структур с практически неиндивидуализированными элементами*. Естественно допустить, что далекие ветви социализации связаны с совершенно иными типами передачи небиологической наследственной информации, то есть их система обучения и науки может резко отличаться от известной нам, совершенно иной характер может носить и их технологическая активность.
* Я не уверен, что такие структуры следует рассматривать как самые мощные формы разума. Скорее всего, будущая теория очень сложных систем выведет какой-то оптимальный вариант или набор вариантов с определенным балансом между уровнями социализации и индивидуализации. Разумеется, этот баланс может зависеть от строения основных биомолекул.
Интересные перспективы открываются при обсуждении искусственных систем типа компьютеров. С одной стороны, они открывают особую эволюционную ветвь организмов, где запись и переработка информации осуществляется на уровне технических микроэлементов. С другой - главное стремление создателей компьютеров заключается в перезаписи информации на молекулярный уровень, что по современным представлениям выглядит самым компактным и выгодным способом содержания информационных массивов. Молекулярные структуры, которые лягут в основу будущих разумных машин, могут заметно отличаться от известных белково-нуклеиновых комплексов и порождать новую биохимическую (киберхимическую?) линию эволюции.
Короче говоря, широчайший спектр возможностей эволюции, начиная с биохимического уровня и выше,- явление вполне допустимое и, вероятно, во многом доступное обсуждению.
Но попробуем отступить немного назад и поискать более ранние разветвления общей эволюции. Биохимические, биологические и социокультурные разбежки в конечном итоге можно рассматривать как обширную крону на едином химическом стволе. Едином ли? Не могли ли физические условия в отдельных областях Вселенной привести к устойчивой репродукции совсем иных атомно-молекулярных структур?
Очевидно, речь идет об условиях, изменяющих параметры и, возможно, состав атомов и молекул. Такого типа условия известны и в какой-то степени изучены.
При определенных температурных режимах и высоком давлении можно ожидать появления необычных молекулярных структур - в недрах планет или на поверхности черных карликов. Было бы интересно выяснить, допустима ли в этих случаях какая-то полимеризация и длительное существование более или менее сложных квазиорганических соединений, иными словами - исходные условия для зарождения жизни. Другая любопытная ситуация - соединения атомов, деформированных сильными внешними полями.
Наконец, можно рассматривать атомы, где роль некоторых орбитальных частиц играют не электроны, а мюон, ?-лептон и даже адроны. Мюонные атомы изучены неплохо. Поскольку масса мюона в 200 раз больше массы электрона, размеры такого атома во столько же раз меньше, а объем уменьшается уже в 8 млн. раз. Еще большие изменения имеют место при орбитировании ?- или К-мезонов. Мезоатомная химия требует особых условий наблюдения - мюон живет около 2.10-6 секунды, а ?-мезон, который ко всему прочему способен сильно взаимодействовать с ядром,- всего 2,6.10-8 с. Это большие времена лишь по ядерным масштабам (то есть в единицах 10-23 с). Однако можно вообразить ситуацию с относительным изобилием, скажем, мюонов, когда мезоатомные структуры постоянно возобновляются и это оказывает существенное влияние на ход химических реакций - создаются необычные каталитические условия. Еще один вариант - атомы с необычными ядрами, включающими, например, гипероны или переходящими в сверхплотное состояние. В вакууме гипероны распадаются довольно быстро, но на поверхности нейтронных звезд, где гравитационный потенциал может достигать огромных величин (до ?~0,1 с2), некоторые каналы распадов должны запираться и гиперядра станут стабильными. Вообще поверхности нейтронных звезд, в соответствии с довольно давними гипотезами Коккони, Моррисона и Дайсона, подозрительны с точки зрения особой химии, которая может там разыгрываться.
Речь идет о гипотезе так называемой "ядерной жизни". В соответствии с ней, на поверхности нейтронных звезд могут возникать сложные ядерные структуры молекулярного типа, что и позволяет говорить о кодировании информации по аналогии с обычным атомно-молекулярным уровнем. Сами ядерные молекулы простейшего типа были открыты еще в 1960 г. в экспериментах Чок-Риверской Лаборатории (США) при изучении столкновений ядер углерода. Наряду со слиянием двух ядер углерода в ядро марганца (12С6 + 12С6 > 24Mg12) возникали своеобразные слабо связанные двууглеродные состояния гантелевидной формы. По обычным меркам ядерные молекулы крайне неустойчивы - их время жизни порядка 10-21 с, но оно весьма велико в масштабе характерного времени ядерных реакций (10-23 с), и с этой точки зрения вполне можно говорить о существовании особых объектов, чья структура сложнее отдельных ядер. Сейчас ведется активное исследование различных ядерных молекул на новых ускорителях тяжелых ионов, но, разумеется, делать выводы о появлении особой ветви жизни пока рано. Тут лишь начинается прорыв в область химии на ядерном уровне, и получены лишь примитивнейшие соединения. Пока не обнаружено чего-либо, напоминающего эффект полимеризации, так что до прямой проверки гипотезы очень далеко. Однако понятно, что в условиях мощной энергетики пульсаров при обилии ядерного вещества могут возникать и эффекты, пока недоступные нашему эксперименту. Остается только мечтать о тех временах, когда мы сумеем (в духе экспериментов Юри-Миллера для условий древнейшей Земли) смоделировать соответствующую обстановку для пульсаров...
Надо понимать, что, вступая в очерченную несколькими штрихами область иных химий, мы попадаем на значительно более зыбкую почву, чем это было в ситуации со многими биологиями. Уровень четкости аналогий здесь резко падает, и, заводя, скажем, речь о каких-то живых и разумных существах, развившихся в подобных условиях, мы, не имеющие ясного представления даже о любителях принимать аммиачные ванны, рискуем удариться в не омраченную научными доводами фантастику. Но такова судьба всех очень далеких экстраполяций.
Иные химии, основанные на необычных атомах, могут оказаться и пустым номером, не порождая достаточно гибких структур. Однако если они и дают что-то, соответствующее самым широким представлениям о жизни и разуме, возникают очень серьезные проблемы нашей, так сказать, относительной коммуникабельности.
Мы знаем, что Контакт можно осуществить, имея какую-то общую зону практической деятельности. На простейших пересечениях практики (пища, ее добыча, орудия охоты и труда, жилища) строились первичные контакты народов Земли. И этот фрагмент географической модели Контакта обнадеживает в том плане, что достаточно близкие нам по практике инопланетяне будут поняты и поймут нас. Уже гипотеза разных биологий порождает немалые трудности - зоны пересекающейся практики могут оказаться весьма ограниченными, и взаимопонимание сильно затруднится. Что же говорить тогда об эволюционных ветвях разных химий? Здесь, пожалуй, теряется даже надежда на какую-то схожесть технологических систем, то есть непонятен сам характер их способов преобразования окружающей среды - эта среда очень уж отличается от всего известного в окрестностях Земли. Что может означать, например, искусственная фаза в жизни нейтронной звезды или черного карлика, до каких тонкостей мы должны довести теорию их строения, чтобы выяснить природу такой фазы? Видимо, немалое еще время эти вопросы будут непосредственно волновать одних фантастов...