Крайне редко повреждение файловой системы может произойти даже на отказоустойчивом томе: двойная ошибка способна разрушить и данные файловой системы, и информацию для их восстановления. Если авария системы происходит в тот момент, когда NTFS сохраняет, например, зеркальную копию записи MFT, индекса имен файлов или журнала транзакций, то зеркальная копия этих данных файловой системы обновляется не полностью. Если после перезагрузки системы ошибка, связанная с плохим сектором, возникает в том же месте основного диска, где находится частично записанная зеркальная копия, NTFS не может восстановить информацию с зеркального диска. Для детекции таких повреждений системных данных в NTFS реализована специальная схема. Если обнаружено нарушение целостности, в файле тома устанавливается бит повреждения, в результате чего при следующей загрузке системы метаданные NTFS будут реконструированы Chkdsk. Так как в отказоустойчивой дисковой конфигурации повреждение данных файловой системы маловероятно, потребность в Chkdsk возникает редко. Эта утилита позиционируется как дополнительная мера предосторожности, а не как основное средство восстановления информации.
   Использование Chkdsk в NTFS существенно отличается от ее использования в FAT Перед записью на диск FAT устанавливает бит изменения тома, который сбрасывается по завершении модификации тома. Если сбой системы происходит при выполнении операции вывода, бит остается установленным, и после перезагрузки машины запускается Chkdsk. B NTFS утилита Chkdsk запускается, только когда обнаруживаются неожиданные или нечитаемые данные файловой системы и NTFS не может восстановить их с избыточного тома или из избыточных структур данных файловой системы на обычном томе. (Система дублирует загрузочный сектор, равно как и части MFT, необходимые для загрузки системы и выполнения процедуры восстановления NTFS. Эта избыточность гарантирует, что NTFS всегда сможет загрузиться и восстановить сама себя.)
   B таблицу 12-6 сведены данные о том, что происходит при появлении плохого сектора на дисковом томе (отформатированном для одной из файловых систем Windows ) в различных ситуациях, описанных в данном разделе.
   1. Диспетчер томов не может заменять секторы ни в одном из следующих случаев: 1) жесткие диски, отличные от SCSI, не поддерживают стандартный интерфейс для замены секторов; 2) некоторые жесткие диски не имеют аппаратной поддержки замены секторов, а SCSI-диски, у которых она есть, могут со временем исчерпать весь резерв секторов.
   2. Отказоустойчивым является том одного из следующих типов: зеркальный или RAID-5. При записи данные не теряются: NTFS переназначает кластер до выполнения записи.
   Если том, на котором появился плохой сектор, сконфигурирован как отказоустойчивый, а жесткий диск поддерживает замену секторов и его запас резервных секторов еще не исчерпан, то тип файловой системы (FAT или NTFS) не имеет значения. Диспетчер томов заменяет плохой сектор, не требуя вмешательства со стороны пользователя или файловой системы.
   Если плохой сектор появился на жестком диске, не поддерживающем замену секторов, то за переназначение плохого сектора или, как в случае NTFS, кластера, в котором находится плохой сектор, отвечает файловая система. FAT не умеет переназначать секторы или кластеры.
 
Механизм EFS
   EFS (Encrypting File System) использует средства поддержки шифрования. При первом шифровании файла EFS назначает учетной записи пользователя, шифрующего этот файл, криптографическую пару – закрытый и открытый ключи. Пользователи могут шифровать файлы с помощью Windows Explorer; для этого нужно открыть диалоговое окно Properties (Свойства) применительно к нужному файлу, щелкнуть кнопку Advanced (Другие) и установить флажок Encrypt Contents To Secure Data (Шифровать содержимое для защиты данных), как показано на рис. 12-56. Пользователи также могут шифровать файлы с помощью утилиты командной строки cipher.Windows автоматически шифрует файлы в каталогах, помеченных зашифрованными. При шифровании файла EFS генерирует случайное число, называемое шифровальным ключом файла (file encryption key, FEK). EFS использует FEK для шифрования содержимого файла по более стойкому варианту DES (Data Encryption Standard) – DESX (в Windows 2000), а также no DESX, 3DES (Triple-DES) или AES (Advanced Encryption Standard) в Windows XP (Service Pack 1 и выше) и Windows Server 2003. EFS сохраняет FEK вместе с самим файлом, но FEK шифруется по алгоритму RSA-шифрования на основе открытого ключа. После выполнения EFS этих действий файл защищен: другие пользователи не смогут расшифровать данные без расшифрованного FEK файла, a FEK они не смогут расшифровать без закрытого ключа пользователя – владельца файла.
 
Стойкость алгоритмов шифрования FEK
   По умолчанию FEK шифруется в Windows 2000 и Windows XP по алгоритму DESX, а в Windows XP с Service Pack 1 (или выше) и Windows Server 2003 – по алгоритму AES. B версиях Windows, разрешенных к экспорту за пределы США, драйвер EFS реализует 56-битный ключ шифрования DESX, тогда как в версии, подлежащей использованию только в США, и в версиях с пакетом для 128-битного шифрования длина ключа DESX равна 128 битам. Алгоритм AES в Windows использует 256-битные ключи. Применение 3DES разрешает доступ к более длинным ключам, поэтому, если вам требуется более высокая стойкость FEK, вы можете включить шифрование 3DES одним из двух способов: как алгоритм шифрования для всех криптографических сервисов в системе или только для EFS.
   Чтобы 3DES стал алгоритмом шифрования для всех системных криптографических сервисов, запустите редактор локальной политики безопасности, введя secpol.mscв диалоговом окне Run (Запуск программы), и откройте узел Security Options (Параметры безопасности) под Local Policies (Локальные политики). Найдите параметр System Cryptography: Use FIPS Compliant Algorithms For Encryption, Hashing And Signing (Системная криптография: использовать FIPS-совмести-мые алгоритмы для шифрования, хеширования и подписывания) и включите его.
   Чтобы активизировать 3DES только для EFS, создайте DWORD-параметр HKLM\SOFWARE\Microsoft\Windows NT\CurrentVersion\EFS\ AlgorithmID, присвойте ему значение 0x6603 и перезагрузите систему.
    Рис. 12-56. Шифрование файлов через пользовательский интерфейс Windows Explorer
   Для шифрования FEK используется алгоритм криптографической пары, а для шифрования файловых данных – DESX, AES или 3DES (все это алгоритмы симметричного шифрования, в которых применяется один и тот же ключ для шифрования и дешифрования). Как правило, алгоритмы симметричного шифрования работают очень быстро, что делает их подходящими для шифрования больших объемов данных, в частности файловых. Однако у алгоритмов симметричного шифрования есть одна слабая сторона: зашифрованный ими файл можно вскрыть, получив ключ. Если несколько человек собирается пользоваться одним файлом, защищенным только DESX, AES или 3DES, каждому из них понадобится доступ к FEK файла. Очевидно, что незашифрованный FEK – серьезная угроза безопасности. Ho шифрование FEK все равно не решает проблему, поскольку в этом случае нескольким людям приходится пользоваться одним и тем же ключом расшифровки FEK.
   Защита FEK ~ сложная проблема, для решения которой EFS использует ту часть своей криптографической архитектуры, которая опирается на технологии шифрования с открытым ключом. Шифрование FEK на индивидуальной основе позволяет нескольким лицам совместно использовать зашифрованный файл. EFS может зашифровать FEK файла с помощью открытого ключа каждого пользователя и хранить их FEK вместе с файлом. Каждый может получить доступ к открытому ключу пользователя, но никто не сможет расшифровать с его помощью данные, зашифрованные по этому ключу. Единственный способ расшифровки файла заключается в использовании операционной системой закрытого ключа. Закрытый ключ помогает расшифровать нужный зашифрованный экземпляр FEK файла. Алгоритмы на основе открытого ключа обычно довольно медленные, поэтому они используются EFS только для шифрования FEK. Разделение ключей на открытый и закрытый немного упрощает управление ключами по сравнению с таковым в алгоритмах симметричного шифрования и решает дилемму, связанную с защитой FEK.
   Windows хранит закрытые ключи в подкаталоге Application Data\Micro-soft\Crypto\RSA каталога профиля пользователя. Для защиты закрытых ключей Windows шифрует все файлы в папке RSA на основе симметричного ключа, генерируемого случайным образом; такой ключ называстся мастер-ключомпользователя. Мастер-ключ имеет длину в 64 байта и создается стойким генератором случайных чисел. Мастер-ключ также хранится в профиле пользователя в каталоге Application Data\Microsoft\Protect и зашифровывается по алгоритму 3DES с помощью ключа, который отчасти основан на пароле пользователя. Когда пользователь меняет свой пароль, мастер-ключи автоматически расшифровываются, а затем заново зашифровываются с учетом нового пароля.
   Функциональность EFS опирается на несколько компонентов, как видно на схеме архитектуры EFS (рис. 12-57). B Windows 2000 EFS реализована в виде драйвера устройства, работающего в режиме ядра и тесно связанного с драйвером файловой системы NTFS, но в Windows XP и Windows Server 2003 поддержка EFS включена в драйвер NTFS. Всякий раз, когда NTFS встречает шифрованный файл, она вызывает функции EFS, зарегистрированные кодом EFS режима ядра в NTFS при инициализации этого кода. Функции EFS осуществляют шифрование и расшифровку файловых данных по мере обращения приложений к шифрованным файлам. Хотя EFS хранит FEK вместе с данными файла, FEK шифруется с помощью открытого ключа индивидуального пользователя. Для шифрования или расшифровки файловых данных EFS должна расшифровать FEK файла, обращаясь к криптографическим сервисам пользовательского режима.
   Подсистема локальной аутентификации (Local Security Authentication Subsystem, LSASS) ( \Windows\System32\Lsass.exe) не только управляет сеансами регистрации, но и выполняет все рутинные операции, связанные с управлением ключами EFS. Например, когда драйверу EFS требуется расшифровать FEK для расшифровки данных файла, к которому обращается пользователь, драйвер EFS посылает запрос LSASS через LPC Драйвер устройства KSecDD (\Windows\System32\Drivers\Ksecdd.sys) экспортирует функции, необходимые драйверам для посылки LPC-сообщений LSASS. Компонент LSASS, сервер локальной аутентификации (Local Security Authentication Server, Lsasrv) ( \Windows\System32\Lsasrv.dll), ожидает запросы на расшифровку FEK через RPC; расшифровка выполняется соответствующей функцией EFS, которая также находится в Lsasrv. Для расшифровки FEK, передаваемого LSASS драйвером EFS в зашифрованном виде, Lsasrv использует функции Microsoft CryptoAPI (CAPI).
   CryptoAPI состоит из DLL провайдеров криптографических сервисов (cryptographic service providers, CSP), которые обеспечивают приложениям доступ к различным криптографическим сервисам (шифрованию, дешифрованию и хэшированию). Например, эти DLL управляют получением открытого и закрытого ключей пользователя, что позволяет Lsasrv не заботиться о деталях защиты ключей и даже об особенностях работы алгоритмов шифрования. EFS опирается на алгоритмы шифрования RSA, предоставляемые провайдером Microsoft Enhanced Cryptographic Provider (\Windows\ System32\Rsaenh.dll). Расшифровав FEK, Lsasrv возвращает его драйверу EFS в ответном LPC-сообщении. Получив расшифрованный FEK, EFS с помощью DESX расшифровывает данные файла для NTFS.
   Подробнее о том, как EFS взаимодействует с NTFS и как Lsasrv управляет ключами через CryptoAPI, мы поговорим в следующих разделах.
 
Первое шифрование файла
   Обнаружив шифрованный файл, драйвер NTFS вызывает функции EFS. O состоянии шифрования файла сообщают его атрибуты – так же, как и о состоянии сжатия в случае сжатых файлов. NTFS и EFS имеют специальные интерфейсы для преобразования файла из незашифрованной в зашифрованную форму, но этот процесс протекает в основном под управлением компонентов пользовательского режима. Как уже говорилось, Windows позволяет шифровать файлы двумя способами: утилитой командной строки cipherили установкой флажка Encrypt Contents To Secure Data на вкладке Advanced Attributes окна свойств файла в Windows Explorer. Windows Explorer и cipherиспользуют Windows-функцию EncryptFile,экспортируемую Advapi32.dll (Advanced Windows API DLL). Чтобы получить доступ к API, который нужен для LPC-вызова интерфейсов EFS в Lsasrv, Advapi32 загружает другую DLL, Feclient.dll (File Encryption Client DLL).
   Получив RPC-сообщение с запросом на шифрование файла от Feclient, Lsasrv использует механизм олицетворения Windows для подмены собой пользователя, запустившего программу, шифрующую файл (cipherили Windows Explorer). Это заставляет Windows воспринимать файловые операции, выполняемые Lsasrv, как операции, выполняемые пользователем, желающим зашифровать файл. Lsasrv обычно работает под учетной записью System (об этой учетной записи см. главу 8). Если бы Lsasrv не олицетворял пользователя, то не получил бы прав на доступ к шифруемому файлу.
   Далее Lsasrv создает файл журнала в каталоге System Volume Information, где регистрирует ход процесса шифрования. Имя файла журнала – обычно EfsO.log, но, если шифруется несколько файлов, O заменяется числом, которое последовательно увеличивается на 1 до тех пор, пока не будет получено уникальное имя журнала для текущего шифруемого файла.
   CryptoAPI полагается на информацию пользовательского профиля, хранящуюся в реестре, поэтому, если профиль еще не загружен, следующий шаг Lsasrv – загрузка в реестр профиля олицетворяемого пользователя вызовом функции LoadUserProfiIeиз Userenv.dll (User Environment DLL). Обычно профиль пользователя к этому моменту уже загружен, поскольку Winlogon загружает его при входе пользователя в систему. Ho если пользователь регистрируется под другой учетной записью с помощью команды RunAs,то при попытке обращения к зашифрованному файлу под этой учетной записью соответствующий профиль может быть не загружен.
   После этого Lsasrv генерирует для файла FEK, обращаясь к средствам шифрования RSA, реализованным в Microsoft Base Cryptographic Provider 1.0.
 
Создание связок ключей
   K этому моменту Lsasrv уже получил FEK и может сгенерировать информацию EFS, сохраняемую вместе с файлом, включая зашифрованную версию FEK. Lsasrv считывает из параметра реестра HKCU\Software\Microsoft\Win-dows NT\CurrentVersion\EFS\CurrentKeys\CertificateHash значение, присвоенное пользователю, который затребовал операцию шифрования, и получает сигнатуру открытого ключа этого пользователя. (Заметьте, что этот раздел не появляется в реестре, если ни один файл или каталог не зашифрован.) Lsasrv использует эту сигнатуру для доступа к открытому ключу пользователя и для шифрования FEK.
   Теперь Lsasrv может создать информацию, которую EFS сохранит вместе с файлом. EFS хранит в шифрованном файле только один блок информации, в котором содержатся записи для всех пользователей этого файла. Данные записи называются элементами ключей(key entries); они хранятся в области сопоставленных с файлом данных EFS, которая называется Data Decryption Field (DDF). Совокупность нескольких элементов ключей называется связкой ключей(key ring), поскольку, как уже говорилось, EFS позволяет нескольким лицам совместно использовать шифрованный файл.
   Формат данных EFS, сопоставленных с файлом, и формат элемента ключа показан на рис. 12-58. B первой части элемента ключа EFS хранит информацию, достаточную для точного описания открытого ключа пользователя. B нее входит SID пользователя (его наличие не гарантируется), имя контейнера, в котором хранится ключ, имя провайдера криптографических сервисов и хэш сертификата криптографической пары (при расшифровке используется только этот хэш). Bo второй части элемента ключа содержится шифрованная версия FEK. Lsasrv шифрует FEK через CryptoAPI по алгоритму RSA с применением открытого ключа данного пользователя.
   Далее Lsasrv создает еще одну связку ключей, содержащую элементы ключей восстановления (recovery key entries). EFS хранит информацию об этих элементах в поле DRF файла (см. рис. 12-58). Формат элементов DRF идентичен формату DDE DRF служит для расшифровки пользовательских данных по определенным учетным записям (агентов восстановления) в тех случаях, когда администратору нужен доступ к пользовательским данным. Допустим, сотрудник компании забыл свой пароль для входа в систему. B этом случае администратор может сбросить пароль этого сотрудника, но без агентов восстановления никто не сумеет восстановить его зашифрованные данные.
   Агенты восстановления (Recovery Agents) определяются в политике безопасности Encrypted Data Recovery Agents (Агенты восстановления шифрованных данных) на локальном компьютере или в домене. Эта политика доступна через оснастку Group Policy (Групповая политика) консоли MMC Запустите Recovery Agent Wizard (Мастер добавления агента восстановления), щелкнув правой кнопкой мыши строку Encrypted Data Recovery Agents (рис. 12-59) и последовательно выбрав команды New (Создать) и Encrypted Recovery Agent (Агент восстановления шифрованных данных). Вы можете добавить агенты восстановления и указать, какие криптографические пары (обозначенные их сертификатами) могут использовать эти агенты для восстановления шифрованных данных. Lsasrv интерпретирует политику восстановления в процессе своей инициализации или при получении уведомления об изменении политики восстановления. EFS создает DRF-элементы ключей для каждого агента восстановления, используя провайдер криптографических сервисов, зарегистрированный для EFS-восстановления. Провайдером по умолчанию служит Base Cryptographic Provider 1.0.
   Ha завершающем этапе создания информации EFS для файла Lsasrv вычисляет контрольную сумму для DDF и DRF по механизму хэширования MD5 из Base Cryptographic Provider 1.0. Lsasrv хранит вычисленную контрольную сумму в заголовке данных EFS. EFS ссылается на эту сумму при расшифровке, чтобы убедиться в том, что сопоставленные с файлом данные EFS не повреждены и не взломаны.
 
Шифрование файловых данных
   Ход процесса шифрования показан на рис. 12-60. После создания всех данных, необходимых для шифруемого пользователем файла, Lsasrv приступает к шифрованию файла и создает его резервную копию, Efs0.tmp (если есть другие резервные копии, Lsasrv просто увеличивает номер в имени резервного файла). Резервная копия помещается в тот каталог, где находится шифруемый файл. Lsasrv применяет к резервной копии ограничивающий дескриптор защиты, так что доступ к этому файлу можно получить только по учетной записи System. Далее Lsasrv инициализирует файл журнала, созданный им на первом этапе процесса шифрования и регистрирует в нем факт создания резервного файла. Lsasrv шифрует исходный файл только после его резервирования.
   Наконец, Lsasrv посылает через NTFS коду EFS режима ядра команду на добавление к исходному файлу созданной информации EFS. B Windows 2000 NTFS получает эту команду, но поскольку она не понимает команд EFS, то просто вызывает драйвер EFS. Код EFS режима ядра принимает посланные Lsasrv данные EFS и применяет их к файлу через функции, экспортируемые NTFS. Эти функции позволяют EFS добавлять к NTFS-файлам атрибут $EFS. После этого управление возвращается к Lsasrv, который копирует содержимое шифруемого файла в резервный. Закончив создание резервной копии (в том числе скопировав все дополнительные потоки данных), Lsasrv отмечает в файле журнала, что резервный файл находится в актуальном состоянии. Затем Lsasrv посылает NTFS другую команду, требуя зашифровать содержимое исходного файла.
   Получив от EFS команду на шифрование файла, NTFS удаляет содержимое исходного файла и копирует в него данные резервного. По мере копирования каждого раздела файла NTFS сбрасывает данные раздела из кэша файловой системы, и они записываются на диск. Поскольку файл помечен как шифрованный, NTFS вызывает EFS для шифрования раздела данных перед записью на диск. EFS использует незашифрованный FEK, переданный NTFS, чтобы шифровать файловые данные по алгоритму DESX, AES или 3DES порциями, равными по размеру одному сектору (512 байтов).
   После того как файл зашифрован, Lsasrv регистрирует в файле журнала, что шифрование успешно завершено, и удаляет резервную копию файла. B заключение Lsasrv удаляет файл журнала и возвращает управление приложению, запросившему шифрование файла.
 
Сводная схема процесса шифрования
   Ниже приведен сводный список этапов шифрования файла через EFS.
   1. Загружается профиль пользователя, если это необходимо.
   2. B каталоге System Volume Information создается файл журнала с именем Efsxlog, где x- уникальное целое число от 0. По мере выполнения следующих этапов в журнал заносятся записи, позволяющие восстановить файл после сбоя системы в процессе шифрования.
   3. Base Cryptographic Provider 1.0 генерирует для файла случайное 128-битное число, используемое в качестве FEK.
   4.Генерируется или считывается криптографическая пара ключей пользователя. Она идентифицируется в HKCU\Software\Microsoft\Windows NT\ CurrentVersion\EFS\CurrentKeys\CertificateHash.
   5. Для файла создается связка ключей DDF с элементом для данного пользователя. Этот элемент содержит копию FEK, зашифрованную с помощью открытого EFS-ключа пользователя.
   6. Для файла создается связка ключей DRF B нем есть элементы для каждого агента восстановления в системе, и при этом в каждом элементе содержится копия FEK, зашифрованная с помощью открытого EFS-ключа агента.
   7. Создается резервный файл с именем вида Efs0.tmp в том каталоге, где находится и шифруемый файл.
   8. Связки ключей DDF и DRF добавляются к заголовку и сопоставляются с файлом как атрибут EFS.
   9. Резервный файл помечается как шифрованный, и в него копируется содержимое исходного файла.
   10.Содержимое исходного файла уничтожается, в него копируется содержимое резервного. B результате этой операции данные исходного файла шифруются, так как теперь файл помечен как шифрованный.
   11.Удаляется резервный файл.
   12.Удаляется файл журнала.
   13Выгружается профиль пользователя (загруженный на этапе 1).
 
   При сбое системы во время шифрования согласованные данные непременно сохранятся в одном из файлов – исходном или резервном. Когда Lsasrv инициализируется после сбоя системы, он ищет файлы журнала в каталоге System Volume Information на каждом NTFS-томе в системе. Если Lsasrv находит один или несколько файлов журнала, он изучает их содержимое и определяет порядок восстановления. Если исходный файл не был модифицирован на момент аварии, Lsasrv удаляет файл журнала и соответствующий резервный файл; в ином случае он копирует резервный файл поверх исходного (частично шифрованного) файла, после чего удаляет журнал и резервную копию. После того как Lsasrv обработает файлы журналов, файловая система возвращается в целостное состояние без потери пользовательских данных.
 
Процесс расшифровки
   Процесс расшифровки начинается, когда пользователь открывает шифрованный файл. При открытии файла NTFS анализирует его атрибуты и выполняет функцию обратного вызова в драйвере EFS. Драйвер EFS считывает атрибут $EFS, сопоставленный с шифрованным файлом. Чтобы прочитать этот атрибут, драйвер вызывает функции поддержки EFS, которые NTFS экспортирует для EFS. NTFS выполняет все необходимые действия, чтобы открыть файл. Драйвер EFS проверяет наличие у пользователя, открывающего файл, прав доступа к данным шифрованного файла (т. е. зашифрованный FEK в связке ключей DDF или DRF должен соответствовать криптографической паре ключей, сопоставленной с пользователем). После такой проверки EFS получает расшифрованный FEK файла, применяемый для обработки данных в операциях, которые пользователь может выполнять над файлом.
   EFS не может расшифровать FEK самостоятельно и полагается в этом на Lsasrv (который может использовать CryptoAPI). C помощью драйвера Ksecdd.sys EFS посылает LPC-сообщение Lsasrv, чтобы тот извлек из атрибута IEFS (т. е. из данных EFS) FEK пользователя, открывающего файл, и расшифровал его.
   Получив LPC-сообщение, Lsasrv вызывает функцию LoadUserProfileиз Use-renv.dll для загрузки в реестр профиля пользователя, если он еще не загружен. Lsasrv перебирает все поля ключей в данных EFS, пробуя расшифровать каждый FEK на основе закрытого ключа пользователя; с этой целью Lsasrv пытается расшифровать FEK в DDF- или DRF-элементе ключа. Если хэш сертификата в поле ключа не подходит к ключу пользователя, Lsasrv переходит к следующему полю ключа. Если Lsasrv не удастся расшифровать ни одного FEK в DDF или DRF, пользователь не получит FEK файла, и EFS запретит доступ к файлу приложению, которое пыталось открыть этот файл. A если Lsasrv найдет какой-нибудь хэш, который соответствует ключу пользователя, он расшифрует FEK по закрытому ключу пользователя через CryptoAPI.
   Lsasrv, обрабатывая при расшифровке FEK связки ключей DDF и DRF, автоматически выполняет операции восстановления файла. Если к файлу пытается получить доступ агент восстановления, не зарегистрированный на доступ к шифрованному файлу (т. е. у него нет соответствующего поля в связке ключей DDF), EFS позволит ему обратиться к файлу, потому что агент имеет доступ к паре ключей для поля ключа в связке ключей DRE
 
Кэширование расшифрованного FEK
   Путь от драйвера EFS до Lsasrv и обратно требует довольно много времени – в процессе расшифровки FEK в типичной системе CryptoAPI использует результаты более 2000 вызовов API-функций реестра и 400 обращений к файловой системе. Чтобы сократить издержки от всех этих вызовов, драйвер EFS использует кэш в паре с NTFS.
 
Расшифровка файловых данных
   Открыв шифрованный файл, приложение может читать и записывать его данные. Для расшифровки файловых данных NTFS вызывает драйвер EFS по мере чтения этих данных с диска – до того, как помещает их в кэш файловой системы. Аналогичным образом, когда приложение записывает данные в файл, они остаются незашифрованными в кэше файловой системы, пока приложение или диспетчер кэша не сбросит данные обратно на диск с помощью NTFS. При записи данных шифрованного файла из кэша на диск NTFS вызывает драйвер EFS, чтобы зашифровать их.