Но если скорость разбегания далеких галактик прямо пропорциональна расстоянию до них и подобная картина удручающе однообразна, в какую сторону ни посмотри, возникает резонный вопрос: не находимся ли мы в таком случае в центре Вселенной? Если Солнечной системе в этом смысле откровенно не повезло (как известно, она прозябает на задворках Млечного Пути), тогда, быть может, хотя бы наша Галактика является центром мироздания? Такой вывод наверняка многим согрел бы душу, потому что антропоцентризм сидит у нас в печенках. Увы, придется вас, читатель, разочаровать: первая особенность глобального расширения Вселенной как раз в том и заключается, что оно не имеет выделенного центра. Это понимал еще Фридман, когда предложил на суд почтеннейшей публики свою модель. Он исходил из двух очевидных посылок: во-первых, Вселенная изотропна и однородна на больших расстояниях, а во-вторых, то же самое утверждение справедливо для любой другой ее точки. Иными словами, в какой бы из галактик ни оказался наблюдатель, он всюду увидит удивительную картину расширяющейся Вселенной, а его собственная галактика покажется ему неподвижным центром мира.
   Сказанное легко пояснить на примере. Если взять резиновый шнурок с завязанными на нем узелками и растянуть его, предположим, вдвое или втрое, то расстояние между парой соседних узлов увеличится в точно такое же количество раз. Если же выбрать один узелок в качестве точки отсчета, то скорость удаления других узлов будет расти прямо пропорционально расстоянию до них. Можно обратиться и к двумерной модели. Возьмем детский воздушный шарик и нанесем на его поверхность метки. По мере надувания шарика метки станут расползаться в разные стороны, но при этом ни одна из них не будет занимать привилегированного центрального положения, а расстояния между ними начнут расти согласно все тому же пропорциональному закону. Итак, первая особенность расширения заключается в том, что все его субъекты (то есть галактики) совершенно равноправны, а выделенный центр, от которого они разбегаются, отсутствует.
   Вторая особенность расширения нам уже знакома. Не только сами галактики (не говоря уже об отдельных звездах или планетах), но даже их скопления представляют собой стабильные системы, повязанные силами гравитации, поэтому расширение Вселенной их не затрагивает. При растягивании резинового шнура расстояния между узелками растут, но вовсе не потому, что они скользят вдоль нити. Все дело только лишь в упругих свойствах резины, а сами узлы бежать никуда не думают.
   Отсюда вытекает и третья особенность расширения Вселенной. Его нередко представляют как разбегание галактик в пространстве, что совершенно неверно, поскольку в данном случае отсутствует движение «чего-то в чем-то». Можно сказать, что это распухание самого пространства, хотя и такое утверждение будет всего лишь метафорой, потому что пространство Вселенной не расширяется в некий внешний по отношению к нему объем. Если воспользоваться терминологией Иммануила Канта, это расширение пространства an sich, то есть в себе самом. Вообразить наглядно подобное невозможно, ибо для этого пришлось бы нарисовать замкнутую на себя сферу в четвертом пространственном измерении.
   Таким образом, из эпохального открытия Хаббла и работ физиков-теоретиков следовало, что наша Вселенная, по всей вероятности, имеет конечный объем и родилась в некий нуль-пункт времени. Или, если говорить более строго, в точке «ноль» произошло рождение тройни, ибо материя, пространство и время не могут существовать порознь. Остается разобраться, как именно развивались события в этой особой сингулярной точке. Впервые этим вопросом всерьез озаботился бельгийский астроном Жорж Эдуард Леметр, который в 1927 году высказал предположение, что в нуль-пункт времени вещество и энергия будущей Вселенной представляли собой некий сверхплотный сгусток – своего рода «космическое яйцо». В силу неизвестных причин случился катастрофический взрыв, разметавший материю во все стороны, и осколки этого всемирного катаклизма мы наблюдаем до сих пор в виде разбегания галактик. Леметровская модель Вселенной была физической аналогией теоретических выкладок Фридмана или Ситтера, но при этом оказалась проще и понятнее абстрактных построений высоколобых математиков. Поэтому английский астрофизик Артур Стэнли Эддингтон сделался ее рьяным пропагандистом, а через некоторое время ее охотно взял на вооружение и основательно развил американский ученый русского происхождения Георгий Антонович Гамов. С его легкой руки нестационарная модель горячей Вселенной получила название теории Большого взрыва и после неизбежной, но необходимой ретуши остается в большом ходу до сих пор. Гамов предложил свой сценарий в 1948 году вместе с коллегами Альфером и Бете, что говорит о хорошем чувстве юмора Георгия Антоновича, поскольку фамилии Аль-фер, Бете и Гамов удивительно напоминают первые буквы греческого алфавита. Иногда теорию Гамова называют а, Я, у-теорией, на что, по-видимому, он и рассчитывал.
   Судя по выкладкам Гамова, температура и плотность внутри космического яйца должны были превосходить все мыслимые пределы, но уже через одну минуту после Большого взрыва температура упала до 109– 1010градусов Кельвина, а протоны и нейтроны, оставшиеся после аннигиляции с антипротонами и антинейтронами (об этом подробнее будет рассказано ниже), начали объединяться в ядра дейтерия, трития, гелия и лития. Этот процесс получил название первичного нуклеосинтеза, и Гамов сумел показать, что наблюдаемое сегодня соотношение водорода и гелия (примерно 75 и 25 % соответственно) возникло в первые же секунды после Большого взрыва. По его расчетам, звезды за все время существования Вселенной не могли «наработать» более 1 % гелия, что совсем не похоже на те 24–25 %, о которых недвусмысленно говорят астрономические наблюдения. Таким образом, теория горячей Вселенной получила еще один дополнительный аргумент в свою пользу.
   Все это очень хорошо и даже замечательно, но настало время взять негодяев к ногтю и жестко спросить в духе Михаила Жванецкого: а почему, собственно? Почему не знавшее горя и печали космическое яйцо вдруг сделалось нестабильным и взорвалось? Неужели это такая чуточная эфемерида, которая рассыпается в пыль от малейшего прикосновения? Если же яйцо было все-таки устойчивой структурой, безбедно прожившей многие миллиарды лет, то следует внятно объяснить, какие неведомые силы подвигли бедняжку проделать череду внезапных метаморфоз.
   Вопросы, что и говорить, архитрудные, поэтому физики-теоретики предложили в свое время немало моделей, в которых не мытьем, так катаньем пытались свести концы с концами. Вот, например, так называемый гиперболический сценарий: Вселенная изначально представляла собой облако чрезвычайно разреженного газа, который постепенно конденсировался и разогревался под влиянием гравитационных сил. Когда газ стянулся в плотный сгусток, центробежное действие высокой температуры и давления переломило гравитационное сжатие и вещество юной Вселенной брызнуло во все стороны, подобно тому как струя горячего пара вылетает из-под притертой крышки чайника, стоящего на огне. Таким образом, Вселенная начинает свою жизнь почти в абсолютном вакууме, а потом, перешагнув фазу максимальной плотности, вновь возвращается в состояние пустоты. Гиперболическая Вселенная описывается геометрией Римана, а ее радиус кривизны колеблется в широких пределах – от минимума в период сжатия до максимума в период расширения. Она начинается с пустоты и кончается пустотой, а стадия космического яйца оказывается коротким промежуточным этапом на фоне необратимых полярных перемен. Минусом такой модели оказываются необратимые состояния, разнесенные по разным концам временной шкалы.
   Гипотеза пульсирующей Вселенной лишена этих недостатков. Она практически совпадает со вторым решением уравнений Фридмана (см. выше) и представляет собой вечный колебательный процесс между состоянием сверхвысокой плотности и фазой максимального расширения. Когда силы всемирного тяготения (при условии, что средняя плотность материи выше критической плотности) остановят разлет галактик, красное смещение поменяется на фиолетовое и галактики вновь устремятся друг к другу в объятия. Химические реакции тоже поменяют свой знак, и тяжелые элементы начнут распадаться на более простые. Другими словами, когда Вселенная опять сожмется в точку, она вновь будет состоять из одного водорода.
   Если исходить из современных представлений, Вселенная после своего рождения из сингулярности пережила кратковременный этап сверхбыстрого раздувания – так называемый инфляционный период (речь о нем пойдет в следующей главе). После окончания инфляции она перешла в режим пропорционального хаббловского расширения, каковой переход и воспринимается нами как Большой взрыв. На рубеже этих двух эпох загадочное поле с отрицательным давлением, управляющее не менее загадочной инфляцией, приказало долго жить, а высвободившаяся энергия породила кипящий бульон элементарных частиц, что и разогрело новорожденную Вселенную до запредельных температур.
   Однако модели моделями, но все же хотелось бы чего-нибудь более реального, что можно пощупать руками. Красное смещение, бесспорно, о многом заставляет задуматься, но это всего лишь геометрия, к тому же не очень простая для понимания. А вот если бы удалось отыскать некий материальный след горячего начала Вселенной, тогда был бы совсем другой разговор. Г. А. Гамов, автор теории Большого взрыва, еще в конце 40-х годов прошлого века предсказывал, что Вселенная должна быть равномерно заполнена радиоизлучением миллиметрового диапазона с температурой от 25 до 5 градусов Кельвина. Дело оставалось за малым – обнаружить такое излучение.
   В 1964 году американские физики Арно Пензиас и Роберт Вильсон, сотрудники лаборатории Белла, испытывали самый чувствительный на тот момент детектор сверхвысокочастотных волн (СВЧ-детектор). Справедливости ради следует сказать, что они не искали некое неведомое радиоизлучение, а занимались отладкой аппаратуры для работы по программе спутниковой связи. Для тестирования была выбрана волна длиной 7,35 сантиметра, на которой не излучал ни один из известных источников. Антенна, имевшаяся в распоряжении Пензиаса и Вильсона, была замечательная, и поэтому они были крайне удивлены, когда обнаружили, что она постоянно фиксирует посторонний радиошум, от которого никак не удавалось избавиться. Этот шум был монотонным и ровным и не зависел ни от направления антенны, ни от времени суток, следовательно, его источник должен располагаться за пределами земной атмосферы. Более того, он не менялся даже в течение года (а ведь Земля летит по орбите вокруг Солнца), из чего следовало заключить, что источник излучения находится не только за пределами Солнечной системы, но и за пределами Галактики, поскольку по мере движения Земли детектор меняет ориентацию в пространстве. По иронии судьбы, два других американца, Роберт Дикке и Джим Пиблс, готовились искать фоновое изотропное излучение с температурой ниже 10 градусов Кельвина вполне целенаправленно, но Пензиас и Вильсон, оперативно сообразив, что к чему, сообщили о своих результатах раньше.
   Стивен Хокинг пишет по этому поводу:
   Дикке и Пиблс готовились к поиску такого излучения, когда Пензиас и Вильсон, узнав о работе Дикке и Пиблса, сообразили, что они его уже нашли. За этот эксперимент Пензиас и Вильсон были удостоены Нобелевской премии 1978 года (что было не совсем справедливо, если вспомнить о Дикке и Пиблсе, не говоря уже о Гамове!).
   Впоследствии микроволновое фоновое излучение удалось зарегистрировать и на других длинах волн – от 0,5 миллиметра до нескольких десятков сантиметров. Итог многолетних наблюдений сводился к тому, что оно имеет тепловую природу и соответствует излучению абсолютно черного тела при температуре 2,7 градуса Кельвина (точное современное значение – 2,725 К). Его спектр не похож на спектр излучения звезд, радиогалактик и других возможных источников, а его интенсивность практически идентична при наблюдении разных участков небесной сферы, то есть оно изотропно и однородно, что и требовалось доказать. Советский астрофизик И. С. Шкловский предложил назвать загадочное излучение «реликтовым», и с тех пор этот термин широко применяется, хотя официальное его название – космический микроволновый фон.
   Что же такое реликтовое излучение, и откуда оно взялось? Когда около 14 миллиардов лет назад в результате чудовищного взрыва родились пространство, время и материя, Вселенная поначалу была кипящим супом из протонов, электронов, фотонов (световых квантов) и нейтрино, которые бурно взаимодействовали между собой. Все пространство новорожденной Вселенной было заполнено сплошной непрозрачной средой в виде высокотемпературной ионизованной плазмы. По мере расширения Вселенной температура падала, и когда она опустилась до 3000 градусов Кельвина, стало возможным образование стабильных атомов. Произошло, как говорят астрофизики, отделение излучения от вещества, потому что оно практически не взаимодействует с нейтральными атомами. Вселенная стала прозрачной для излучения, и оно получило возможность распространяться свободно. Иногда этот момент называют эпохой последнего рассеяния. Температура излучения продолжала понижаться в ходе дальнейшего расширения Вселенной, но его спектр сохранился без изменений до наших дней как напоминание о горячих деньках нашего мира. Вот эти остатки былой роскоши и обнаружили будущие нобелевские лауреаты.
   Не будет преувеличением сказать, что открытие микроволнового фона имело фундаментальное значение и по своей важности вполне сопоставимо с открытием расширения Вселенной. В крышку стационарной модели был забит последний гвоздь. Во второй половине XX века горячая модель Большого взрыва превратилась в солидную полноправную теорию. Академик Я. Б. Зельдович так сказал об этом в 1984 году:
   Теория Большого взрыва в настоящий момент не имеет сколько-нибудь заметных недостатков. Я бы даже сказал, что она столь же надежно установлена и верна, сколь верно то, что Земля вращается вокруг Солнца. Обе теории занимали центральное место в картине мироздания своего времени, и обе имели много противников, утверждавших, что новые идеи, заложенные в них, абсурдны и противоречат здравому смыслу. Но подобные выступления не в состоянии препятствовать успеху новых теорий.
   Разумеется, уважаемый академик немного лукавил, потому что даже на Солнце бывают пятна, и теория Большого взрыва в этом смысле отнюдь не исключение. Очень скоро выяснилось, что, несмотря на всю свою предсказательную силу, она тоже не лишена недостатков, но об этом – в следующей главе.

Всеобъемлющая инфляция

   В игольчатых чумных бокалах
   Мы пьем наважденье причин,
   Касаемся крючьями малых,
   Как легкая смерть, величин,
   И там, где сцепились бирюльки,
   Ребенок молчанье хранит -
   Большая вселенная в люльке
   У маленькой вечности спит.
Осип Мандельштам

   В буквальном переводе с латыни слово «инфляция» означает «вздутие». Едва ли нужно объяснять, что перепроизводство бумажных денег или иных платежных средств, допускающих бесконечное тиражирование посредством печатного станка, прямиком ведет к вышеупомянутому вздутию, ибо пустая бумага, стоящая гроши, немедленно приходит в противоречие с реальным предложением товаров. Впрочем, граждане нашей страны знакомы с инфляцией не понаслышке: с самого начала 1990-х она висит над головой каждого законопослушного россиянина наподобие дамоклова меча, а ежемесячные сводки жизнерадостно сообщают, насколько успел похудеть его кошелек за отчетный период.
   Астрофизиков экономические неурядицы занимают мало, однако современная космология с готовностью взяла на вооружение солидный термин, попутно вернув ему первоначальный смысл. Если в экономике инфляция всего лишь красивая метафора, то в космологии под ней понимается реальный физический процесс – стремительное раздувание вынырнувшего из сингулярности новорожденного пространства. Это закономерный и необходимый этап в истории очень ранней Вселенной, принципиально отличающийся от сменившего его тривиального расширения, о котором подробно рассказывалось в предыдущей главе. Немедленно возникает вопрос: для чего физикам понадобилось вводить дополнительную сущность, если старая добрая теория Большого взрыва, казалось бы, неплохо объясняла все наблюдаемые факты? Ведь даже знаменитый английский ученый Фред Хойл, еретик от астрофизики и оригинальный мыслитель, усердно развивавший теорию стационарной Вселенной, в конце концов сдался и принял концепцию Большого взрыва.
   Дело в том, что в рамках традиционной модели не смогли найти разрешения несколько весьма важных космологических проблем. Прежде всего это так называемая проблема горизонта частиц и проблема плоскостности. Кроме того, стандартная модель не давала ответа на вопрос, что было до Большого взрыва, и не умела объяснить размеров наблюдаемой Вселенной (если теория Большого взрыва справедлива, то Вселенная должна быть много меньше). Эти досадные неувязки подобно занозам торчали из тела стандартной теории, и многие космологи откровенно закрывали на них глаза, полагая, что с течением времени они как-нибудь сами собой рассосутся. Однако события повернулись так, что из ничтожных мелочей вырос принципиально иной сценарий происхождения нашего мира. Нечто похожее в свое время приключилось с выдающимся немецким физиком Максом Планком, которого пытались отговорить от занятий теоретической физикой, поскольку эта наука практически завершена. Только отдельные пятнышки омрачают ее светлые горизонты, говорил ему наученный жизнью учитель, для чего же попусту тратить ваши лучшие годы на бестолковое наведение глянца? Планк, как известно, не послушался: вскоре он предложил гипотезу квантов и вывел свою знаменитую постоянную, положив тем самым начало новой, неклассической физике.
   Разберем неувязки теории Большого взрыва по порядку. Начнем с проблемы горизонта частиц. Астрономические наблюдения показывают, что Вселенная исключительно однородна в больших масштабах. Температура реликтового излучения, как мы помним, составляет в среднем около 3 градусов Кельвина (2,725 К), причем отклонения температуры от среднего значения по различным направлениям совершенно ничтожны – они не превышают одной стотысячной (10-5). Расстояния, доступные современным телескопам, укладываются в величину порядка 10 миллиардов световых лет, и на этих пространствах мы наблюдаем в точности то же самое – поразительную «выглаженность» контрастов плотности. По современным представлениям, истинный размер Вселенной многократно превышает ее наблюдаемую часть, которую принято называть Метагалактикой. Поскольку начало мира состоялось примерно 13–14 миллиардов лет тому назад, свет от далеких объектов элементарно не успел до нас добраться – ему просто не хватило времени. Звезды и галактики, расположенные за горизонтом событий (если таковые там имеются), принципиально недоступны, ибо скорость света – максимально возможная из всех скоростей. Но внутри горизонта все частицы причинно связаны друг с другом, так как они давным-давно уже успели обменяться между собой необходимой информацией.
   Закавыка в том, что теория Большого взрыва не в состоянии объяснить, каким образом этот обмен мог состояться. Горизонт прирастает (и всегда прирастал) со скоростью света, а взаимодействие между частицами в полном соответствии с теорией относительности неизбежно осуществляется со скоростями несколько меньшими. Космологи так и пишут: горизонт частиц всегда будет расширяться быстрее взаимного расстояния между двумя пробными частицами. Получается, что тепловое равновесие (а его существование – непреложный факт) никоим образом не могло быть достигнуто в рамках стандартной модели за истекшие 14 миллиардов лет.
   Когда Вселенной было 300 тысяч лет от роду, температура плазмы существенно упала, и началось образование нейтрального водорода. Излучение отделилось от вещества, и фотоны получили возможность беспрепятственно распространяться во все стороны. Этот момент времени принято называть эпохой рекомбинации, или эпохой последнего рассеяния. Понятно, что размер горизонта в ту далекую пору был значительно меньше нынешних 10 миллиардов световых лет и составлял приблизительно один мегапарсек (1 Мпк). Таким образом, на момент рекомбинации тепловое равновесие могло установиться на масштабах, не превышающих 1 Мпк. Сегодня участок такой величины имеет на небосводе угловой размер около 2 градусов, следовательно, мы вправе ожидать заметных колебаний температуры реликтового излучения, заполняющего Вселенную. Однако астрономические наблюдения показывают высокую степень изотропии на всех угловых масштабах: температурный перепад, как мы помним, не превышает трех стотысячных (3 х 10-5).
   Помимо всего прочего, в рамках стандартной космологической модели остается непонятным сам механизм первоначального толчка. Какая сила привела миры в движение? Быть может, Вселенная возникла в результате чудовищного по мощности термоядерного взрыва неизвестной природы? Ведь в конце концов, стандартная космологическая модель, которая создана трудами Г. А. Гамова и других ученых, так и называется – теория Большого взрыва. Но при ближайшем рассмотрении немедленно выясняется: взрывные механизмы практически ничего не дают. При взрыве (химическом или термоядерном – значения не имеет) возникают разница давлений и неоднородное распределение вещества: в одну сторону его улетает больше, в другую – меньше. Кроме того, непременно существует особая точка – центр взрыва.
   В реальной же Вселенной ничего подобного не наблюдается: она на редкость однородна, а некая выделенная точка, которую можно было бы отождествить с центром, не обнаруживается. Уже упоминавшийся С. Г. Рубин, профессор МИФИ, пишет по этому поводу:
   Это все равно, как если бы наша Земля имела идеальную форму шара с «горами» не более 40 метров высотой. Для сравнения: диаметр Земли примерно 1,2 х 107метров. Трудно было бы тогда поверить в случайность ее происхождения.
   Не меньше хлопот у стандартной космологической модели возникает и с так называемой проблемой плоскостности. Этот несколько неуклюжий оборот означает, что мы живем в практически плоском мире, описываемом геометрией Евклида, которую все изучали в школе. Как известно, физическое пространство может быть искривлено под влиянием гравитации. Собственно говоря, общая теория относительности Эйнштейна рассматривает гравитацию как своего рода отражение метрики пространства-времени. Вообразить наглядно искривленное трехмерное пространство нелегко, однако это можно без труда сделать, обратившись к соответствующим двумерным аналогам. Поверхность сферы представляет собой замкнутое двумерное пространство конечной площади, которое, тем не менее, не имеет границ. Гипотетические обитатели такого мира (это плоские существа, третье измерение им неведомо) могут перемещаться в любом избранном направлении, раз за разом пересекая одни и те же точки, но нигде не обнаружат края своей Вселенной. Сфера с растущим радиусом будет неплохим аналогом расширяющегося замкнутого трехмерного пространства. Подобная неевклидова поверхность описывается геометрией Римана, а сумма углов треугольника на ней больше 180 градусов. Неевклидова геометрия Лобачевского реализуется на поверхности гиперболоида или псевдосферы – сложной изогнутой структуры, напоминающей поверхность седла. Такие вселенные будут открытыми, а сумма углов треугольника в них будет меньше 180 градусов. Наконец, возможен промежуточный вариант – неискривленная плоскость, описываемая геометрией Евклида. Как и в случае сложной поверхности Лобачевского, этот плоский мир будет открытым и бесконечным по площади. Аналогичным образом может быть искривлено (или оставаться плоским) и наше трехмерное пространство, в котором мы живем.
   Пространство реальной Вселенной на больших расстояниях, сравнимых с горизонтом частиц, как уже говорилось, практически плоское. Разумеется, это не исключает участков локальной кривизны, особенно вблизи крупных тяготеющих масс, но в космологических масштабах отклонение геометрии нашего мира от геометрии Евклида совершенно ничтожно. Геометрия пространства самым непосредственным образом связана с величиной, обозначаемой греческой буквой ?, которая является отношением средней плотности вещества нашего мира к критической плотности. Если ? равна единице, то наша Вселенная – идеально плоская структура. Если Y больше единицы (плотность нашего мира выше критической), то Вселенная по достижении некоторого максимального радиуса начнет сжиматься под действием гравитации. В этом случае рано или поздно Большой взрыв сменится Большим крахом (или Большим хрустом), а Вселенная вновь обратится в точку и пропадет в сингулярности. Если ? меньше единицы (плотность Вселенной ниже критической), мир будет расширяться неограниченно долго, а плотность вещества станет постепенно падать.