Не работает коротковолновый радиозонд в связи с перегревом приемника на луноходе. Остальные приборы установленные на Луне работают нормально. 14 декабря очередной период отдыха астронавта Р. Эванса начался в 09 ч 08 мин. Его разбудили в 17 ч 39 мин. Предстояло провести две коррекции орбиты основного блока, чтобы создать наиболее благоприятные условия встречи с лунным кораблем на орбите ИСЛ.
   Первая коррекция проводилась с целью снижения высоты орбиты, так как высота понижалась со значительно меньшей скоростью, чем рассчитывали. На 30 сек были включены ЖРД РСУ; в результате основной блок перешел на орбиту 116/124 км.
   Для этой корреляции использовались те ЖРД РСУ выхлопной факел которых не мог повредить комплекта приборов установленных в служебном отсеке. Вторая коррекция с целью изменения наклона селеноцентрической орбиты основного блока, была проведена с помощью маршевого двигателя, который был включен в 20 ч 00 мин и проработал 18 сек.
   Чтобы разбудить отдыхающих в лунном корабле Ю. Сернана и X. Шмитта, в 21 ч 00 мин с Земли была передана мелодия из кинофильма «2001 – космическая одиссея». Оказалось, что астронавты уже проснулись; Ю. Сернан спал 5, а X. Шмитт 6 ч. Услышав побудку, астронавты хором спели песню «Доброе утро», а затем X. Шмитт прочел свои стихи посвященные пребыванию на Луне.
   По форме его стихи представляют пародию на известное стихотворение Клемента Мура «Ночь перед Рождеством». Ю. Сернан и X. Шмитт занялись уборкой кабины и подготовкой лунного корабля к старту с Луны. Открыли люк, выбросили ненужные предметы, закрыли люк, загерметизировали кабину и наполнили ее кислородом в 23 ч 31 мин.
   После определения параметров скорректированной орбиты основного блока, Ю. Сернану и X. Шмитту сообщили новое время старта с Луны; 01 ч 54 мин 50 сек. 15 декабря (прежнее расчетное время 01 ч 56 мин). Взлетная ступень лунного корабля перед стартом весила 4976 кг, и была тяжелее расчетного веса, так как астронавты взяли на борт больше образцов лунных пород чем предполагалось.
15 декабря
   В 01 ч 41 мин, перед стартом с Луны, по команде с Земли включили телевизионную камеру лунохода, который Ю. Сернаном был установлен в 150 м от лунного корабля.
   В 01 ч 54 мин 50 сек взлетная ступень лунного корабля Apollo-17 стартовала с Луны.
   Старт передавался по телевиднию, взлет ступени был виден в течение 35 сек. Когда взлетная ступень вышла из поля обзора телевизионной камеры лунохода, по команде с Земли камеру направили на посадочную ступень лунного корабля, затем была показана панорама места посадки.
   Через 10 сек после старта взлетной ступени на Земле перестали получать сигналы, позволяющие производить траекторные измерения. Через 3 мин прием сигналов возобновился. Позже не удавалось установить прямую радиосвязь взлетной ступени лунного корабля с Землей, тогда использовали радиостанцию основного блока корабля в качестве ретранслятора. Взлетная ступень вышла на начальную селеноцентрическую орбиту с высотой над поверхностью Луны в периселении 17 и апоселении 91 км. Расчетная высота орбиты в апоселении 88 км. С помощью ЖРД РСУ орбита взлетной ступени была скорректирована.
   Через 20 мин после старта взлетной ступени Ю. Сернан и X. Шмитт увидели проблесковые огни основного блока, который находился от них на расстоянии 180 км. Когда взлетная ступень и основной блок сблизились, перед стыковкой были произведены два телевизионных сеанса показавшие, как Ю. Сернан поворачивал взлетную ступень, чтобы Р. Эванс мог осмотреть ее со всех сторон. Затем Ю. Сернан и X. Шмитт осматривали поворачивавшийся основной блок и место размещения в служебном отсеке приборов для исследования Луны с орбиты ИСЛ. Первая попытка стыковки была неудачной.
   Р. Эванс, осуществляя маневр стыковки, промахнулся, и штырь стыкованного узла не попал в приемный конус взлетной ступени. При второй попытке штырь попал в конус, но не сработали захваты. Стыковка была произведена с третьей попытки в 04 ч 10 мин с опозданием на 12 мин по сравнению с расчетным временем. Стыковка произведена на высоте около 116 км над поверхностью Луны.
   Из 12 замков стыковочного узла закрылись только 10. Переход Ю. Сернана и X. Шмитта из взлетной ступени в командный отсек, перенос образцов лунных пород и всех необходимых предметов продолжался 3 ч. Р. Эванс пылесосом очищал скафандры Ю. Сернана и X. Шмитта и все доставленные с Луны предметы.
   В 07 ч 51 мин произведено отделение взлетной ступени от основного блока. По команде с Земли был включен двигатель и ступень перешла на траекторию столкновения с Луной, в точке с координатами 19° с. ш. и 35° 57' в. д. в горах Южного массива и в 9 км от места посадки корабля Apollo-17.
   Удар ступени упавшей со скоростью 1,64 км/сек на поверхность Луны эквивалентен взрыву 680 кг тринитротолуола. Сейсмические колебания Луны зарегистрированы сейсмометрами установленными предыдущими экспедициями.
   Основной блок корабля Apollo-17 продолжал полет по орбитам ИСЛ. Астронавты проснулись в 21 ч 35 мин. Продолжая исследования и наблюдения Луны с орбиты ИСЛ, они обнаружили еще один участок оранжевого цвета около кратера Сульпиций Галл в юго-западной части Моря Ясности, примерно в 560 км к западу от места посадки корабля Apollo-17.
   15 декабря, согласно программе, сработал часовой механизм первого из 8 зарядов взрывчатого вещества весом 0,45 кг расставленных астронавтами на Луне. Заряд находился у кратера Стено в одном километре от места посадки Apollo-17. Сейсмические колебания были зарегистрированы четырьмя геофонами.
   Считают, что таким образом удается прозондировать Луну до глубины 1,5 км. Отмечалось, что высокочувствительные геофоны часто путают ученых регистрируя сейсмические колебания, вызванные выходом газов из оставшейся на Луне посадочной ступени лунного корабля.
   16 декабря в 10 ч 23 мин начался очередной 8 ч период отдыха астронавтов. Они проснулись в 18 ч 13 мин и продолжали съемку, картографирование, зондирование и визуальные наблюдения Луны. На поверхности Луны обнаружено еще несколько участков имеющих оранжевый цвет.
   16 декабря был подорван второй из 8 зарядов взрывчатого вещества на поверхности Луны.
   Его видели, как яркую белую вспышку, с помощью телевизионной камеры лунохода. Установленный астронавтами на Луне комплект приборов работает нормально, за исключением стационарного гравиметра. От прибора измеряющего тепловой поток из недр Луны к поверхности, получены данные, совпадающие с измерениями от подобных приборов установленных астронавтами корабля Apollo-15. При температуре на поверхности Луны +77°, в скважине на глубине 65 см минус 19° и на максимальной глубине 2,4 м минус 16°C.
17 декабря
   В 02 ч 35 мин на 76 витке по селеноцентрической орбите, когда корабль находился за Луной, был включен ЖРД служебного отсека, он проработал 144 сек и обеспечил переход на траекторию возвращения к Земле.
   Сразу после выхода корабля из-за диска Луны астронавты начали телевизионную передачу видов лунной поверхности. Первые изображения были переданы, когда корабль находился на расстоянии 650 км от поверхности Луны. Удалось показать обратную сторону Луны, в частности, огромный кратер Циолковского. Затем был показан Южный полюс Луны, район Тавр—Литтров, район Моря Спокойствия, где высаживалась первая лунная экспедиция на корабле Apollo-11 и другие районы.
   В 09 ч 00 мин начался очередной 8 ч период отдыха астронавтов. Ю. Сернан и X. Шмитт приняли снотворное, Р. Эвансу принимать не рекомендовали так как он жаловался на боли из-за скопления газов в кишечнике.
   В Центре управления полетом в Хьюстоне была организована пресс-конференция ученых, руководящих научными исследованиями Луны. Они высказали некоторые предварительные соображения, основанные на данных полученных в полете корабля Apollo-17.
   По их мнению обнаружение оранжевого грунта может указывать на то, что после прекращения деятельности больших вулканов сохранилась остаточная активность и вулканические газы выходили в недавнее время, а может быть выходят еще и сейчас. Ученые напоминали о вспышках, которые наблюдались астрономами с Земли у кратера Аристарх, а также о «горячих участках» Луны, обнаруженных с селеноцентрической орбиты инфракрасным радиометром корабля Apollo-17.
   Если происходит выход газов, то недра Луны имеют достаточно высокую температуру. «Это может свидетельствовать в пользу гипотезы о том, что у Луны частично расплавленное ядро. Руководитель сейсмических исследований д-р Латам говорил о очень большой ценности данных, полученных при регистрации колебаний лунной поверхности вызванных падением последней ступени ракеты-носителя корабля Apollo-17. Особая ценность этих данных заключается в том, что место падения ступени на этот раз известно с высокой точностью.
   Зондирование показало, что толщина лунной коры составляет не 65 км, как считали раньше, основываясь на результатах прежних зондирований, а всего лишь 25 км. толщина мантии тоже значительно меньше, чем предполагали. Новые данные заставляют пересмотреть всю модель Луны, составленную на базе прежних измерений. Руководитель геологических исследований д-р Мюльбергер говорил, что многого ждали от места выбранного для посадки корабля Apollo-17 и оно не обмануло ожиданий.
   Теперь впервые можно проводить анализ без спешки, вызванной необходимостью получения данных к следующему полету.
   Мюльбергер сказал, что из-за недостатка времени до сих пор должным образом не обработаны 4300 снимков Луны и 2 км пленки от картографических камер, привезенные предыдущими экспедициями.
   Астронавтов разбудили в 16 ч 21 мин. В рацион экипаже корабля Apollo-17 входили бутерброды с ветчиной, обработанные излучением от радиоизотопного источника по методу Лаборатории Армии США в Натике (штат Массачусетс).
   После такой обработки хлеб не черствеет, а ветчина не портится в течение трех-пяти лет даже если бутерброды не находятся в охлажденном состоянии. Этой же лабораторией для астронавтов разработан сверхкалорийный фруктовый пирог, содержащий 2500 больших калорий в куске весом 200 г, то есть треть суточной нормы питания. После завтрака Р. Эванс по совету врачей принял две таблетки закрепляющего, так как жаловался на расстройство желудка. До этого у него в течение трех суток не было стула. Известно, что многие астронавты в полете имели очень редкий стул. Это объясняется неудобством пользоваться калоприемниками в условиях тесной кабины. Сначала астронавты сами сдерживаются, а затем у многих возникают запоры. Р. Эванс беспокоился, что расстройство желудка помешает ему совершить выход в открытый космос. 37 мин он вел переговоры, по закрытой радиолинии не прослушиваемой прессой, с врачами из Центра управления полетом.
   В переговорах участвовал командир корабля Ю. Сернан. Специалисты рекомендовали Р. Эвансу принять по две таблетки закрепляющего перед сном и после завтрака не принимать снотворного и перейти на диетическое меню. Ю. Сернан сообщил, что все три астронавта испытывали боли, вызванные скоплением газов в кишечнике. Теперь это стали объяснять наличием пузырьков водорода в питьевой воде, которая является продуктом реакции водорода и кислорода в топливных элементах являющихся основным источником электроэнергии на борту корабля Apollo.
   Это явление наблюдалось и в предыдущих полетах, но позже были установлены достаточно эффективные фильтры.
   В 16 ч 32 мин основной блок корабля Apollo-17 вошел в сферу притяжения Земли. Благодаря принятым мерам, расстройство желудка у Р. Эванса прекратилось и ему разрешили выход в открытый космос в расчетное время. При подготовке к выходу выяснилось, что шлемофон Р. Эванса неисправен, он поменялся шлемофонами с X. Шмиттом.
   23 ч 25 мин произведена разгерметизация командного отсека; в 23 ч 33 мин началась телевизионная передача с помощью камеры установленной на корпусе корабля; в 23 ч 35 мин Р. Эванс вышел из люка командного отсека.
   Кислород в скафандр Р. Эванса подавался по фалу длиной 7,6 м, которым он был связан с командным отсеком. Держась за перила, укрепленные на служебном отсеке и фиксаторы для ног (из стекловолокна с золотым покрытием), преодолел расстояние в 5,5 м, отделяющее люк командного отсека от места расположения приборов в служебном отсеке, снял кассеты с пленкой (1980 м} из панорамной камеры и перенес в командный отсек. Р. Эванс торопился выполнить все операции. Поэтому Ю. Сернан сказал ему: «Не спеши, у тебя впереди целый день. Нам бы не хотелось, чтобы ты остался здесь, ведь до дома еще очень далеко». В это время корабль находился на расстоянии 296 000 км от Земли.
   В следующих выходах Р. Эванс перенес в командный отсек кассеты с пленкой (403 м) из топографической камеры, рулон магнитной пленки (206 м) с записью показаний импульсного радиолокатора и контейнер с 5 мышами, которые подвергались воздействию космического излучения. Р. Эванс находился в открытом космосе вне командного отсека 45 мин.
18 декабря
   Астронавты начали жаловаться, что в кабине холодно. Дистанционная проверка с Земли системы жизнеобеспечения показала, что она исправна. Астронавтам рекомендовали открыть на окнах шторки, чтобы в кабину проникали солнечные лучи. После этого температура в кабине повысилась до нормального уровня.
   В 09 ч 53 мин на час позже по сравнению с программой, начался очередной период отдыха астронавтов. После отдыха они производили проверку бортового оборудования, размещали по хранилищам предметы и произвели общую уборку кабины готовясь к посадке.
   В 21 ч 43 мин начали проведение научных экспериментов. Наблюдали и регистрировали фосфены; с помощью ультрафиолетового спектрометра исследовали звезду Спака в созвездии Девы, для этого приходилось выдерживать точную ориентацию корабля в пространстве. Основное назначение ультрафиолетового спектрометра – исследования атмосферы Луны. Она оказалась в 100 раз разряженное, чем предполагалось.
   К 23 ч 56 мин корабль Apollo-17 ирошел половину пути по трассе Луна—Земля.
   19 декабря в 02 ч 00 мин началась телевизионная пресс-конференция астронавтов, продолжавшаяся 30 мин. Корабль в это время находился на расстоянии 180 000 км от Земли.
   Ю. Сернан, на вопрос о его отношении к тому, что полеты по программе Apollo прекращаются, ответил: «Прекращение полетов по программе Apollo это ненормальное сдерживание человеческого стремления к знанию. Уже доказано, что Человек может использовать те возможности, которые ему представляет техника. Он будет доказывать это и в дальнейшем. Полеты Apollo это только начало, а там где есть начало, должно быть и продолжение. Я верю, что будут еще экспедиции на Луну, на Марс и дальше в просторы Вселенной».
   X. Шмитт на такой же вопрос заданный ему сказал: «США слишком долго начинали полеты в космическое пространство, и теперь я боюсь, что возобновление их будет очень длительным процессом».
   В 08 ч 39 мин начало очередного периода отдыха астронавтов. «Земля растет на глазах» сказал Ю. Сернан. В этот момент расстояние до Земли было 167 000 км.
   В 16 ч 03 мин астронавтов с трудом разбудили, дважды проиграв гимн США и марш ВМС.
   В 19 ч 11 мин, когда корабль находился на расстоянии 47 000 км от Земли, была произведена единственная коррекция на трассе Луна – Земля, чтобы обеспечить полет по оси коридора входа в атмосферу. После коррекции траектории астронавты провели последние приготовления к посадке и заняли свои места в креслах.
   В 21 ч 57 мин было произведено отделение командного ог служебного отсека. В 22 ч 11 мин командный отсек вошел в атмосферу на высоте 120 км.
   В 22 ч 25 мин 19 декабря командный отсек корабля Apollo-17 совершил посадку на парашютах в Тихом океане в 4…5 км от авианосца «Тикондерога», примерно в 500 км к югу от острова Самоа (расчетная точка посадки 17°54' ю. ш. и 166° з. д.).
   По уточненным данным экипаж корабля Apollo-17 доставил на Землю 113 кг различных образцов лунных пород. Полетом Apollo-17 завершаются экспедиции США на Луну в обозримом будущем. Теперь США готовятся к запуску весной 1973 г. орбитальной станции Skylab.
   Крупные ОКС на орбитах искусственных спутников Земли позволят приобрести опыт и знания в использовании космической техники для улучшения жизни на Земле.
   В ближайшем будущем состоится совместный космический полет организованный Советским Союзом и США.
   Человек свершает первые шаги в исследованиях, которые, по-видимому, позволят найти смысл и наметить перспективные цели человеческого существования на Земле.
   Рис 44.11 Место посадки лунного корабля Apollo-17 и три маршрута поездок на луноходе
   Рис. 44.12 Район места посадки лунного корабля Apollo-17
   Рис. 44.13. Астронавт Шмидт в районе Тавр-Литтров
   Рис. 44.14. Исследование Луны у Северного Массива

Литература

   1. Reese D. R. Ground testing the Apollo vehicle. Control Eng., 1969,16, № 5. РЖ, 1969, 11.41.77
   2. Dessaucy J. Apollo-10 repetition .generale du debarquement sur la Lune. Aviat. et astronaut., 1969, № 6, ЭИ АиР, 1969, № 38; РЖ, 1969, 11.41.61
   3. Gapcynski J. P., Blackshear W. T„ Compton Н. R. Luar gravitational field as determined from Lunar Orbiter tracking data, AIAA Journal, 1969, 7, № 10, (ЭИ АиР, 1970, № 19)
   4. Michelson I. Lunar mascon effects on orbits of Apollo type spacecraft. J. Spacecraft and Rockets, 1970, 7, № 1, (ЭИ АиР, 1970, № 32)
   5. Sanders R. E., Vincent J. P., Maples Н. E. Engineering and operational experiences related to lunar—surface thermal—vacuum qualification of the Apollo extravehicular mobility unit. AIAA Paper № 69– 992, ЭИ АиР, 1970, № 9; РЖ, 1970, 4.41.152
   6. Dugge Р. М., Саllihan J. C. Rendezvous navigation for the Apollo-7 mission. AIAA Paper № 68—1007, ЭИ АиР, 1969, № 25; РЖ, 1969, 6.41.216
   7. Diamant L. S. Space rendezvous. Space/Aeronaut., 1969, 52, № 3, ЭИ АиР, 1970, № 24; РЖ, 1970, 5.41.94
   8. Bennett F. Lunar descent and ascent trajectories. AIAA Paper №70-25 ЭИ АиР, 1970, № 31
   9. Space suits for project Apollo. Space World, 1970, № G—7, ЭИ АиР, 1970, № 45; РЖ, 1971, 1.41.258
   10. Apollo-6 unmanned mission. Aviat. Week and Space Technol., 1968, 88, №№ 5; 7; 15; 16; 18; (ЭИАиР, 1968, № 34); РЖ, 1968, 9.41.36—9.41.39, РЖ
   11. Apollo-7 manned mission. Aviat. Week and Space Technol., 1968, 88, №.№ 26; 24; 23; 89, № 6, 7; Flight Internal, 1968, 94, №№ 3098; 3100; 3101; ЭИ АиР, 1969, № 1; РЖ, 1969, 2.41.37—2.41.54; РЖ, 1969, 5.41.22—5.41.52
   12. The first manned Apollo flight. Flight Internal 1968, 94, № 3110, ЭИ, : АиР, 1969, № 14; РЖ, 1969, 5.41.35
   13. Apollo-8 to orbit Moon. Flight Internal. 1968, 94, № 3115, ЭИ АиР, 1969, № 4; РЖ, 1969, 7.41.60—7.41.117
   14. Apollo-9. Aviat. Week and Space Technol. 1969, 90, №№ 11; 12; 20; 21;19; Spaceflight, 1969, 11, № 7; Aerospace Daily, 1969, 36, № 33; Aviation mag., 1969, № 519, Space Age News, 1969, 12, № 8; ЭИ АиР, 1969, № 20, 48; РЖ, 1969, 8.41.31—8.41.43
   15. Apollo-10. Aerospace Daily 1969, 36, № 40; 1969, 37, №№ 1; 16; 17; 22; 28; Aviation Week and Space Technol., 1969, 90, №№ 23; 25; 26; 24; 22; Interavia Air Letter, 1969, №№ 6745; 6747; 6751; 6758; 6760; 6763, ЭИ АиР, 1969, № 30; ЭИ АиР, 1970, № 8; РЖ, 1969, 10.41.62—10.41.77
   16. Apollo-8. Apollo-9. Apollo-10. Weltraumfahrt, 1969, 20, № 1—2; (ЭИ АиР, 1969, № 38)
   17. Apollo-11. Interavia Air Letters, 1969, №№ 6776; 6782; 6787; 6789; 6790; 6791; 6795; 6796; 6797; 6799; 6801; 6802; 6803; 6805; 6809; 6814; 6815 (ЭИ АиР, 1969, № 40); РЖ, 1970, 1.41.65—1.41.88; РЖ, 1970, 3.41.34– 3.41.36; РЖ, 1970, 5.41.47—5.41.55; РЖ, 1970, 6.41.26—6,41.32
   18. Apollo-12. Flight Internal, 1969, 96, № 3164; «Interavia Air Letter», 1969, №№ 6866; 6880; 6892; Aviation Week and Space Technol., 1969, 91, №№ 19; 21; 22; 23; Aerospace Daily, 1969, 40, №№ 3; 4; 9; 12; 13; 17; 28, ЭИ АиР, 1970, № 12; РЖ, 1970, 4.41.12—4.41.49
   19. Apollo-13. Interavia Air Letter, 1970, № 6965; 6980; 6982; 6984; 7013 «Aerospace Daily», 1970, 41, № 26; 42, № 44; Interavia, 1970, 25, № 5. ЭИ АиР, 1970, № 36; РЖ, 1970, 5.41.56—5.41.66; РЖ, 1970, 7.41.78—7.41.90; РЖ, 1970, 8.41.29—8.41.47; РЖ, 1970, 10.41.83—10.41.89; РЖ, 1970.1.41.2—11.4186; РЖ, 1971,3.41.29—3.41.32
   20. NASA goes for lunar langing for Apollo-14. Aerospace D.aily, 1971, 47, № 22, ЭИ АиР, 1971, № 35; РЖ, 1971. 7.41.68
   21. Fra Mauro. Flight Int., 1971, 99, № 3233. РЖ, 1971, 7.41.81
   22. Apollo-14 stresses experiments, geology. Aviat. Week and Space Technol., 1971, 94, № 9. РЖ, 1971, 7.41.75
   23. Fra Mauro explored. Flight Int., 1971, 99, № 3232. РЖ, 1971, 8.41.55
   24. Varied experiments planned for Apollo-14. Aviation Week and' Space Technol. 1971, 94, № 4. РЖ, 1971, 8.41.50
   25. Apollo-14 photos detail Fra Mauro terrain. Aviat Week and Space Technol., 1971, 94, № 8. РЖ, 1971, 8.41.51
   26. Baker D. Apollo-14 a visit to Fra Mauro. Spaceflight, 1971, 13, № 6, ЭИ АиР, 1971, № 35; РЖ, 1971, 9.41.51
   27. Fryer R. J. The Apollo-14 landing site. Spaceflight, 1970, 12, № 9, (ЭИ АиР, 1971, № 5)
   28. NASA adds two more changes to Apollo command and service modules. Aerospace Daily, 1970, 45, № 3, РЖ, 1971, 2.41.158
   29. Apollo-14 timetable. Flight Int., 1970, 98, № 3214, РЖ, 1971, 2.41.166
   30. М Strickland Z. Apollo-14 plan include cart, new test gear. Aviat. Week and Space Technol., 1970, 93, № 17. РЖ, 1971, 3.41.129
   31. Apollo-15. Aviation Week and Space Technology v. 95, №№ 1—8, 16, 19, i 23, 1971. Ineravia Air Lett, 1971, № 7359; Spaceflight 1971, v. 13, ;№№ 11, 12 Space Business daily, 1971, v. 58, № 11; Science News, 1971, v. 100, №№ 9, 10; ЭИ АиР, 1972, № 8.

Выводы

   1. Программа Apollo, предпринятая с целью «высадить человека на Луну и возвратить его благополучно на Землю», была начата 25 мая 1961 г. и завершена в декабре 1972 г.
   2. По программе Apollo выполнено 6 полетов с посадкой на Луну Apollo-11, 12, 14, 15, 16 и 17.
   В полете Apollo-13 в результате взрыва, происшедшего в служебном отсеке, посадка на Луну стала невозможной и для спасения экипажа потребовалось аварийное возвращение корабля на Землю.
   3. Посадки лунных кораблей, за исключением Apollo-15 и 17 осуществлены в экваториальной зоне Луны, в точках с координатами:
   Apollo-11, 0°41'15'' с. ш. 23°26' в. д. Море Спокойствия
   Apollo-12, 3,03° ю. ш., 23,416° з. д. северо-западнее кратера Фра Мауро.
   Apollo-14, 3°40'27" ю. ш., 17°27'58" з. д. севернее кратера Фра Мауро.
   Apollo-15, 26°04'54" с. ш. 3°39'30" в. д. Апеннины.
   Apollo-16, 9°00'01" ю. ш., 15°30'59" в. д. в районе кратера Декарта.
   Apollo-17, 20°9'41" с. ш. и 30°45'25,9" в. д., район Тавр Литтров.
   4. Экипажи лунных кораблей на поверхности Луны работали в общей сложности 150 чел-ч; установили на Луне 6 комплектов научной аппаратуры, занимались научными наблюдениями, собрали и доставили на Землю около 400 кг различных образцов лунных пород, привезли снятые на Луне детали с автоматической станции Surveyor-3; путешествовали по Луне пешком и на луноходе.
   5. Для осуществления цели программы Apollo была принята схема полета со встречей на орбите ИСЛ, требующая ракету-носитель меньшего стартового веса, чем в случае прямого полета на Луну.
   6. Программа Apollo потребовала решения целого ряда новых научно-технических проблем в области космонавтики..
   Создана космическая система Saturn V Apollo со стартовым весом 2700—2950 г, выводящая полезную нагрузку на орбиту ИСЗ 130…138 г и на траекторию полета к Луне 45 т, корабль Apollo для экипажа из трех человек и лунный корабль, осуществляющий посадку на Луну с двумя астронавтами. Разработаны надежные и эффективные двигатели: ЖРД F-1 с тягой 680…850 т; ЖРД J-2 на жидком водороде и жидком кислороде с тягой 104 т; ЖРД с тягой 9760 кг и многократным включением; посадочный ЖРД с дросселируемой тягой от номинальной 4760 кг до минимальной 476 кг; ЖРД взлетной ступени с тягой 1590 кг, и различные ЖРД для реактивной системы управления.
   7. Полеты на Луну продемонстрировали правильное решение проблемы распределения функций между человеком и автоматом в системе управления и навигации корабля Apollo, разработанной Приборной лабораторией Массачусетского технологического института. Астронавтам поручен контроль за работой автоматической системы управления,ее настройка и регулировка. На критических этапах полета при причаливании, стыковке, посадке на Луну и в других сложных и аварийных ситуациях астронавт управляет кораблем вручную. Хороший обзор из кабины командного отсека и лунного корабля обеспечивает эффективное ручное управление при стыковке и посадке на Луну, позволяя с целью увеличения надежности свести к минимуму использование электроники.
   8. На корабле Apollo в системах управления и навигации командного отсека и лунного корабля был впервые в практике летательных аппаратов применен ЦАП. Анализ результатов полетов показал хорошее совпадение предсказанных и фактически наблюдаемых процессов управления, поведение угловой ошибки ориентации, отклонений ЖРД на кардане и ошибки поперечной скорости. ЦАП во многих отношениях превосходит аналоговую систему, он не только обеспечивает требуемые динамические характеристики, но и обладает свойствами, недоступными для аналоговой системы. К этим свойствам относятся оценка ориентации и коррекция эксцентриситета вектора тяги, автоматическое изменение коэффициентов усиления по мере выгорания топлива, возможность осуществления различных режимов управления ориентацией и стабилизации.
   9. Управление траекторией полета космической системы Saturn V Apollo на разных этапах осуществляется различными методами. При выводе корабля Apollo на орбиту ожидания управление ракетой-носителем Saturn V осуществляется адаптационным методом. Он прост по идее, легок в описании; уравнения управления траекторией и отключения двигателя инвариантны к изменениям задач, характеристик управляемого объекта и удовлетворяют требованиям общности метода.
   Однако идеальное решение задачи управления, состоящее в том, чтобы по существующим начальным и желаемым конечным условиям определить оптимальную траекторию и управлять направлением тяги так, чтобы эту оптимальную траекторию реализовать, оказалось непрактичным.
   Поэтому методом вариационного исчисления заранее определяют семейство ожидаемых для данного объекта и данного этапа полета траекторий. Для решения задачи управления применяют численные методы криволинейной аппроксимации. Управляющие команды и момент отключения двигателя вычисляются как полиномы координат положения, скорости, ускорения и времени.
   В плотных слоях атмосферы основная задача управления полетом ракеты-носителя Saturn V заключается в стабилизации, уменьшении нагрузок на упругую и аэродинамически неустойчивую ракету, никаких компенсаций возмущений отклонением вектора тяги не производится, чтобы не тормозить ракету. На этапе работы первой ступени S-IC осуществляется гравитационный поворот и программа управления вычисляется как полином только времени. За пределом плотных слоев атмосферы после сброса системы аварийного спасения во время работы ступеней S-II и S-IVB главной задачей управления является точное выполнение требуемых параметров полета в конце активного участка траектории. Полет ракеты осуществляется по оптимальной траектории, требующей минимального расхода топлива, управляющие команды вычисляются итерационным методом.