Пилотируемые полеты на Луну, конструкция и характеристики Saturn V Apollo
РАКЕТОСТРОЕНИЕ
Том 3
ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР НАУКЕ И ТЕХНИКЕ
АКАДЕМИЯ НАУК СОЮЗА СОВЕТСКИХ СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛИК
ВСЕСОЮЗНЫЙ ИНСТИТУТ НАУЧНОЙ И ТЕХНИЧЕСКОЙ ИНФОРМАЦИИ
ИТОГИ НАУКИ И ТЕХНИКИ
СЕРИЯ
РАКЕТОСТРОЕНИЕ
ВЫПУСКИ, ОПУБЛИКОВАННЫЕ РАНЕЕ:
1. Ракетостроение. 1963—1965, М., 1966
2. Ракетостроение. 1966—1967, М., 1969 [1]
Предисловие
В выпуске Итоги науки и техники из серии Ракетостроение том III «Пилотируемые полеты на Луну, конструкция и характеристики Saturn V Apollo» на основании анализа, сопоставления и систематизации новейших материалов, изложенных в докладах на научно-технических конференциях AIAA, Международных астронавтических конгрессах, съездах IEEE, трудах ASME и статей в периодической литературе за 1969—1972 гг., дается описание и подводятся предварительные итоги программы Apollo.
Программа Apollo, утвержденная Конгрессом США 25 мая 1961 г., вскоре после полета Ю. А. Гагарина, должна была решить единственную конкретную задачу «достичь цели, до конца десятилетия высадить человека на Луну и возвратить его благополучно на Землю».
Пилотируемые полеты на Луну по программе Apollo закончены в декабре 1972 г.
Анализ результатов и оценка научно-технических итогов программы Apollo послужат основой для разработки новой космической техники, необходимой для дальнейшего прогресса космонавтики.
Настоящий выпуск Итогов науки и техники содержит четыре главы.
Гл. I Конструкция и характеристики Saturn V Apollo
Гл. II Системы управления корабля Apollo
Гл. III Траектории, управление, навигация, радиосвязь и аварийные возвращения
Гл. IV Космические летные испытания Saturn V Apollo и пилотируемые полеты на Луну.
В конце каждой главы приводится библиографический обзор литературы и рефератов опубликованных в изданиях ВИНИТИ АН СССР.
Автор выражает глубокую признательность и благодарность рецензенту заслуженному деятелю науки и техники П. В. Цыбину за ценные указания, советы и сделанные в рукописи исправления, доктору технических наук, профессору О. А. Чембровскому за замечания при рецензировании рукописи, инж. Никитину С. А. за активное участие в систематизации и обработке материалов по программе Apollo для ЭИ АиР, инж. Н. Н. Хлебниковой за большую помощь, оказанную при подготовке рукописи к печати.
Программа Apollo, утвержденная Конгрессом США 25 мая 1961 г., вскоре после полета Ю. А. Гагарина, должна была решить единственную конкретную задачу «достичь цели, до конца десятилетия высадить человека на Луну и возвратить его благополучно на Землю».
Пилотируемые полеты на Луну по программе Apollo закончены в декабре 1972 г.
Анализ результатов и оценка научно-технических итогов программы Apollo послужат основой для разработки новой космической техники, необходимой для дальнейшего прогресса космонавтики.
Настоящий выпуск Итогов науки и техники содержит четыре главы.
Гл. I Конструкция и характеристики Saturn V Apollo
Гл. II Системы управления корабля Apollo
Гл. III Траектории, управление, навигация, радиосвязь и аварийные возвращения
Гл. IV Космические летные испытания Saturn V Apollo и пилотируемые полеты на Луну.
В конце каждой главы приводится библиографический обзор литературы и рефератов опубликованных в изданиях ВИНИТИ АН СССР.
Автор выражает глубокую признательность и благодарность рецензенту заслуженному деятелю науки и техники П. В. Цыбину за ценные указания, советы и сделанные в рукописи исправления, доктору технических наук, профессору О. А. Чембровскому за замечания при рецензировании рукописи, инж. Никитину С. А. за активное участие в систематизации и обработке материалов по программе Apollo для ЭИ АиР, инж. Н. Н. Хлебниковой за большую помощь, оказанную при подготовке рукописи к печати.
Принятые сокращения
1. ИСЗ – Искусственный спутник Земли
2. ИСЛ – Искусственный спутник Луны
3. ЖРД – Жидкостный ракетный двигатель
4. РДТТ – Ракетный двигатель твердого топлива
5. ТНА – Турбо-насосный агрегат
6. ОК/ГОР – Окислитель/горючее
7. ЭЦВМ – Электронно-цифровая вычислительная машина
8. ЦАП – Цифровой автопилот
9. БИИ – Блок инерциальных измерений
10. БПД – Блок преобразования данных
11. УВТ – Управление вектором тяги
12. РСУ – Реактивная система управления
13. БРО – Блок расчета ориентации
14. КО – Командный отсек корабля Apollo
15. СО – Служебный отсек корабля Apollo
16. ОБ – Основной блок корабля Apollo
17. ЛК – Лунный корабль
18. ТКС – Транспортная космическая система
19. ОС – Орбитальный самолет
20. МТК – Межорбитальный транспортный корабль
21. ЯРД – Ядерный ракетный двигатель
22. ЛБК – Лунный буксирующий корабль
23. ОКС – Орбитальная космическая станция
24. ОКСЛ – Орбитальная космическая лунная станция
25. ИСМ – Искусственный спутник Марса
26. ОСУН – Основная система управления и навигации
27. АСУ – Аварийная система управления
28. НБОИ – Наземный блок обработки информации
29. КСТ – Контур коррекции смещения вектора тяги
30. САС – Система аварийного спасения
31. Орбита 185/200 км – Эллиптическая орбита с высотой над поверхностью небесного тела в перигее 185 км, в апогее 200 км
32. AIAA – American Institute of Aeronautics and Astronautics.
33. IEEE – Institute Electrical Electronics Engineer
34. NASA – National Aeronautics and Space Administration.
35. ЭИ АиР – Экспресс-информация «Астронавтика и ракетодинамика» издание ВИНИТИ АН СССР
36. ASME – American Society of Mechanical Engineers.
2. ИСЛ – Искусственный спутник Луны
3. ЖРД – Жидкостный ракетный двигатель
4. РДТТ – Ракетный двигатель твердого топлива
5. ТНА – Турбо-насосный агрегат
6. ОК/ГОР – Окислитель/горючее
7. ЭЦВМ – Электронно-цифровая вычислительная машина
8. ЦАП – Цифровой автопилот
9. БИИ – Блок инерциальных измерений
10. БПД – Блок преобразования данных
11. УВТ – Управление вектором тяги
12. РСУ – Реактивная система управления
13. БРО – Блок расчета ориентации
14. КО – Командный отсек корабля Apollo
15. СО – Служебный отсек корабля Apollo
16. ОБ – Основной блок корабля Apollo
17. ЛК – Лунный корабль
18. ТКС – Транспортная космическая система
19. ОС – Орбитальный самолет
20. МТК – Межорбитальный транспортный корабль
21. ЯРД – Ядерный ракетный двигатель
22. ЛБК – Лунный буксирующий корабль
23. ОКС – Орбитальная космическая станция
24. ОКСЛ – Орбитальная космическая лунная станция
25. ИСМ – Искусственный спутник Марса
26. ОСУН – Основная система управления и навигации
27. АСУ – Аварийная система управления
28. НБОИ – Наземный блок обработки информации
29. КСТ – Контур коррекции смещения вектора тяги
30. САС – Система аварийного спасения
31. Орбита 185/200 км – Эллиптическая орбита с высотой над поверхностью небесного тела в перигее 185 км, в апогее 200 км
32. AIAA – American Institute of Aeronautics and Astronautics.
33. IEEE – Institute Electrical Electronics Engineer
34. NASA – National Aeronautics and Space Administration.
35. ЭИ АиР – Экспресс-информация «Астронавтика и ракетодинамика» издание ВИНИТИ АН СССР
36. ASME – American Society of Mechanical Engineers.
Введение
Итоги и перспективы развития космонавтики
XX век войдет в историю как век революционного развития науки и техники и социалистических преобразований на Земле. Но среди многих выдающихся научных и технических достижений XX века наиболее значительным является освобождение от оков земного тяготения и полет человека в космическое пространство.
Запущенный Советским Союзом 4 октября 1957 г. искусственный спутник Земли (ИСЗ) открыл Эру космических полетов.
Быстрое развитие космической техники в СССР, вскоре после запуска ИСЗ, позволило сделать человеку первый шаг в космические просторы Вселенной. 12 апреля 1961 г. Юрий Алексеевич Гагарин на корабле «Восток» облетел по орбите вокруг Земли.
Этот первый шаг – великая победа над силами природы, открывшая для всего человечества дорогу в космическое пространство, – является поворотным пунктом в истории цивилизации.
Успехи космонавтики огромны. Автоматические межпланетные станции (АМС) исследуют планеты Марс и Венера. В атмосфере Венеры совершают плавный спуск и посадку на парашютах спускаемые аппараты, передают физические характеристики атмосферы и грунта («Венера-4, 5, 6, 7 и 8»). Планета Марс исследуется аппаратами с пролетных орбит и с орбиты искусственного спутника, а на поверхности Марса осуществил мягкую посадку спускаемый аппарат («Марс-2», «Марс-3»). С Земли мы управляем движением «Лунохода-1», исследуем топографию Луны, физические характеристики лунного грунта и внегалактическое рентгеновское излучение («Луна-17»).
С помощью, беспилотных автоматических станций, осуществивших мягкую посадку на Луну, доставлены на Землю образцы лунного грунта («Луна-16» и «Луна-20»).
Расширяется использование ИСЗ для научных целей, развития народного хозяйства и промышленности (ИСЗ серий-«Протон», «Электрон», «Космос», «Метеор», «Молния»-«Орбита»).
ИСЗ «Протон-4» самая крупная в мяре автоматическая научная лаборатория в космосе. Вес полезной нагрузки «Протон-4» на орбите 17 т. Вес научной аппаратуры для изучения природы космических лучей высоких и сверхвысоких энергии 12,5 т.
На ИСЗ серии «Интеркосмос» ведутся работы по договору о международном сотрудничестве в области изучения и освоения космического пространства в мирных целях.
На орбите вблизи Земли создается первая экспериментальная орбитальная космическая станция (ОКС) с экипажем из четырех человек путем стыковки двух пилотируемых кораблей («Союз-4» и «Союз-5»).
На орбиты ИСЗ запускаются 3 пилотируемых корабля с общим составом одновременно работающего в космосе экипажа 7 чел. Ведется исследование совместного маневрирования, полета строем, методов навигации и проводится обширная программа научных экспериментов («Союз-6, 7 и 8»).
В речи на митинге посвященном встрече экипажей кораблей «Союз-6, 7 и 8», Л. И. Брежнев говорил: «Наша наука подошла к созданию долговременных орбитальных станций и лабораторий – решающего средства широкого освоения космического пространства. Советская наука рассматривает создание орбитальных космических станций со сменными экипажами как магистральный путь человека в космос. Они могут стать „космодромами в космосе“, стартовыми площадками для полетов на другие планеты. Возникнут крупные научные лаборатории для исследования космической технологии, биологии, медицины, геофизики, астрономии и астрофизики». (Газета «Правда», 30 дек. 1969 г.).
Полеты на Луну кораблей Apollo – новое выдающееся достижение в освоении человеком космических полетов. Наряду с такими событиями, как первый запуск ИСЗ, полет Ю. А. Гагарина на корабле «Восток», выход А. Леонова в открытое космическое пространство, исследование планет Марс и Венера, выход людей на поверхность Луны войдет в историю развития космонавтики как одно из важнейших событий.
Программа Apollo закончена в 1972 г. Из семи полетов по программе с посадкой на Луну (Apollo-11—17), в драматическом полете Apollo-13 посадка на Луну оказалась невозможной из-за взрыва кислородного бака и крупных разрушений служебного отсека корабля Apollo и было осуществлено аварийное возвращение экипажа на Землю.
Последняя экспедиция на Луну завершившая программу Apollo совершена на корабле Apollo-17 астронавтами Ю. Сернаном, Р. Эвансом и X. Шмиттом с 6 по 19 декабря 1972 г.
Всего по программе Apollo выполнено 9 пилотируемых полетов к Луне, из них 6 с посадкой лунного корабля на поверхность Луны.
Облет Луны совершило 27 чел.
На орбиту ИСЛ выходило 24 чел.
На поверхность Луны высаживалось 12 чел.
Запущенный Советским Союзом 4 октября 1957 г. искусственный спутник Земли (ИСЗ) открыл Эру космических полетов.
Быстрое развитие космической техники в СССР, вскоре после запуска ИСЗ, позволило сделать человеку первый шаг в космические просторы Вселенной. 12 апреля 1961 г. Юрий Алексеевич Гагарин на корабле «Восток» облетел по орбите вокруг Земли.
Этот первый шаг – великая победа над силами природы, открывшая для всего человечества дорогу в космическое пространство, – является поворотным пунктом в истории цивилизации.
Успехи космонавтики огромны. Автоматические межпланетные станции (АМС) исследуют планеты Марс и Венера. В атмосфере Венеры совершают плавный спуск и посадку на парашютах спускаемые аппараты, передают физические характеристики атмосферы и грунта («Венера-4, 5, 6, 7 и 8»). Планета Марс исследуется аппаратами с пролетных орбит и с орбиты искусственного спутника, а на поверхности Марса осуществил мягкую посадку спускаемый аппарат («Марс-2», «Марс-3»). С Земли мы управляем движением «Лунохода-1», исследуем топографию Луны, физические характеристики лунного грунта и внегалактическое рентгеновское излучение («Луна-17»).
С помощью, беспилотных автоматических станций, осуществивших мягкую посадку на Луну, доставлены на Землю образцы лунного грунта («Луна-16» и «Луна-20»).
Расширяется использование ИСЗ для научных целей, развития народного хозяйства и промышленности (ИСЗ серий-«Протон», «Электрон», «Космос», «Метеор», «Молния»-«Орбита»).
ИСЗ «Протон-4» самая крупная в мяре автоматическая научная лаборатория в космосе. Вес полезной нагрузки «Протон-4» на орбите 17 т. Вес научной аппаратуры для изучения природы космических лучей высоких и сверхвысоких энергии 12,5 т.
На ИСЗ серии «Интеркосмос» ведутся работы по договору о международном сотрудничестве в области изучения и освоения космического пространства в мирных целях.
На орбите вблизи Земли создается первая экспериментальная орбитальная космическая станция (ОКС) с экипажем из четырех человек путем стыковки двух пилотируемых кораблей («Союз-4» и «Союз-5»).
На орбиты ИСЗ запускаются 3 пилотируемых корабля с общим составом одновременно работающего в космосе экипажа 7 чел. Ведется исследование совместного маневрирования, полета строем, методов навигации и проводится обширная программа научных экспериментов («Союз-6, 7 и 8»).
В речи на митинге посвященном встрече экипажей кораблей «Союз-6, 7 и 8», Л. И. Брежнев говорил: «Наша наука подошла к созданию долговременных орбитальных станций и лабораторий – решающего средства широкого освоения космического пространства. Советская наука рассматривает создание орбитальных космических станций со сменными экипажами как магистральный путь человека в космос. Они могут стать „космодромами в космосе“, стартовыми площадками для полетов на другие планеты. Возникнут крупные научные лаборатории для исследования космической технологии, биологии, медицины, геофизики, астрономии и астрофизики». (Газета «Правда», 30 дек. 1969 г.).
Полеты на Луну кораблей Apollo – новое выдающееся достижение в освоении человеком космических полетов. Наряду с такими событиями, как первый запуск ИСЗ, полет Ю. А. Гагарина на корабле «Восток», выход А. Леонова в открытое космическое пространство, исследование планет Марс и Венера, выход людей на поверхность Луны войдет в историю развития космонавтики как одно из важнейших событий.
Программа Apollo закончена в 1972 г. Из семи полетов по программе с посадкой на Луну (Apollo-11—17), в драматическом полете Apollo-13 посадка на Луну оказалась невозможной из-за взрыва кислородного бака и крупных разрушений служебного отсека корабля Apollo и было осуществлено аварийное возвращение экипажа на Землю.
Последняя экспедиция на Луну завершившая программу Apollo совершена на корабле Apollo-17 астронавтами Ю. Сернаном, Р. Эвансом и X. Шмиттом с 6 по 19 декабря 1972 г.
Всего по программе Apollo выполнено 9 пилотируемых полетов к Луне, из них 6 с посадкой лунного корабля на поверхность Луны.
Облет Луны совершило 27 чел.
На орбиту ИСЛ выходило 24 чел.
На поверхность Луны высаживалось 12 чел.
Стоимость космических полетов
В Space Letter NASA, № 375 от 1 сентября 1970 г. сообщалось, что на программу Apollo, включая все полеты до 1970 г., было израсходовано 23 850 млрд. долл. Вся программа, включая полет Apollo-11, до 31 июля 1969 г. стоила 21 349 млрд. долл., на каждый следующий полет расходуется 2 млрд. долл.
В Space Letter NASA, № 376 от 15 сентября 1970 г. опубликована стоимость конструкции космической системы Saturn V Apollo
Дорого стоят и пилотируемые полеты в Ближний космос на орбиты искусственного спутника Земли.
Каковы причины высокой стоимости космических полетов?
Современная космическая ракетная техника основана на баллистическом принципе полета и одноразовом использовании конструкции. Ракета-носитель и полезная нагрузка возвращаются на Землю в таком состоянии, что их невозможно использовать вторично, спасаются только люди.
Ни одна современная транспортная система, осуществляющая перевозки по земле, воде или по воздуху, не могла бы существовать, из-за слишком высокой стоимости, при одноразовом использовании конструкции.
Современная баллистическая космическая техника не может удовлетворить растущих требований космонавтики и тормозит ее дальнейшее развитие. Должна быть создана новая космическая техника, экономически более эффективная, основанная на фундаментальном изменении принципов космического полета.
В Space Letter NASA, № 376 от 15 сентября 1970 г. опубликована стоимость конструкции космической системы Saturn V Apollo
Дорого стоят и пилотируемые полеты в Ближний космос на орбиты искусственного спутника Земли.
Каковы причины высокой стоимости космических полетов?
Современная космическая ракетная техника основана на баллистическом принципе полета и одноразовом использовании конструкции. Ракета-носитель и полезная нагрузка возвращаются на Землю в таком состоянии, что их невозможно использовать вторично, спасаются только люди.
Ни одна современная транспортная система, осуществляющая перевозки по земле, воде или по воздуху, не могла бы существовать, из-за слишком высокой стоимости, при одноразовом использовании конструкции.
Современная баллистическая космическая техника не может удовлетворить растущих требований космонавтики и тормозит ее дальнейшее развитие. Должна быть создана новая космическая техника, экономически более эффективная, основанная на фундаментальном изменении принципов космического полета.
Экономика США и космическая стратегия NASA
Бюджетные ассигнования NASA, начиная с 1961 г., быстро росли и достигли максимума в 6 млрд. долл. в 1966 г. (рис. 01). Однако экономические и финансовые проблемы, возникшие в США вследствие войны во Вьетнаме, привели к резкому сокращению бюджета NASA, начавшемуся в 1966 г. Это привело к быстрому росту разности между потребными расходами на перспективные космические программы и фактическим бюджетным ассигнованием NASA.
Рис. 01. Космический бюджет США.
1 – календарные годы;
2 – приблизительные расходы в млрд. долл. по годам;
3 – общий бюджет NASA;
4 – пилотируемые космические полеты;
5 – исследования и руководство программами;
6 – наземное оборудование
Сокращение бюджета стало тормозить развитие космонавтики и заставило NASA искать пути создания экономически более эффективной космической техники.
Современная космическая стратегия NASA заключается в стремлении к максимальному приращению процентов выполнения космических программ, на один израсходованный доллар.
Эта стратегия математически представляется в виде частной производной
NASA стремится к максимальному удешевлению стоимости космических программ путем перехода на новую космическую транспортную систему, состоящую из пилотируемых кораблей многократного применения.
Рис. 01. Космический бюджет США.
1 – календарные годы;
2 – приблизительные расходы в млрд. долл. по годам;
3 – общий бюджет NASA;
4 – пилотируемые космические полеты;
5 – исследования и руководство программами;
6 – наземное оборудование
Сокращение бюджета стало тормозить развитие космонавтики и заставило NASA искать пути создания экономически более эффективной космической техники.
Современная космическая стратегия NASA заключается в стремлении к максимальному приращению процентов выполнения космических программ, на один израсходованный доллар.
Эта стратегия математически представляется в виде частной производной
NASA стремится к максимальному удешевлению стоимости космических программ путем перехода на новую космическую транспортную систему, состоящую из пилотируемых кораблей многократного применения.
Новая космическая транспортная система многократного применения
Принцип создания новой космической транспортной системы состоит в использовании для перевозок пассажиров и грузов трех специализированных пилотируемых космических аппаратов многократного применения, орбитального самолета (ОС), межорбитального транспортного корабля с ядерным ракетным двигателем (МТК с ЯРД) и лунного буксирующего корабля (ЛБК), на различных участках маршрута Земля-Луна.
На участке Земля-ОКС-Земля транспортировку осуществляет ОС.
МТК с ЯРД обеспечивает перевозки между орбитальными космическими станциями Земли и Луны.
Транспортировку на участке между Луной и ОКС Луны осуществляет лунный буксирующий корабль.
Главным элементом новой космической транспортной системы будет орбитальный самолет, который положит начало возникновению космической авиации. [1—6].
На участке Земля-ОКС-Земля транспортировку осуществляет ОС.
МТК с ЯРД обеспечивает перевозки между орбитальными космическими станциями Земли и Луны.
Транспортировку на участке между Луной и ОКС Луны осуществляет лунный буксирующий корабль.
Главным элементом новой космической транспортной системы будет орбитальный самолет, который положит начало возникновению космической авиации. [1—6].
Космические программы США
Беспилотные космические аппараты для исследования космического пространства и использования космической техники в практических целях.
В 70-х гг. основное внимание уделяется исследованию внутренних планет Меркурий и Венера, а также планеты Марс. Предусматриваются первоначальные исследования внешних планет – Юпитера, Сатурна и Урана – и будут предприняты первые попытки исследования Нептуна и Плутона.
Программа исследования планет, приведенная ниже, охватывает всю нашу Солнечную систему и сочетает исследование планет с пролетных орбит, с орбит искусственных спутников планет, использование зондов и аппаратов мягкой посадки [7].
В области применения космической техники для связи, метеорологии и исследования ресурсов Земли, роль NASA существенно меняется. NASA будет отвечать за разработку новой техники и обеспечивать инструктаж агентств, которые будут использовать эту технику.
Таблица 01
Для участия в этой области национальной космической программы привлекаются несколько правительственных агентств и частных компаний.
NASA проектирует запуск спутника связи ATS—F/G на синхронную орбиту с целью усовершенствования техники связи, улучшения техники управления движением самолетов, навигации и ретрансляционной техники.
NASA разрабатывает проект синхронного метеорологического ИСЗ SMS для непрерывного наблюдения за погодой над большей частью поверхности Земли.
В области исследования ресурсов Земли NASA разрабатывает ИСЗ ERIS для усовершенствования приборного оборудования многоспектрального обзора и исследования земных ресурсов.
В 70-х гг. основное внимание уделяется исследованию внутренних планет Меркурий и Венера, а также планеты Марс. Предусматриваются первоначальные исследования внешних планет – Юпитера, Сатурна и Урана – и будут предприняты первые попытки исследования Нептуна и Плутона.
Программа исследования планет, приведенная ниже, охватывает всю нашу Солнечную систему и сочетает исследование планет с пролетных орбит, с орбит искусственных спутников планет, использование зондов и аппаратов мягкой посадки [7].
В области применения космической техники для связи, метеорологии и исследования ресурсов Земли, роль NASA существенно меняется. NASA будет отвечать за разработку новой техники и обеспечивать инструктаж агентств, которые будут использовать эту технику.
Таблица 01
Для участия в этой области национальной космической программы привлекаются несколько правительственных агентств и частных компаний.
NASA проектирует запуск спутника связи ATS—F/G на синхронную орбиту с целью усовершенствования техники связи, улучшения техники управления движением самолетов, навигации и ретрансляционной техники.
NASA разрабатывает проект синхронного метеорологического ИСЗ SMS для непрерывного наблюдения за погодой над большей частью поверхности Земли.
В области исследования ресурсов Земли NASA разрабатывает ИСЗ ERIS для усовершенствования приборного оборудования многоспектрального обзора и исследования земных ресурсов.
Пилотируемые полеты
В 70-х гг. NASA предусматривает проведение трех программ пилотируемых полетов.
1. Завершение полетов по программе Apollo.
2. Запуск и эксплуатация орбитальной космической станции Skylab.
3. Создание и ввод в эксплуатацию орбитального самолета.
Хотя общее число пилотируемых полетов небольшое, в 70-е гг. произойдет переход на качественно новую космическую технику – космическую авиацию. Создание космической авиации, основанной на более совершенных принципах полета и экономически более эффективной, позволит снизить расходы на транспортировку полезной нагрузки на орбиту ИСЗ в 100 раз и это будет иметь большое значение для дальнейшего прогресса космонавтики. [8—12] Программы NASA пилотируемых космических полетов на 70-е годы приведены в таблице 01.
1. Завершение полетов по программе Apollo.
2. Запуск и эксплуатация орбитальной космической станции Skylab.
3. Создание и ввод в эксплуатацию орбитального самолета.
Хотя общее число пилотируемых полетов небольшое, в 70-е гг. произойдет переход на качественно новую космическую технику – космическую авиацию. Создание космической авиации, основанной на более совершенных принципах полета и экономически более эффективной, позволит снизить расходы на транспортировку полезной нагрузки на орбиту ИСЗ в 100 раз и это будет иметь большое значение для дальнейшего прогресса космонавтики. [8—12] Программы NASA пилотируемых космических полетов на 70-е годы приведены в таблице 01.
Литература
1. Senate approves space shuttle funding. Aerospace Daily -1971 49 № 42 ЭИ АиР, 1971, № 41; РЖ, 1971, 11.41.49[2])
2. Shuttle promises billions of dollars in cost savings – mathematica. Space Bus. Daily, 1971, 56, № 33, .РЖ, 1971, 11.41.55
3. Congress blocks shuttle funding cuts. Aviat. Week and Space Technol., 1971, 95, № 1, ЭИ АиР, 1971, № 41; РЖ, 1971, 11.41.102
4. Phased approach to space shuttle development studied by NASA. Aerospace Daily, 1971, 48, № 33, ЭИ АиР, 1971, № 41; РЖ, 1971, 11.41.19
5. Nau R. A. Meeting space shuttle technology requirements at minimum cost. Pap. ASME, 1970, № AV/SpT—17, РЖ, 1971, 10.41.175
6 Milton J. F., Schramn W. B. Space shuttle vehicle concept and technology requirements. Pap. ASME, 1970, № AV/SpT-21, ЭИ АиР, 1971, № 42, РЖ, 1971. 10.41.178
7. Titus R. R. Early manned exploration of the planets. J. Spacecraft and Rockets, 1971, 8, № 5, ЭИ АиР, 1971, № 40, РЖ, 1971, 11.41.199
8. Advanced lunar operation keyed to nuclear shuttles. Aviat. Week and Space Technol., 1963, 91, № 6, ЭИ АиР, 1970, № 9
9. Bock E. H., Peters С. F., Siden L. E. Stage characteristics of an orbit—to—orbit shuttle designed for launch in an earth-to-orbit shuttle-vehicle. AIAA Paper № 70—268, ЭИ АиР, 1970, № 32
10. Nixon endorses Space Shuttle, calls for 5,5 billion +20% over next six years. Aerospace Daily, 1972, 53, № 4
11. Shuttle shapes up. Flight international, 1972, 101, № 3280, РЖ, 1972, 5.41.150
12. A shuttle decision. Flight International, 1972, 101, № 3279, РЖ, 1972, 5.41.20
2. Shuttle promises billions of dollars in cost savings – mathematica. Space Bus. Daily, 1971, 56, № 33, .РЖ, 1971, 11.41.55
3. Congress blocks shuttle funding cuts. Aviat. Week and Space Technol., 1971, 95, № 1, ЭИ АиР, 1971, № 41; РЖ, 1971, 11.41.102
4. Phased approach to space shuttle development studied by NASA. Aerospace Daily, 1971, 48, № 33, ЭИ АиР, 1971, № 41; РЖ, 1971, 11.41.19
5. Nau R. A. Meeting space shuttle technology requirements at minimum cost. Pap. ASME, 1970, № AV/SpT—17, РЖ, 1971, 10.41.175
6 Milton J. F., Schramn W. B. Space shuttle vehicle concept and technology requirements. Pap. ASME, 1970, № AV/SpT-21, ЭИ АиР, 1971, № 42, РЖ, 1971. 10.41.178
7. Titus R. R. Early manned exploration of the planets. J. Spacecraft and Rockets, 1971, 8, № 5, ЭИ АиР, 1971, № 40, РЖ, 1971, 11.41.199
8. Advanced lunar operation keyed to nuclear shuttles. Aviat. Week and Space Technol., 1963, 91, № 6, ЭИ АиР, 1970, № 9
9. Bock E. H., Peters С. F., Siden L. E. Stage characteristics of an orbit—to—orbit shuttle designed for launch in an earth-to-orbit shuttle-vehicle. AIAA Paper № 70—268, ЭИ АиР, 1970, № 32
10. Nixon endorses Space Shuttle, calls for 5,5 billion +20% over next six years. Aerospace Daily, 1972, 53, № 4
11. Shuttle shapes up. Flight international, 1972, 101, № 3280, РЖ, 1972, 5.41.150
12. A shuttle decision. Flight International, 1972, 101, № 3279, РЖ, 1972, 5.41.20
Глава I
Конструкция и характеристики Saturn V Apollo
1.1. Ракета-носитель Saturn V
Самая мощная в США ракета-носитель Saturn V вместе с космическим кораблем Apollo имеет высоту 110 м и номинальный вес ~2750 т (рис. 11.1 см. вкладку в конце книги).
Основные данные ракеты-носителя Saturn V. Заказчик Национальный комитет по авиации и астронавтике (NASA) США.
Длина S-IC 42,5 м, диаметр 10,1 м, вес без топлива 135 т, с топливом 2145 г (рис. 11.2).
Двигательный отсек состоит из силовой конструкции,теплозащиты и стабилизаторов. Силовая конструкция воспринимает сосредоточенные усилия от пяти двигателей и передает их в виде равномерно распределенной нагрузки на нижний стык топливного отсека. Один двигатель укреплен неподвижно в центре отсека на двух пересекающихся балках, 4 периферийных внешних двигателя укреплены в кардановых подвесках, которые расположены по окружности отсека под углом 90° один к другому.
Сосредоточенные нагрузки от стартовых стоек передаются через подкрепленную оболочку, устойчивость которой обеспечивается внутренними шпангоутами. Чтобы обеспечить необходимое распределение напряжений и минимизировать вес, толщина оболочки меняется от 16 до 5 мм в продольном и окружном направлениях. Конструкция отсека сделана из алюминиевого сплава 7075 (кроме штампованных деталей, которые изготовляются из сплава 7079).
Рис. 11.2. Первая ступень S-IC
Количество тепла, выделяемое двигателями F-1, составляет 9760 ккал/м? (80% тепла передается излучением от пламени) . Поэтому конструкция и оборудование в донной части ступени закрыты керамической теплоизоляцией М-31, которая состоит из волокнистого титана с высоким коэффициентом отражения, асбестового волокна и связующего вещества (коллоидная двуокись кремния).
Изоляция работает при уровне шума 164 дб и удельном тепловом потоке 65 ккал/м?сек.
Обтекатели защищают периферийные двигатели от аэродинамических нагрузок и тем самым снижают усилия, необходимые для их поворота.
Конструкция обтекателей состоит из шпангоутов, лонжеронов и подкрепленной обшивки.
Хвостовая часть обтекателей сделана из титана и нержавеющей стали, так как расчетная температура в этой зоне равна 650°C. Остальная часть конструкции сделана из алюминиевого сплава.
Четыре трапецевидных стабилизатора ступени обеспечивают устойчивость ракеты-носителя при максимальном скоростном напоре и имеют площадь 7 м? каждый. Конструкция состоит из лонжеронов и нервюр, отстоящих на 25 см друг от друга, и обшивки. Материал обшивки титан 6А1-4V (температура задней и передней кромок стабилизатора 1093 и 400…480°C соответственно).
Топливный отсек состоит из баков горючего и окислителя длиной 13,1 и 19,5 м объемом 835 и 1340 м? соответственно. Оба бака имеют цельносварную конструкцию, выполненную из алюминиевого сплава 2219. Эллипсоидные днища баков сварены из восьми трапецевидных и восьми треугольных сегментов.
Стенки баков состоят из панелей с продольными ребрами жесткости таврового сечения.
Ребра расположены на внутренней стороне панелей и получены фрезерованием из плиты толщиной 5 см. Днища и стенки баков с обшивкой межбаковых отсеков соединяются через шпангоут V-образного сечения размером 13х69 см.
При проектировании баков коэффициент безопасности. принимался равным 1,4, и расчет прочности велся на 140% максимально возможной нагрузки. Испытание баков проводилось на давление 105% от максимального расчетного. Баки работают при циклических нагрузках, материал всегда имеет не обнаруженные риски, трещины и другие дефекты, рост которых при циклических напряжениях приводит к разрушению конструкции. Поэтому проводилась оценка допустимых дефектов при контроле качества продукции.
Для демпфирования колебаний топлива на цилиндрической части баков приварены шпангоуты закрытого профиля с размерами поперечного сечения 75х100 см, а на нижнем днище установлены крестообразные перегородки. Шпангоуты и перегородки одновременно подкрепляют оболочки баков. Они сделаны из алюминиевого сплава 7079-Т6 и 7075-Т6.
Гелий, необходимый для наддува бака горючего, хранится в четырех баллонах объемом 0,88 м? при давлении 210 ат. Баллоны сделаны из алюминиевого сплава 2219 и крепятся к шпангоутам внутри бака окислителя.
Все 5 трубопроводов окислителя проходят через бак горючего и помещаются в герметичных трубах диаметром 64 см и длиной 12,2 м, подкрепленных шпангоутами. Материал труб – алюминиевый сплав 2219. К верхнему днищу каждая труба крепится через сильфон.
Внутри герметичных труб (туннелей) проходят трубопроводы окислителя диаметром 0,43 м.
Трубопроводы крепятся к днищу бака окислителя и к кронштейнам двигательного отсека. Трубопроводы имеют универсальные герметичные шарниры и специальные узлы – температурные компенсаторы, – которые допускают повороты работающих двигателей, температурные деформации конструкции и юстировку двигателей.
Топливо подается к двигателям по трубопроводам диаметром 0,3 м.
До старта бак окислителя наддувается гелием, после запуска – газообразным кислородом, который отбирается от магистрали окислителя высокого давления и пропускается через теплообменники двигателей.
Газообразный кислород поступает в бак через редукционный клапан. Бак горючего наддувается гелием. Охлажденный гелий нагревается в теплообменнике двигателей и поступает в бак горючего. Баки оборудованы клапанами для сброса давления и дренажными клапанами.
Межбаковый отсек – негерметическая полумонококовая конструкция – выполнен в виде цилиндрической оболочки, состоящей из 18 гофрированных панелей, подкрепленных пятью разъемными круговыми шпангоутами с двутавровым поперечным сечением, Расстояние между шпангоутами 1,25 м. Материал оболочки – сплав 7075.
Полумонококовая конструкция верхнего переходника состоит из подкрепленных панелей и трех шпангоутов. Для уменьшения эллиптичности обвода в полете и при наземной эксплуатации верхней стыковой шпангоут имеет усиленную конструкцию, и момент инерции его поперечного сечения равен 1930 см4. Внутри переходника располагается бортовая аппаратура первой ступени. Для устранения несоосности при стыковке ступеней S-IC и S-II на наружной стороне переходника устанавливаются центровочные фиттинги, а на S-II – направляющие шпильки с заходным конусом. Фиттинги снимаются после установки 216 болтов, диаметром 12мм.
Сложность конструкции такой сравнительно простой компоновочной схемы объясняется большими размерами ракеты-носителя, высоким удельным расходом компонентов, высокими акустическими и вибрационными нагрузками, создаваемыми двигателями, высокими требованиями к надежности и сравнительно низким весовым коэффициентам конструкции. При увеличении веса S-IC на 5,9 кг вес полезной нагрузки уменьшается на 0,64 кг.
Ступень S-IC имеет 5 быстроразъемных соединений (отрывных плат). На передней плате располагаются отрывные разъемы кабельной сети системы телеметрии, трубопроводов кондиционирования воздуха и вспомогательной пневмомагистрали. На плате межбакового отсека крепятся разъемы главных трубопроводов окислителя. Три нижние платы несут разъемы магистрали горючего, дренажной магистрали окислителя, трубопроводов различных наземных систем. Передняя и межбаковая платы расстыковываются и убираются до включения двигателей F-1. Три нижние платы отрываются при старте ракеты-носителя.
Система управления S-IC включает в себя систему управления вектором тяги, систему гидропривода и регулирующую аппаратуру. Восемь рулевых машинок отклоняют двигатели в двух плоскостях со скоростью 5 град/сек.
Рабочей жидкостью гидравлической системы является горючее RP-1, отбираемое из трубопроводов горючего высокого давления. После выключения двигателей F-1 включаются 8 тормозных РДТТ, расположенных под обтекателями главных двигателей. Тяга каждого тормозного РДТТ 39 т время работы 0,66 сек
Отделение первой ступени происходит на высоте 65 км при скорости 2,38 км/сек.
ЖРД F-1 фирмы North American Rockwell, Rocketdyne (США). Это самый большой и самый мощный ЖРД в США. Двигатель состоит из головки камеры сгорания, имеющей 2600 форсунок окислителя и 3700 форсунок горючего, отъемной сопловой приставки одного ТНА с прямым приводом, одного газогенератора, одного управляющего клапана для жидкого кислорода и горючего, одного управляющего клапана для пуска и останова. Кроме того, имеются агрегаты управления, клапан генератора, клапан воспламенительного устройства, устройство, подающее самовоспламеняющиеся компоненты топлива для зажигания смеси в основной камере сгорания, и пиротехнический воспламенитель для зажигания топлива в газогенераторе и зажигания выхлопных газов (рис. 11.3а, 11.3б).
Основные данные ракеты-носителя Saturn V. Заказчик Национальный комитет по авиации и астронавтике (NASA) США.
Проект NASA, Центр космических полетов им. Маршалла.
Первая ступень (S-IC)
Вторая ступень (S-II)
Ступень S-IC ракеты-носителя Saturn V изготовлялась на заводе фирмы Boeing, специальное оборудование (трубопроводы, клапаны, переключатели, бортовая аппаратура, изоляция) поставлялись различными предприятиями США. Сборка серийных ступеней производилась на заводе Michoud.Третья ступень (S-IVB)
Длина S-IC 42,5 м, диаметр 10,1 м, вес без топлива 135 т, с топливом 2145 г (рис. 11.2).
Двигательный отсек состоит из силовой конструкции,теплозащиты и стабилизаторов. Силовая конструкция воспринимает сосредоточенные усилия от пяти двигателей и передает их в виде равномерно распределенной нагрузки на нижний стык топливного отсека. Один двигатель укреплен неподвижно в центре отсека на двух пересекающихся балках, 4 периферийных внешних двигателя укреплены в кардановых подвесках, которые расположены по окружности отсека под углом 90° один к другому.
Сосредоточенные нагрузки от стартовых стоек передаются через подкрепленную оболочку, устойчивость которой обеспечивается внутренними шпангоутами. Чтобы обеспечить необходимое распределение напряжений и минимизировать вес, толщина оболочки меняется от 16 до 5 мм в продольном и окружном направлениях. Конструкция отсека сделана из алюминиевого сплава 7075 (кроме штампованных деталей, которые изготовляются из сплава 7079).
Рис. 11.2. Первая ступень S-IC
Количество тепла, выделяемое двигателями F-1, составляет 9760 ккал/м? (80% тепла передается излучением от пламени) . Поэтому конструкция и оборудование в донной части ступени закрыты керамической теплоизоляцией М-31, которая состоит из волокнистого титана с высоким коэффициентом отражения, асбестового волокна и связующего вещества (коллоидная двуокись кремния).
Изоляция работает при уровне шума 164 дб и удельном тепловом потоке 65 ккал/м?сек.
Обтекатели защищают периферийные двигатели от аэродинамических нагрузок и тем самым снижают усилия, необходимые для их поворота.
Конструкция обтекателей состоит из шпангоутов, лонжеронов и подкрепленной обшивки.
Хвостовая часть обтекателей сделана из титана и нержавеющей стали, так как расчетная температура в этой зоне равна 650°C. Остальная часть конструкции сделана из алюминиевого сплава.
Четыре трапецевидных стабилизатора ступени обеспечивают устойчивость ракеты-носителя при максимальном скоростном напоре и имеют площадь 7 м? каждый. Конструкция состоит из лонжеронов и нервюр, отстоящих на 25 см друг от друга, и обшивки. Материал обшивки титан 6А1-4V (температура задней и передней кромок стабилизатора 1093 и 400…480°C соответственно).
Топливный отсек состоит из баков горючего и окислителя длиной 13,1 и 19,5 м объемом 835 и 1340 м? соответственно. Оба бака имеют цельносварную конструкцию, выполненную из алюминиевого сплава 2219. Эллипсоидные днища баков сварены из восьми трапецевидных и восьми треугольных сегментов.
Стенки баков состоят из панелей с продольными ребрами жесткости таврового сечения.
Ребра расположены на внутренней стороне панелей и получены фрезерованием из плиты толщиной 5 см. Днища и стенки баков с обшивкой межбаковых отсеков соединяются через шпангоут V-образного сечения размером 13х69 см.
При проектировании баков коэффициент безопасности. принимался равным 1,4, и расчет прочности велся на 140% максимально возможной нагрузки. Испытание баков проводилось на давление 105% от максимального расчетного. Баки работают при циклических нагрузках, материал всегда имеет не обнаруженные риски, трещины и другие дефекты, рост которых при циклических напряжениях приводит к разрушению конструкции. Поэтому проводилась оценка допустимых дефектов при контроле качества продукции.
Для демпфирования колебаний топлива на цилиндрической части баков приварены шпангоуты закрытого профиля с размерами поперечного сечения 75х100 см, а на нижнем днище установлены крестообразные перегородки. Шпангоуты и перегородки одновременно подкрепляют оболочки баков. Они сделаны из алюминиевого сплава 7079-Т6 и 7075-Т6.
Гелий, необходимый для наддува бака горючего, хранится в четырех баллонах объемом 0,88 м? при давлении 210 ат. Баллоны сделаны из алюминиевого сплава 2219 и крепятся к шпангоутам внутри бака окислителя.
Все 5 трубопроводов окислителя проходят через бак горючего и помещаются в герметичных трубах диаметром 64 см и длиной 12,2 м, подкрепленных шпангоутами. Материал труб – алюминиевый сплав 2219. К верхнему днищу каждая труба крепится через сильфон.
Внутри герметичных труб (туннелей) проходят трубопроводы окислителя диаметром 0,43 м.
Трубопроводы крепятся к днищу бака окислителя и к кронштейнам двигательного отсека. Трубопроводы имеют универсальные герметичные шарниры и специальные узлы – температурные компенсаторы, – которые допускают повороты работающих двигателей, температурные деформации конструкции и юстировку двигателей.
Топливо подается к двигателям по трубопроводам диаметром 0,3 м.
До старта бак окислителя наддувается гелием, после запуска – газообразным кислородом, который отбирается от магистрали окислителя высокого давления и пропускается через теплообменники двигателей.
Газообразный кислород поступает в бак через редукционный клапан. Бак горючего наддувается гелием. Охлажденный гелий нагревается в теплообменнике двигателей и поступает в бак горючего. Баки оборудованы клапанами для сброса давления и дренажными клапанами.
Межбаковый отсек – негерметическая полумонококовая конструкция – выполнен в виде цилиндрической оболочки, состоящей из 18 гофрированных панелей, подкрепленных пятью разъемными круговыми шпангоутами с двутавровым поперечным сечением, Расстояние между шпангоутами 1,25 м. Материал оболочки – сплав 7075.
Полумонококовая конструкция верхнего переходника состоит из подкрепленных панелей и трех шпангоутов. Для уменьшения эллиптичности обвода в полете и при наземной эксплуатации верхней стыковой шпангоут имеет усиленную конструкцию, и момент инерции его поперечного сечения равен 1930 см4. Внутри переходника располагается бортовая аппаратура первой ступени. Для устранения несоосности при стыковке ступеней S-IC и S-II на наружной стороне переходника устанавливаются центровочные фиттинги, а на S-II – направляющие шпильки с заходным конусом. Фиттинги снимаются после установки 216 болтов, диаметром 12мм.
Сложность конструкции такой сравнительно простой компоновочной схемы объясняется большими размерами ракеты-носителя, высоким удельным расходом компонентов, высокими акустическими и вибрационными нагрузками, создаваемыми двигателями, высокими требованиями к надежности и сравнительно низким весовым коэффициентам конструкции. При увеличении веса S-IC на 5,9 кг вес полезной нагрузки уменьшается на 0,64 кг.
Ступень S-IC имеет 5 быстроразъемных соединений (отрывных плат). На передней плате располагаются отрывные разъемы кабельной сети системы телеметрии, трубопроводов кондиционирования воздуха и вспомогательной пневмомагистрали. На плате межбакового отсека крепятся разъемы главных трубопроводов окислителя. Три нижние платы несут разъемы магистрали горючего, дренажной магистрали окислителя, трубопроводов различных наземных систем. Передняя и межбаковая платы расстыковываются и убираются до включения двигателей F-1. Три нижние платы отрываются при старте ракеты-носителя.
Система управления S-IC включает в себя систему управления вектором тяги, систему гидропривода и регулирующую аппаратуру. Восемь рулевых машинок отклоняют двигатели в двух плоскостях со скоростью 5 град/сек.
Рабочей жидкостью гидравлической системы является горючее RP-1, отбираемое из трубопроводов горючего высокого давления. После выключения двигателей F-1 включаются 8 тормозных РДТТ, расположенных под обтекателями главных двигателей. Тяга каждого тормозного РДТТ 39 т время работы 0,66 сек
Отделение первой ступени происходит на высоте 65 км при скорости 2,38 км/сек.
ЖРД F-1 фирмы North American Rockwell, Rocketdyne (США). Это самый большой и самый мощный ЖРД в США. Двигатель состоит из головки камеры сгорания, имеющей 2600 форсунок окислителя и 3700 форсунок горючего, отъемной сопловой приставки одного ТНА с прямым приводом, одного газогенератора, одного управляющего клапана для жидкого кислорода и горючего, одного управляющего клапана для пуска и останова. Кроме того, имеются агрегаты управления, клапан генератора, клапан воспламенительного устройства, устройство, подающее самовоспламеняющиеся компоненты топлива для зажигания смеси в основной камере сгорания, и пиротехнический воспламенитель для зажигания топлива в газогенераторе и зажигания выхлопных газов (рис. 11.3а, 11.3б).