Страница:
261
Это знание не является на все 100% определенным, так как логически возможно, что последующие наблюдения могут опровергнуть теорию. На практике гипотетико-дедуктивное исследование является непрерывно развертывающимся циклом переходов между выдвигаемыми гипотезами, выводами из них, наблюдениями и проверками выводов на основе наблюдений.
Так как проверка гипотезы часто требует создания особых условий (полностью круглых шаров, совершенно плоского стола, отсутствия движений воздуха и т.д.), мы говорим об эксперименте. При этом предполагается, что подлинная проверка является систематической и ведет к получению наблюдений, которые могут ослабить гипотезу.
С помощью гипотетико-дедуктивного метода мы можем предсказывать и при известных обстоятельствах контролировать природные процессы. Здесь мы имеем определенное совпадение теории и практического интереса. Знание - сила (Ф.Бэкон). Знание, основанное на гипотетико-дедуктивном методе, дает нам как понимание природных явлений, так и возможность контроля над ними.
Итак, мы рассмотрели вкратце три метода (дедукцию, индукцию и гипотетико-дедуктивный метод) и отметили, что в позднем Ренессансе подчеркивалось прежде всего различие дедукции и индукции. В целом новая наука стала пониматься как основанная на гипотетико-дедуктивном методе. Так выглядит проблема метода со стороны естествознания. Но во время Реформации вновь стал важным анализ текстов и, следовательно, потребовался иной метод. Протестанты стремились вернуться к Библии. Однако что на самом деле говорит Библия? Прошли многие столетия после ее написания и могли ли люди периода Реформации адекватно понять, что было сказано в рамках античной иудейской традиции? Ни один из трех упомянутых методов не был эффективным для понимания Библии. Проблема понимания текстов из другой культуры является проблемой не контроля в технологическом смысле, но проникновения в горизонт понимания, в рамках которого творил автор этих текстов. Поэтому интерпретативный метод, герменевтика, приобрел в эпоху Реформации новую актуальность, хотя герменевтика столь же стара, как и философия.
В XVII в. одни философы оказались очарованными понятиями классической механики, других пленил метод. Но последние были разного мнения о том, что собой являет этот метод. Британские эмпирицисты (Локк, Беркли, Юм) думали, что новое и су
262
щественное заключается в его эмпирическом и критическом духе. Они подчеркивали важность критики познания, основанного на опыте. Классические рационалисты (Декарт, Спиноза, Лейбниц) считали, что существенным является дедуктивный и математический характер метода. Они делали упор на его дедуктивную природу. Мы еще вернемся к рассмотрению этих двух основных направлений философии XVII-XVIII веков и проследим их развитие вплоть до возникновения трансцендентальной кантовской философии.
Мы отмечали, что эпоха Ренессанса была крайне противоречивой. Открытие заново античной греческой философии сыграло свою роль в вооружении Ренессанса хорошими теориями. Однако откуда возник интерес к применению знания?
Перед тем, как мы очертим ответ, стоит вспомнить некоторые конкретные результаты этого пробудившегося практического интереса: изобретение пороха (XIV в.), искусство книгопечатания (XV в.) и великие географические открытия (XV- XVII века). Мы также помним, что практический интерес, который был одним из факторов, сделавшим возможным новое естествознание, возник в период перехода от феодальной к ранне-капиталистической экономике.
Вообще говоря, феодальные классы не были непосредственно заинтересованы в господстве над окружающим и его использовании. Однако короли в возникающих национальных государствах, государственные советы и, прежде всего, третье сословие усиливавшихся городов были заинтересованы в методах, которые бы помогли достичь господства над природой. К их числу относятся способы производства огнестрельного оружия (для колонизации, ставшей возможной после так называемых географических открытий) и гипотетико-дедуктивный метод с вытекавшими из него технологическими последствиями для развивающейся индустрии (например, для горного дела) [1].
Возникновение гипотетико-дедуктивной науки не являлось чисто интеллектуальным явлением [2]. Но даже если иметь в виду ее практическую направленность, то это не означает, что отдельные ренессансные ученые руководствовались только практическими интересами. Правильнее было бы говорить о социальных факторах, влиявших на науку как коллективную форму деятельности.
1 Примером могут служить становление промышленности в Дании во время правления Кристиана IV (Christian IV, 1577-1648), а также сотрудничество Фредерика III (Frederik III, 1609-1670) и третьего сословия Копенгагена.
2 В определенном смысле гипотетико-дедуктивная наука и ранний капитализм связаны друг с другом. Однако это не означает, что данная наука является "капиталистической", то есть, что она может существовать только в капиталистическом обществе!
Защитник индуктивного метода Ф.Бэкон писал как о новой науке (Novum Organon = новое средство), которая могла бы дать нам власть над природой, так и о новом обществе (Nova Atlantis), которое с помощью науки могло бы стать земным раем. Бэкон выразил мечту о технологическом господстве над природой. Именно
263
технологическая рациональность должна привести в это новое общество. Другими словами, методологические и политические проблемы рассматривались в тесной связи друг с другом. Именно наука будет тем средством господства над природой, которое создаст предпосылки для построения счастливого общества. Сегодня ясно, что в основном предвидение Бэкона оказалось правильным. Гипотетико-дедуктивная наука сделала возможным улучшение жизни людей и играет определенную роль в процессе формирования независимой человеческой личности [1].
1 Это привело не только к способности делать больше вещей (строить мосты и космические станции). Наука, не в последнюю очередь в Новое время, сделала людей более автономными, предоставив им более открытый и свободный взгляд как на самих себя, так и на природу. Как показывает исследование космоса, этот взгляд не всегда носит сиюминутную практическую нацеленность.
Бэкон проводит различие между собой, Аристотелем, который думал, что счастливое общество, прежде всего, нуждается в хорошем праксисе, и мыслителями Средневековья, которые помещали рай в потусторонний мир и рассматривали земной мир как более или менее неизменный. Бэкон создал политическую утопию, которая в противоположность статической утопии платоновского идеального государства, находится в состоянии прогрессивного исторического развития. Отметим, что речь идет о земном развитии, в ходе которого должно изменяться общество, и цель которого находится внутри истории, а не после нее. Другими словами, здесь начала формироваться современная вера в прогресс. Стержнем истории уже не является Божественная история спасения, а скорее человеческая способность использовать природу и господствовать над ней. История движется вперед и движется человеком.
Бэкон также занимался педагогикой в том смысле, что он желал помочь своим последователям двигаться к более истинному познанию и более разумным представлениям. Он показывает, как легко могут искажаться и офаничиваться мысли и представления. Он выделяет четыре вида человеческих предрассудков (идолов). Первые - это идолы рода (idola tribus), которые представляют собой неправильные представления, укорененные в человеческой природе. Их примерами являются склонность к принятию желаемого за действительное, рассмотрение абстракций в качестве реальных вещей, доверие к непосредственному опыту, не основанное на более тщательном изучении того, какими в действитель
264
ности являются воспринимаемые вещи. Вторые - это идолы индивида (idola specus), так сказать, неправильные представления, коренящиеся в присущих каждому человеку уникальном характере, воспитании и окружении. Каждый смотрит на мир со своей колокольни! Третьи - это идолы площади (idola fori), которые являются искажениями, проистекающими из-за использования языка. Мы используем термины типа "рок", "перводвигатель" и думаем, что они являются ясными понятиями, указывающими на нечто реальное. Четвертые - это идолы театра (idola theatri), которые являются ложными представлениями, навязываемыми философской традицией. Таким образом, Бэкон предложил целую профамму просвещения людей и борьбы против невежества и предрассудков. Здесь его способ мышления предвосхищает эпоху Просвещения (XVIII век).
Коперник и Кеплер
При обсуждении возникновения экспериментального математического естествознания мы упоминали классическую механику. Однако научным переворотом, оказавшим в то время наибольшее влияние на самопонимание человека, был переход астрономии от геоцентрической к гелиоцентрической системе мира. Астрономия, строго говоря, основывается не на эксперименте, а на систематических наблюдениях и математических моделях. Мы в состоянии экспериментировать с шарами и маятниками, но не со звездами и планетами!
Однако в астрономии также применяется гипотетико-дедуктивный метод и с помощью понятий говорится о материальных телах и их движениях. Но ее непосредственной опытной основой является наблюдение, а не эксперимент. В этой связи будет полезно рассмотреть несколько различных взглядов на опыт.
1) Говоря о жизненном опыте, мы не подразумеваем систематическое наблюдение или экспериментирование, а имеем в виду уникальные для каждого человека процессы его формирования, воспитания и образования. Все эти процессы происходят непосредственно с человеком и получают в нем специфические, присущие только ему преломления. В психологии эта концепция опыта используется, когда говорят о социализации детей. Здесь мы имеем в виду развитие понятий и приобретение компетенции. Например, когда ребенок становится способным притворяться, то у
265
него уже сформировалось различие между тем, что есть на самом деле, и тем, что только кажется действительным. Ребенок научился использовать это различие в разных социальных ситуациях. (Не вдаваясь в детали, скажем, что этот вид жизненного опыта включает нечто, что не может быть сообщено всем другим. Только те, кто лично пережил подобный опыт, способен на его понимание. Следовательно, в таких ситуациях существует определенное "скрытое знание", которое не может быть передано только одними словами. Но обычно мы переживаем подобный опыт не одни, а совместно с другими, которые разделяют с нами его понимание и часто учат нас. Такой тип нашего опыта, следовательно, не является недоступным для других).
2) В науке опыт предстает в форме систематического наблюдения. Основываясь на отдельных понятиях, ученый наблюдает и регистрирует определенный тип явлений. Исходя из понятия формы правления, мы наблюдаем, например, греческие города-государства и записываем результат в форме, понятной для тех, кто интересуется этой же темой (Аристотель). Или мы наблюдаем анатомические особенности рептилий и птиц на разных островах Галапагосского архипелага (Дарвин). Мы не просто "видим", мы "смотрим сквозь определенные понятия". Мы не стремимся увидеть все, но пытаемся рассмотреть определенные особенности в границах избранного поля исследований. Затем мы записываем результат таким образом, чтобы он был понятен другим и мог быть проверен ими. Подобный вид опыта может быть подвергнут интерсубъективному контролю. На основе такого опыта мы в состоянии формулировать гипотезы, которые могут быть усилены или ослаблены новыми наблюдениями. Другими словами, в этом случае мы в состоянии проводить исследования с помощью гипотетико-дедуктивного метода.
3) В некоторых случаях мы можем влиять на условия проведения научного опыта. Например, мы можем заниматься не наблюдением произвольных падающих объектов, но провести ряд испытаний, в которых определенные объекты падают с выбранной нами высоты. При этом мы можем провести новые испытания столько раз, сколько нам необходимо. Здесь для проверки наших гипотез нам не нужно совершать путешествия на удаленные острова. Мы можем выяснить, какие факторы мы хотим иметь постоянными, а какие - изменяющимися. Так, мы можем систематически менять вес, объем падающих тел или высоту падения одного и того же тела. Короче говоря, сейчас мы можем эксперименти
266
ровать в самой широкой области, начиная от физики и кончая психологией. Что касается астрономии, то в ней, конечно, наши возможности экспериментирования ограничены выбором разных средств наблюдения, но мы не в состоянии экспериментировать с такими изучаемыми объектами, как Солнце, Земля и другие небесные тела.
Все науки используют опыт в смысле систематического наблюдения (2), но только некоторые в состоянии экспериментировать с исследуемыми объектами (3). Можно также сказать, что любая научная деятельность предполагает согласованные действия ученых, основанные на том типе обучения, который имеет место при формировании и социализации человека (1). Обучение науке означает приобретение знаний не только о некоторых фактах, но и о том, как получены эти факты и знания о них. Все это предполагает владение определенными способами мышления и действия.
На основе этих замечаний может быть прояснена битва вокруг картины мира, развернувшаяся в астрономии XVI в. Эти события хорошо известны, поэтому напомним только главные.
Николай Коперник (Nicolaus Copernicus, 1473-1543) предложил астрономическую модель с Солнцем в качестве центра планетной системы. Эта гелиоцентрическая система противоречила господствовавшей геоцентрической системе, восходящей к Птолемею и признававшейся Церковью. Напомним, кстати, что гелиоцентрическая модель некогда уже предлагалась греческим астрономом Аристархом из Самоса (Aristarchus, ок. 310-230 до Р.Х.) Однако именно коперниканская модель привела в эпоху Ренессанса и Реформации к подрыву авторитета церкви и аристотелевской традиции. Коперник, конечно, не стремился к этому. Он только по настоянию друзей опубликовал работу О вращениях небесных сфер (De revolutionibus orbium coelestium) буквально в конце своей жизни. Но именно коперниканское учение вызвало интеллектуальные дискуссии.
Гелиоцентрическая система оказалось революционной не только для церкви и аристотелево-птолемеевой традиции. Она революционизировала наш непосредственный жизненный опыт. Коперник дал нам возможность дистанцироваться от опыта, в центре которого мы находимся, и взглянуть на мир с совершенной другой позиции. Учение Коперника потребовало способности видеть мир и нас самих в совершенно новом ракурсе. Человек как субъект должен был посмотреть на окружающий мир и самого себя с совершенно иной, чем раньше, точки зрения.
267
Это рефлексивное дистанцирование и это "обращение" перспективы называется коперниканской революцией. Кант использовал эти обстоятельства для нового обоснования человеческого познания. Для других эти обстоятельства подрывали веру в человеческий разум. Раньше люди представляли мир, исходя из субъективной перспективы, в центре которой они находятся. Сейчас человеку пришлось отказаться от этого ложного самовозвеличивания и смотреть на себя, как на песчинку в мироздании! Этот отказ вместе с эволюционной теорией Дарвина и учением Фрейда о бессознательном дал подлинную оценку веры в человеческий разум. Подобные рассуждения стали своего рода образцом для критики традиционного доверия человеческому разуму и идеи привилегированного места человека во вселенной. (Конечно, при этом предполагается, что лицо, выступающее с подобной критикой, имеет веские основания для такого пессимизма. Но если оно действительно обладает ими, то дела с разумом обстоят не так уж и плохо!)
Итак, астрономическая теория, основывающаяся на систематических наблюдениях и математических моделях, поставила под сомнение освященный веками жизненный опыт. В результате человек пережил кризис, который привел к пересмотру его точки зрения на самого себя. Имея в виду сказанное выше о различных типах опыта, отметим, что новые теории, основанные на научном эксперименте (тип 2), оказали преобразующее влияние на наш жизненный опыт (тип 1). Другими словами, произошло "онаучивание" точки зрения человека на самого себя.
Но это изменение точки зрения человека на самого себя было двойственным. Оно не только вело к своего рода понижению космического ранга человека, но и к приобретению им нового положительного самосознания. Новая картина мира разрушала представление о совершенстве небесных сфер и об их качественном превосходстве над населенной человеком частью вселенной. Более того, прогресс, только что осуществленный в исследовании вселенной, содержал возможность нового, положительного самопонимания. Именно здесь находятся корни земной и научно обоснованной веры в прогресс, которой характеризуется Просвещение и последующие эпохи. В этой вере, конечно, много претензий, но в ней определенно отсутствует отрицательное представление человека о самом себе.
268
Как и многие выдающиеся деятели начала Нового времени, Иоганн Кеплер (Johannes Kepler, 1571-1630) находился под влиянием и нового и старого. Он опровергает представление о том, что небесные сферы являются качественно отличными от земного мира, и ищет механическое объяснение движениям планет. Однако для Кеплера математические законы движения имели и метафизическое измерение. Эта смесь математики и метафизики указывает на его связь со старой традицией, восходящей к пифагорейцам. Но в целом его интерес к механическому объяснению всего во вселенной, от высокого до низкого, помог заложить основания новых естественных наук.
С помощью наблюдений, сделанных Тихо Браге (Tycho Brahe, 1546-1601), Кеплер уточнил модель Коперника. Орбиты являются не окружностями, по которым с постоянной скоростью движутся планеты, а эллипсами, в центральном фокусе которых находится Солнце. Планета движется по эллипсу с переменной скоростью, зависящей от расстояния до Солнца. На этой основе Кеплер существенно упростил модель Коперника и сформулировал законы перемещения планет по их орбитам.
Естественно, возник вопрос о том, какая из моделей лучше соответствует действительности. Не является ли гелиоцентрическая модель не только "более экономной" (более простой), но также и истинной? В результате конфликт гелиоцентризма с Церковью серьезно обострился. Позднее, когда ньютоновская теория всемирного тяготения объяснила, почему планеты движутся по эллиптическим орбитам с переменной скоростью, аргументы в пользу гелиоцентрической системы мира значительно усилились. Модели Коперника и Кеплера получили, таким образом, весомое подтверждение со стороны других фундаментальных теорий естествознания.
Законы Кеплера гласят:
1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.
2. Каждая планета движется в плоскости, проходящей через центр Солнца, причем радиус-вектор, соединяющий Солнце и планету, описывает равные площади в равные промежутки времени.
3. Квадраты времен обращения планеты вокруг Солнца относятся как кубы их средних расстояний от Солнца [1]. (Среднее расстояние равно половине главной оси эллипса.)
1 См. Кеплера законы. - В кн. Физический энциклопедический словарь. М., 1983. - С. 280.
269
Галилей и Ньютон
Крупнейшими представителями математико-экспериментальной науки выступают Галилео Галилей (Galileo Galilei, 1564-1642) и Исаак Ньютон (Isaac Newton, 1643-1727). В их работах зародилась новая физика, противоречащая аристотелевской традиции. Мы уже говорили о понятии материальной частицы, механическом причинном объяснении и гипотетико-дедуктивном методе, которые были составными частями этого нового, математически сформулированного естествознания. Поэтому будем кратки.
Галилей, живший за два поколения до Ньютона, был центральной фигурой в борьбе против аристотелевского толкования основных научных понятий и способов объяснения. Он опровергал их не только на философском уровне, но и по-новому проводя научные исследования. Хорошо известны эксперименты Галилея со свободно падающими телами, которые послужили основой для формулировки законов движения, отличных от аналогичных законов аристотелевской физики. Известны также его поддержка коперниканской системы и реакция на нее инквизиции, под давлением которой Галилей был вынужден отречься от своих научных убеждений.
Верно, что в дальнейшем были высказаны сомнения относительно использования Галилеем экспериментальных методов. Действительно ли он использовал экспериментальные результаты для объективной проверки своих гипотез или же правильнее сказать, что они были иллюстрациями выводов, уже сделанных им на теоретическом уровне? (Иногда даже высказывается мнение, что Галилей подтасовывал записи своих наблюдений). Но как бы там ни было, Галилею следует воздать должное за то, что он был пионером разработки новых физических понятий и методов исследования.
Разрабатывая новые экспериментальные методы и механические понятия, Галилей придавал большое значение математике, которую он считал языком "книги природы". "Философия написана в грандиозной книге, которая открыта нашим глазам. Мы
270
можем прочитать ее лишь тогда, когда выучим ее язык и усвоим знаки, которыми она написана. А написана она на языке математики, буквами которого являются треугольники, круги и другие геометрические фигуры. Без них человек не в состоянии понять даже единственное слово" этой книги. [См. Il Saggiatore, 6 вопрос].
Сэр Исаак Ньютон, родившийся в семье мелкого землевладельца, стал профессором математики Кембриджского университета и президентом Королевского общества. Он является исключительно выдающейся фигурой как физики, так и общей интеллектуальной истории. Его основной труд Математические принципы натуральной философии (Philosophiae naturalis principia mathematica) был опубликован в 1687 г.
Как известно, Ньютон сформулировал три закона движения и закон всемирного тяготения, создал теорию исчисления бесконечно малых (одновременно с Лейбницем, но независимо от него) и теорию цветового состава естественного света. Его физические теории обосновали предшествующие теории как в астрономии (кеплеровские законы движения планет), так и в механике (галилеев закон свободного падения). Ньютоновская физика является исследованием природы на основе гипотетико-дедуктив-ного метода, в котором решающая роль принадлежит эксперименту. В ней используются выраженные в математической форме понятия материальной частицы, пустого пространства, действующих на расстоянии механических сил (причин). Идея действия на расстоянии расходится с обычным представлением, которое, помимо прочего, можно найти у Декарта (Ньютон тщательно изучал его в молодости).
Первый закон Ньютона. Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние.
Второй закон Ньютона. Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.
Третий закон Ньютона. Действию всегда есть равное и противоположное противодействие, иначе - взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны [1].
1 И.Ньютон. Математические начала натуральной философии. Перевод с латинского и комментарии А. Крылова. - М., 1989. - С. 39-41.
271
Ньютоновский закон всемирного тяготения. Два тела взаимно притягивают друг друга с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними.
Помимо физики, Ньютон интересовался теологическими вопросами и написал объемные трактаты по теологии. Занимался он и алхимией, пытаясь добиться превращения одних веществ в другие. Однако его изыскания в области химии оказались менее плодотворными, чем исследования по математике и физике.
В связи со сказанным подчеркнем следующее. В лице Ньютона физика продемонстрировала триумф науки над традициями и предрассудками, а сам Ньютон стал основным предшественником эпохи Просвещения. Возникновение физики было обязано философии в плане как формирования механистической картины мира, так и выработки рационалистической и эмпирицистской позиций. В свою очередь, Ньютон придал новые импульсы развитию философии. Особенно это видно на примере Канта, который пытался эпистемологически обосновать новую физику. Согласно Канту, понятия пространства и времени укоренены в неизменных особенностях нашего способа познания явлений. Кроме того, Кант полагал, что он показал, что и категория причины также является необходимой формой нашего познания. Тем самым новая наука предоставляет нам аргументы против скептицизма, утверждающего, что мы не можем быть уверенными в том, что одна и та же причина приводит к тем же следствиям при каждом своем воспроизведении. Ведь это скептическое утверждение казалось подрывающим саму основу экспериментального метода, предполагающего определенное постоянство природы.
Как главный основоположник новой физики, Ньютон является символом мощи человеческого мышления. Начиная с него, наука оказалась связанной с идеей прогресса. Идея Бэкона о знании как силе и, следовательно, источнике процветания и прогресса получила средства реализации. Наука, а не теология, стала верховным авторитетом в вопросах истины и превратилась в посюстороннюю, земную силу господства над природными процессами. Философия и религия вынуждены были искать свое место по отношению к науке. В этом заключается социальное и интеллектуальное значение математического и экспериментального естествознания, в возникновении которого столь существенную роль сыграл Ньютон. Но это значение наиболее полно проявилось в XVIII веке.
Это знание не является на все 100% определенным, так как логически возможно, что последующие наблюдения могут опровергнуть теорию. На практике гипотетико-дедуктивное исследование является непрерывно развертывающимся циклом переходов между выдвигаемыми гипотезами, выводами из них, наблюдениями и проверками выводов на основе наблюдений.
Так как проверка гипотезы часто требует создания особых условий (полностью круглых шаров, совершенно плоского стола, отсутствия движений воздуха и т.д.), мы говорим об эксперименте. При этом предполагается, что подлинная проверка является систематической и ведет к получению наблюдений, которые могут ослабить гипотезу.
С помощью гипотетико-дедуктивного метода мы можем предсказывать и при известных обстоятельствах контролировать природные процессы. Здесь мы имеем определенное совпадение теории и практического интереса. Знание - сила (Ф.Бэкон). Знание, основанное на гипотетико-дедуктивном методе, дает нам как понимание природных явлений, так и возможность контроля над ними.
Итак, мы рассмотрели вкратце три метода (дедукцию, индукцию и гипотетико-дедуктивный метод) и отметили, что в позднем Ренессансе подчеркивалось прежде всего различие дедукции и индукции. В целом новая наука стала пониматься как основанная на гипотетико-дедуктивном методе. Так выглядит проблема метода со стороны естествознания. Но во время Реформации вновь стал важным анализ текстов и, следовательно, потребовался иной метод. Протестанты стремились вернуться к Библии. Однако что на самом деле говорит Библия? Прошли многие столетия после ее написания и могли ли люди периода Реформации адекватно понять, что было сказано в рамках античной иудейской традиции? Ни один из трех упомянутых методов не был эффективным для понимания Библии. Проблема понимания текстов из другой культуры является проблемой не контроля в технологическом смысле, но проникновения в горизонт понимания, в рамках которого творил автор этих текстов. Поэтому интерпретативный метод, герменевтика, приобрел в эпоху Реформации новую актуальность, хотя герменевтика столь же стара, как и философия.
В XVII в. одни философы оказались очарованными понятиями классической механики, других пленил метод. Но последние были разного мнения о том, что собой являет этот метод. Британские эмпирицисты (Локк, Беркли, Юм) думали, что новое и су
262
щественное заключается в его эмпирическом и критическом духе. Они подчеркивали важность критики познания, основанного на опыте. Классические рационалисты (Декарт, Спиноза, Лейбниц) считали, что существенным является дедуктивный и математический характер метода. Они делали упор на его дедуктивную природу. Мы еще вернемся к рассмотрению этих двух основных направлений философии XVII-XVIII веков и проследим их развитие вплоть до возникновения трансцендентальной кантовской философии.
Мы отмечали, что эпоха Ренессанса была крайне противоречивой. Открытие заново античной греческой философии сыграло свою роль в вооружении Ренессанса хорошими теориями. Однако откуда возник интерес к применению знания?
Перед тем, как мы очертим ответ, стоит вспомнить некоторые конкретные результаты этого пробудившегося практического интереса: изобретение пороха (XIV в.), искусство книгопечатания (XV в.) и великие географические открытия (XV- XVII века). Мы также помним, что практический интерес, который был одним из факторов, сделавшим возможным новое естествознание, возник в период перехода от феодальной к ранне-капиталистической экономике.
Вообще говоря, феодальные классы не были непосредственно заинтересованы в господстве над окружающим и его использовании. Однако короли в возникающих национальных государствах, государственные советы и, прежде всего, третье сословие усиливавшихся городов были заинтересованы в методах, которые бы помогли достичь господства над природой. К их числу относятся способы производства огнестрельного оружия (для колонизации, ставшей возможной после так называемых географических открытий) и гипотетико-дедуктивный метод с вытекавшими из него технологическими последствиями для развивающейся индустрии (например, для горного дела) [1].
Возникновение гипотетико-дедуктивной науки не являлось чисто интеллектуальным явлением [2]. Но даже если иметь в виду ее практическую направленность, то это не означает, что отдельные ренессансные ученые руководствовались только практическими интересами. Правильнее было бы говорить о социальных факторах, влиявших на науку как коллективную форму деятельности.
1 Примером могут служить становление промышленности в Дании во время правления Кристиана IV (Christian IV, 1577-1648), а также сотрудничество Фредерика III (Frederik III, 1609-1670) и третьего сословия Копенгагена.
2 В определенном смысле гипотетико-дедуктивная наука и ранний капитализм связаны друг с другом. Однако это не означает, что данная наука является "капиталистической", то есть, что она может существовать только в капиталистическом обществе!
Защитник индуктивного метода Ф.Бэкон писал как о новой науке (Novum Organon = новое средство), которая могла бы дать нам власть над природой, так и о новом обществе (Nova Atlantis), которое с помощью науки могло бы стать земным раем. Бэкон выразил мечту о технологическом господстве над природой. Именно
263
технологическая рациональность должна привести в это новое общество. Другими словами, методологические и политические проблемы рассматривались в тесной связи друг с другом. Именно наука будет тем средством господства над природой, которое создаст предпосылки для построения счастливого общества. Сегодня ясно, что в основном предвидение Бэкона оказалось правильным. Гипотетико-дедуктивная наука сделала возможным улучшение жизни людей и играет определенную роль в процессе формирования независимой человеческой личности [1].
1 Это привело не только к способности делать больше вещей (строить мосты и космические станции). Наука, не в последнюю очередь в Новое время, сделала людей более автономными, предоставив им более открытый и свободный взгляд как на самих себя, так и на природу. Как показывает исследование космоса, этот взгляд не всегда носит сиюминутную практическую нацеленность.
Бэкон проводит различие между собой, Аристотелем, который думал, что счастливое общество, прежде всего, нуждается в хорошем праксисе, и мыслителями Средневековья, которые помещали рай в потусторонний мир и рассматривали земной мир как более или менее неизменный. Бэкон создал политическую утопию, которая в противоположность статической утопии платоновского идеального государства, находится в состоянии прогрессивного исторического развития. Отметим, что речь идет о земном развитии, в ходе которого должно изменяться общество, и цель которого находится внутри истории, а не после нее. Другими словами, здесь начала формироваться современная вера в прогресс. Стержнем истории уже не является Божественная история спасения, а скорее человеческая способность использовать природу и господствовать над ней. История движется вперед и движется человеком.
Бэкон также занимался педагогикой в том смысле, что он желал помочь своим последователям двигаться к более истинному познанию и более разумным представлениям. Он показывает, как легко могут искажаться и офаничиваться мысли и представления. Он выделяет четыре вида человеческих предрассудков (идолов). Первые - это идолы рода (idola tribus), которые представляют собой неправильные представления, укорененные в человеческой природе. Их примерами являются склонность к принятию желаемого за действительное, рассмотрение абстракций в качестве реальных вещей, доверие к непосредственному опыту, не основанное на более тщательном изучении того, какими в действитель
264
ности являются воспринимаемые вещи. Вторые - это идолы индивида (idola specus), так сказать, неправильные представления, коренящиеся в присущих каждому человеку уникальном характере, воспитании и окружении. Каждый смотрит на мир со своей колокольни! Третьи - это идолы площади (idola fori), которые являются искажениями, проистекающими из-за использования языка. Мы используем термины типа "рок", "перводвигатель" и думаем, что они являются ясными понятиями, указывающими на нечто реальное. Четвертые - это идолы театра (idola theatri), которые являются ложными представлениями, навязываемыми философской традицией. Таким образом, Бэкон предложил целую профамму просвещения людей и борьбы против невежества и предрассудков. Здесь его способ мышления предвосхищает эпоху Просвещения (XVIII век).
Коперник и Кеплер
При обсуждении возникновения экспериментального математического естествознания мы упоминали классическую механику. Однако научным переворотом, оказавшим в то время наибольшее влияние на самопонимание человека, был переход астрономии от геоцентрической к гелиоцентрической системе мира. Астрономия, строго говоря, основывается не на эксперименте, а на систематических наблюдениях и математических моделях. Мы в состоянии экспериментировать с шарами и маятниками, но не со звездами и планетами!
Однако в астрономии также применяется гипотетико-дедуктивный метод и с помощью понятий говорится о материальных телах и их движениях. Но ее непосредственной опытной основой является наблюдение, а не эксперимент. В этой связи будет полезно рассмотреть несколько различных взглядов на опыт.
1) Говоря о жизненном опыте, мы не подразумеваем систематическое наблюдение или экспериментирование, а имеем в виду уникальные для каждого человека процессы его формирования, воспитания и образования. Все эти процессы происходят непосредственно с человеком и получают в нем специфические, присущие только ему преломления. В психологии эта концепция опыта используется, когда говорят о социализации детей. Здесь мы имеем в виду развитие понятий и приобретение компетенции. Например, когда ребенок становится способным притворяться, то у
265
него уже сформировалось различие между тем, что есть на самом деле, и тем, что только кажется действительным. Ребенок научился использовать это различие в разных социальных ситуациях. (Не вдаваясь в детали, скажем, что этот вид жизненного опыта включает нечто, что не может быть сообщено всем другим. Только те, кто лично пережил подобный опыт, способен на его понимание. Следовательно, в таких ситуациях существует определенное "скрытое знание", которое не может быть передано только одними словами. Но обычно мы переживаем подобный опыт не одни, а совместно с другими, которые разделяют с нами его понимание и часто учат нас. Такой тип нашего опыта, следовательно, не является недоступным для других).
2) В науке опыт предстает в форме систематического наблюдения. Основываясь на отдельных понятиях, ученый наблюдает и регистрирует определенный тип явлений. Исходя из понятия формы правления, мы наблюдаем, например, греческие города-государства и записываем результат в форме, понятной для тех, кто интересуется этой же темой (Аристотель). Или мы наблюдаем анатомические особенности рептилий и птиц на разных островах Галапагосского архипелага (Дарвин). Мы не просто "видим", мы "смотрим сквозь определенные понятия". Мы не стремимся увидеть все, но пытаемся рассмотреть определенные особенности в границах избранного поля исследований. Затем мы записываем результат таким образом, чтобы он был понятен другим и мог быть проверен ими. Подобный вид опыта может быть подвергнут интерсубъективному контролю. На основе такого опыта мы в состоянии формулировать гипотезы, которые могут быть усилены или ослаблены новыми наблюдениями. Другими словами, в этом случае мы в состоянии проводить исследования с помощью гипотетико-дедуктивного метода.
3) В некоторых случаях мы можем влиять на условия проведения научного опыта. Например, мы можем заниматься не наблюдением произвольных падающих объектов, но провести ряд испытаний, в которых определенные объекты падают с выбранной нами высоты. При этом мы можем провести новые испытания столько раз, сколько нам необходимо. Здесь для проверки наших гипотез нам не нужно совершать путешествия на удаленные острова. Мы можем выяснить, какие факторы мы хотим иметь постоянными, а какие - изменяющимися. Так, мы можем систематически менять вес, объем падающих тел или высоту падения одного и того же тела. Короче говоря, сейчас мы можем эксперименти
266
ровать в самой широкой области, начиная от физики и кончая психологией. Что касается астрономии, то в ней, конечно, наши возможности экспериментирования ограничены выбором разных средств наблюдения, но мы не в состоянии экспериментировать с такими изучаемыми объектами, как Солнце, Земля и другие небесные тела.
Все науки используют опыт в смысле систематического наблюдения (2), но только некоторые в состоянии экспериментировать с исследуемыми объектами (3). Можно также сказать, что любая научная деятельность предполагает согласованные действия ученых, основанные на том типе обучения, который имеет место при формировании и социализации человека (1). Обучение науке означает приобретение знаний не только о некоторых фактах, но и о том, как получены эти факты и знания о них. Все это предполагает владение определенными способами мышления и действия.
На основе этих замечаний может быть прояснена битва вокруг картины мира, развернувшаяся в астрономии XVI в. Эти события хорошо известны, поэтому напомним только главные.
Николай Коперник (Nicolaus Copernicus, 1473-1543) предложил астрономическую модель с Солнцем в качестве центра планетной системы. Эта гелиоцентрическая система противоречила господствовавшей геоцентрической системе, восходящей к Птолемею и признававшейся Церковью. Напомним, кстати, что гелиоцентрическая модель некогда уже предлагалась греческим астрономом Аристархом из Самоса (Aristarchus, ок. 310-230 до Р.Х.) Однако именно коперниканская модель привела в эпоху Ренессанса и Реформации к подрыву авторитета церкви и аристотелевской традиции. Коперник, конечно, не стремился к этому. Он только по настоянию друзей опубликовал работу О вращениях небесных сфер (De revolutionibus orbium coelestium) буквально в конце своей жизни. Но именно коперниканское учение вызвало интеллектуальные дискуссии.
Гелиоцентрическая система оказалось революционной не только для церкви и аристотелево-птолемеевой традиции. Она революционизировала наш непосредственный жизненный опыт. Коперник дал нам возможность дистанцироваться от опыта, в центре которого мы находимся, и взглянуть на мир с совершенной другой позиции. Учение Коперника потребовало способности видеть мир и нас самих в совершенно новом ракурсе. Человек как субъект должен был посмотреть на окружающий мир и самого себя с совершенно иной, чем раньше, точки зрения.
267
Это рефлексивное дистанцирование и это "обращение" перспективы называется коперниканской революцией. Кант использовал эти обстоятельства для нового обоснования человеческого познания. Для других эти обстоятельства подрывали веру в человеческий разум. Раньше люди представляли мир, исходя из субъективной перспективы, в центре которой они находятся. Сейчас человеку пришлось отказаться от этого ложного самовозвеличивания и смотреть на себя, как на песчинку в мироздании! Этот отказ вместе с эволюционной теорией Дарвина и учением Фрейда о бессознательном дал подлинную оценку веры в человеческий разум. Подобные рассуждения стали своего рода образцом для критики традиционного доверия человеческому разуму и идеи привилегированного места человека во вселенной. (Конечно, при этом предполагается, что лицо, выступающее с подобной критикой, имеет веские основания для такого пессимизма. Но если оно действительно обладает ими, то дела с разумом обстоят не так уж и плохо!)
Итак, астрономическая теория, основывающаяся на систематических наблюдениях и математических моделях, поставила под сомнение освященный веками жизненный опыт. В результате человек пережил кризис, который привел к пересмотру его точки зрения на самого себя. Имея в виду сказанное выше о различных типах опыта, отметим, что новые теории, основанные на научном эксперименте (тип 2), оказали преобразующее влияние на наш жизненный опыт (тип 1). Другими словами, произошло "онаучивание" точки зрения человека на самого себя.
Но это изменение точки зрения человека на самого себя было двойственным. Оно не только вело к своего рода понижению космического ранга человека, но и к приобретению им нового положительного самосознания. Новая картина мира разрушала представление о совершенстве небесных сфер и об их качественном превосходстве над населенной человеком частью вселенной. Более того, прогресс, только что осуществленный в исследовании вселенной, содержал возможность нового, положительного самопонимания. Именно здесь находятся корни земной и научно обоснованной веры в прогресс, которой характеризуется Просвещение и последующие эпохи. В этой вере, конечно, много претензий, но в ней определенно отсутствует отрицательное представление человека о самом себе.
268
Как и многие выдающиеся деятели начала Нового времени, Иоганн Кеплер (Johannes Kepler, 1571-1630) находился под влиянием и нового и старого. Он опровергает представление о том, что небесные сферы являются качественно отличными от земного мира, и ищет механическое объяснение движениям планет. Однако для Кеплера математические законы движения имели и метафизическое измерение. Эта смесь математики и метафизики указывает на его связь со старой традицией, восходящей к пифагорейцам. Но в целом его интерес к механическому объяснению всего во вселенной, от высокого до низкого, помог заложить основания новых естественных наук.
С помощью наблюдений, сделанных Тихо Браге (Tycho Brahe, 1546-1601), Кеплер уточнил модель Коперника. Орбиты являются не окружностями, по которым с постоянной скоростью движутся планеты, а эллипсами, в центральном фокусе которых находится Солнце. Планета движется по эллипсу с переменной скоростью, зависящей от расстояния до Солнца. На этой основе Кеплер существенно упростил модель Коперника и сформулировал законы перемещения планет по их орбитам.
Естественно, возник вопрос о том, какая из моделей лучше соответствует действительности. Не является ли гелиоцентрическая модель не только "более экономной" (более простой), но также и истинной? В результате конфликт гелиоцентризма с Церковью серьезно обострился. Позднее, когда ньютоновская теория всемирного тяготения объяснила, почему планеты движутся по эллиптическим орбитам с переменной скоростью, аргументы в пользу гелиоцентрической системы мира значительно усилились. Модели Коперника и Кеплера получили, таким образом, весомое подтверждение со стороны других фундаментальных теорий естествознания.
Законы Кеплера гласят:
1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.
2. Каждая планета движется в плоскости, проходящей через центр Солнца, причем радиус-вектор, соединяющий Солнце и планету, описывает равные площади в равные промежутки времени.
3. Квадраты времен обращения планеты вокруг Солнца относятся как кубы их средних расстояний от Солнца [1]. (Среднее расстояние равно половине главной оси эллипса.)
1 См. Кеплера законы. - В кн. Физический энциклопедический словарь. М., 1983. - С. 280.
269
Галилей и Ньютон
Крупнейшими представителями математико-экспериментальной науки выступают Галилео Галилей (Galileo Galilei, 1564-1642) и Исаак Ньютон (Isaac Newton, 1643-1727). В их работах зародилась новая физика, противоречащая аристотелевской традиции. Мы уже говорили о понятии материальной частицы, механическом причинном объяснении и гипотетико-дедуктивном методе, которые были составными частями этого нового, математически сформулированного естествознания. Поэтому будем кратки.
Галилей, живший за два поколения до Ньютона, был центральной фигурой в борьбе против аристотелевского толкования основных научных понятий и способов объяснения. Он опровергал их не только на философском уровне, но и по-новому проводя научные исследования. Хорошо известны эксперименты Галилея со свободно падающими телами, которые послужили основой для формулировки законов движения, отличных от аналогичных законов аристотелевской физики. Известны также его поддержка коперниканской системы и реакция на нее инквизиции, под давлением которой Галилей был вынужден отречься от своих научных убеждений.
Верно, что в дальнейшем были высказаны сомнения относительно использования Галилеем экспериментальных методов. Действительно ли он использовал экспериментальные результаты для объективной проверки своих гипотез или же правильнее сказать, что они были иллюстрациями выводов, уже сделанных им на теоретическом уровне? (Иногда даже высказывается мнение, что Галилей подтасовывал записи своих наблюдений). Но как бы там ни было, Галилею следует воздать должное за то, что он был пионером разработки новых физических понятий и методов исследования.
Разрабатывая новые экспериментальные методы и механические понятия, Галилей придавал большое значение математике, которую он считал языком "книги природы". "Философия написана в грандиозной книге, которая открыта нашим глазам. Мы
270
можем прочитать ее лишь тогда, когда выучим ее язык и усвоим знаки, которыми она написана. А написана она на языке математики, буквами которого являются треугольники, круги и другие геометрические фигуры. Без них человек не в состоянии понять даже единственное слово" этой книги. [См. Il Saggiatore, 6 вопрос].
Сэр Исаак Ньютон, родившийся в семье мелкого землевладельца, стал профессором математики Кембриджского университета и президентом Королевского общества. Он является исключительно выдающейся фигурой как физики, так и общей интеллектуальной истории. Его основной труд Математические принципы натуральной философии (Philosophiae naturalis principia mathematica) был опубликован в 1687 г.
Как известно, Ньютон сформулировал три закона движения и закон всемирного тяготения, создал теорию исчисления бесконечно малых (одновременно с Лейбницем, но независимо от него) и теорию цветового состава естественного света. Его физические теории обосновали предшествующие теории как в астрономии (кеплеровские законы движения планет), так и в механике (галилеев закон свободного падения). Ньютоновская физика является исследованием природы на основе гипотетико-дедуктив-ного метода, в котором решающая роль принадлежит эксперименту. В ней используются выраженные в математической форме понятия материальной частицы, пустого пространства, действующих на расстоянии механических сил (причин). Идея действия на расстоянии расходится с обычным представлением, которое, помимо прочего, можно найти у Декарта (Ньютон тщательно изучал его в молодости).
Первый закон Ньютона. Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние.
Второй закон Ньютона. Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.
Третий закон Ньютона. Действию всегда есть равное и противоположное противодействие, иначе - взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны [1].
1 И.Ньютон. Математические начала натуральной философии. Перевод с латинского и комментарии А. Крылова. - М., 1989. - С. 39-41.
271
Ньютоновский закон всемирного тяготения. Два тела взаимно притягивают друг друга с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними.
Помимо физики, Ньютон интересовался теологическими вопросами и написал объемные трактаты по теологии. Занимался он и алхимией, пытаясь добиться превращения одних веществ в другие. Однако его изыскания в области химии оказались менее плодотворными, чем исследования по математике и физике.
В связи со сказанным подчеркнем следующее. В лице Ньютона физика продемонстрировала триумф науки над традициями и предрассудками, а сам Ньютон стал основным предшественником эпохи Просвещения. Возникновение физики было обязано философии в плане как формирования механистической картины мира, так и выработки рационалистической и эмпирицистской позиций. В свою очередь, Ньютон придал новые импульсы развитию философии. Особенно это видно на примере Канта, который пытался эпистемологически обосновать новую физику. Согласно Канту, понятия пространства и времени укоренены в неизменных особенностях нашего способа познания явлений. Кроме того, Кант полагал, что он показал, что и категория причины также является необходимой формой нашего познания. Тем самым новая наука предоставляет нам аргументы против скептицизма, утверждающего, что мы не можем быть уверенными в том, что одна и та же причина приводит к тем же следствиям при каждом своем воспроизведении. Ведь это скептическое утверждение казалось подрывающим саму основу экспериментального метода, предполагающего определенное постоянство природы.
Как главный основоположник новой физики, Ньютон является символом мощи человеческого мышления. Начиная с него, наука оказалась связанной с идеей прогресса. Идея Бэкона о знании как силе и, следовательно, источнике процветания и прогресса получила средства реализации. Наука, а не теология, стала верховным авторитетом в вопросах истины и превратилась в посюстороннюю, земную силу господства над природными процессами. Философия и религия вынуждены были искать свое место по отношению к науке. В этом заключается социальное и интеллектуальное значение математического и экспериментального естествознания, в возникновении которого столь существенную роль сыграл Ньютон. Но это значение наиболее полно проявилось в XVIII веке.