Фактор VII. Проконвертин – синтезируется в печени при участии витамина К, являясь неактивной стадией фермента конвертина, который ускоряет образование тканевого тромбопластина и превращение протромбина в тромбин.
Фактор VIII. Антигемофильный глобулин – нужен для образования кровяного тромбопластина.
Фактор IX. Антигемофильный глобулин В. Катализирует процессы свертывания. Это фактор Кристмаса. Синтезируется в печени в присутствии витамина К.
Фактор X. Фактор Стюарта – Прауэра. Образует кровяной тромбопластин.
Фактор XI. Фактор Розенталя. Является плазменным предшественником тромбопластина.
Фактор XII. Фактор Хагемана. Это фактор «контакта», он активируется при контакте с поврежденным участком сосуда.
Фактор XIII. Фибринстабилизирующий фактор. Фибриназа синтезируется в печени и полностью потребляется в процессе свертывания.
Система свертывания крови представляет собой совокупность органов, синтезирующих и утилизирующих факторы свертывания и фибринолиза. Механизм коагуляции был из-
учен Шмидтом в 1861 г. Общепризнанной считается трехфазность процесса.
Первая фаза. Образование активного тромбопластина. Начинается с момента контакта крови с раневой поверхностью, когда из тканевых клеток и тромбоцитов высвобождаются липопротеиды. Кровяной тромбопластин играет определяющую роль во внутренней системе коагуляции, а тканевый – во внешней системе свертывания. Также образуется активный фактор Ха в присутствии ионов кальция.
Вторая фаза. Образование тромбина. В эту фазу происходит расщепление молекулы протромбина до тромбина при участии тромбоцитарного акцелератора.
Третья фаза. Образование фибрина. Переход фибриногена в фибрин осуществляется в три этапа.
1 этап: ферментативный, когда под воздействием тромбина из фибриногена образуется золеподобный фибрин – мономер.
2 этап: физико-химический, под влиянием ионов кальция происходит полимеризация фибрина-мономера в фибрин-полимер (или растворимый фибрин «S»).
3 этап: ферментативный. При участии VIII фактора и фибриназы тканей, тромбоцитов цементируются связи в фиб рине-полимере и образуется нерастворимый фибрин «I», устойчивый к фибринолизу.
Необходимо отметить, что 1 и 2 фазы коагуляции протекают в течение 2 – 5 мин, а 3 фаза – 10 – 15 с. Процесс заканчивается образованием фибрина, нити которого в дальнейшем укорачиваются, отжимается жидкость из сгустка, он становится меньших размеров, а затем активизируются механизмы ретракции тромба и реканализации сосудов крови.
Результатом взаимодействия внешней (extrinsic) и внутренней (intrinsic) систем коагуляции является образование кровяного сгустка. В рамках сказанного необходимо подчеркнуть, что механизм энзиматического каскада свертывающей системы крови очень сложен. По сути дела, здесь нет строгой последовательности протекания процесса. И хотя на первый взгляд реакции являются цепными, при глубоком же изучении многие из них развиваются в некоторой степени параллельно.
Коагуляционная система очень динамична, и ни о какой статичности говорить не приходится.
Протеканию всех фаз свертывания крови препятствуют так называемые первичные и вторичные ингибиторы (угнетатели). В качестве первичных ингибиторов выступает прежде всего гепарин, представляющий собой кислый мукополисахарид, образующийся в печени тучными клетками соединительной ткани. Это антикоагулянт широкого спектра действия, он тормозит все три фазы свертывания. Дозируется в МЕ (международных единицах). Количество гепарина у человека составляет 4 – 9 МЕ. Одна МЕ соответствует тому количеству антикоагулянта, которое способно тормозить свертывание 1 мл крови в течение 2 ч. Для действия гепарина необходимо наличие еще одного первичного ингибитора – антитромбина III. Он образует с гепарином комплекс, имеющий очень высокую антикоагуляционную активность. При помощи данного комплекса происходит переход из неактивной формы в активную альфа-2-макроглобулинов, являющиеся также первичными ингибиторами свертывания. Сюда же относятся и антитромбопластины, вещества, препятствующие действию протромбиназы. Вторичными ингибиторами коагуляции являются сами коагуляционные вещества (фибрин, тромбин, протромбиназа и др.), которые, выполнив свою основную свертывающую функцию, начинают угнетать процессы свертывания, т. е. с момента образования кровяного сгустка в него уже заранее заложено начало его гибели. Фибринолитическая (декоагуляционная) система является антиподом системе свертывания. Она функционирует с целью поддержания жидкого состояния крови, расщепления фибрина на растворимые пептиды, восстановления просвета сосудов, закупоренных сгустками (реканализация). Компонентами фибринолиза является фермент плазмин, находящийся в неактивном состоянии в виде плазминогена (профибринолизин). Синтезируется в гранулах созревающих эозинофилов костного мозга. Фибринолизин (плазмин) относится к бета-глобулиновой фракции, он расщепляет и фибрин, и фибриноген. Имеет строго локальное действие, т. е. только там, где есть фибрин.
Активаторами фибринолиза являются следующие группы веществ.
1. Плазменные:
1) физиологические (трипсин, фосфатазы и др.), которые находятся в активном состоянии в плазме крови. Это прямые активаторы;
2) непрямые активаторы присутствуют в плазме в неактивной форме. Для их активации необходимы лизокиназы и XII плазменный фактор;
3) бактерицидные активаторы (для растворения сгустка некоторые микроорганизмы начинают вырабатывать ферменты, например стрептоминазу, стафилокиназу и др.).
2. Тканевые активаторы: обладают очень высокой активностью, действуя только местно, имеют тесную взаимосвязь с белковыми структурами тканей. Таких веществ много в сосудистой стенке, щитовидной железе, легких, предстательной железе. Выходят из поврежденных тканей.
К ингибиторам фибринолиза относится группа антиплазминов двух видов. Одна группа препятствует образованию плазмина, другая – его активации (Е-аминокапроновая кислота, контрикал и другие). Относятся к альфа-глобулиновой фракции, синтезируются в печени.
Фазы фибринолиза
Первая фаза: образование кровяного активатора плазминогена. Кровяной проактиватор под влиянием тканевых лизокиназ, антилизокиназ и XII плазменного фактора превращается в кровяной активатор.
Вторая фаза: переход плазминогена в плазмин. Процесс происходит при участии множества факторов (кровяного активатора, тканевого активатора, урокиназы, щелочной и кислой фосфотазы, трипсина, XII фактора, комплемента С1).
Третья фаза: расщепление фибрина с помощью плазмина и антиплазмина до пептидов и аминокислот.
Существует так называемый неферментативный фибринолиз, в результате которого фибрин из фибриллярной формы превращается в глобулярную. Такой фибринолиз представлен комплексами гепарина с различными веществами, в частности: «гепарин + тромбопластин», «гепарин + тромбин», «гепарин + XIII фактор», «гепарин + факторы системы фибринолиза», «гепарин + адреналин», «гепарин + инсулин» и т. д.
Необходимо отметить, что данные комплексы обладают высокой активностью. Они вызывают не лизис (расщепление) фибрина, а изменение его структуры. В основном неферментативный фибринолиз направлен на растворимый фибрин (фибрин S) и действует до того, как начнет функционировать фибринстабилизирующий XIII плазменный фактор.
Особое значение имеет тот факт, что коагуляционная и фибринолитическая системы находятся в состоянии подвижного равновесия, изменяющегося под влиянием различных физиологических и патологических моментов.
Исключительную роль, например, играет кининовая система и ее связь с системой свертывания крови. Основными кининами являются брадикинин, каледин, колимедин, метилэтил брадикинин. Они обладают активностью и строго локальным действием в организме. В целом система кининов направлена на снятие спазма кровеносных сосудов и восстановление кровотока. Компоненты кининовой системы вызывают снижение тонуса сосудистой стенки, тем самым понижая давление крови, регулируют частоту сердечных сокращений и коронарный кровоток сердца. Участвуют в регуляции водно-солевого обмена и системы ренин-ангиотензин. Наряду с этим кинины повышают проницаемость сосудистой стенки и способствуют развитию воспалительных реакций. Активаторами кининовой системы являются каллекреин (неактивная форма прокаллекреин переходит в активную при помощи XII плазменного фактора). Кининазы ингибируют (подавляют) процессы кининовой системы. Таким образом, за счет XII фактора осуществляется связь системы коагуляции и кининовых реакций, вследствие чего обеспечивается нормальное жидкое состояние крови, образование при травме нитей фибрина и при остановке кровотечения – растворение сгустка.
Как было уже отмечено, системы свертывания и фибринолиза находятся в адекватном равновесии, что обеспечивает способность организма сохранять постоянство физико-химических свойств внутренней среды (гомеостаза). Внутренняя среда организма представляет собой комплекс жидкостей – крови, лимфы, ликвора, она ограждена от окружающей среды внешними (кожа, слизистые) и внутренними (тканевая жидкость) барьерами. Гомеостаз – состояние относительное, так как нет в мире ничего абсолютно постоянного и статичного. Гомео стаз выражается в биологических константах – относительно устойчивых количественных показателях, характеризующих нормальную жизнедеятельность организма (например, температура тела, осмотическое давление крови и тканевой жидкости, содержание белков, сахара и т. д.). Биологические константы могут быть:
1) жесткие, когда их малейшие отклонения от нормальных значений вызывают серьезные последствия (рН крови = 7,34 – 7,36, при понижении кислотности наблюдается сдвиг внутренней среды организма в кислую сторону, развивается ацидоз, при повышении кислотности – в щелочную сторону – алкалоз. И то, и другое состояние требует врачебного вмешательства во избежание необратимых изменений в тканях и органах;
2) пластические константы характеризуются тем, что даже при их значительном отклонении от нормы не наблюдаются какие-либо серьезные нарушения в жизнедеятельности организма человека. В данном случае эффективно срабатывают саморегулятивные механизмы внутренней среды – гомеостатические реакции, имеющие прежде всего приспособительный характер.
Приведем пример. В норме у человека в крови содержится примерно от 3,3 до 5,5 ммоль/л глюкозы. При снижении уровня глюкозы (например, при длительном голодании) организм реагирует следующим образом: возбуждается симптоматическая система, вследствие чего из мозгового вещества надпочечников выбрасывается большое количество адреналина, поступающего с кровью в печень. Там происходит повышенный синтез и активация ферментов, способных расщепить гликоген до глюкозы, которая поступит в кровь, достигнув органов, сильно нуждающихся в глюкозе (головной мозг, сердце, почки). Кровь является универсальной внутренней средой организма. Ланг дал следующее определение системы крови: это кровь и органы, принимающие участие в образовании и разрушении ее клеток вместе с механизмами регуляции. Он включил в систему крови:
1) периферическую кровь;
2) циркулирующую по сосудам кровь;
3) органы кроветворения;
4) органы разрушения крови;
5) нейрогуморальную регуляцию гомеостаза.
Особенности крови заключаются в ее высокой динамичности, выраженной в постоянном изменении ее состава.
Все форменные элементы образуются за пределами кровеносной системы. Кровь функционирует по системе замкнутых сосудов.
Функции крови
1. Транспортная – переносятся питательные вещества, гормоны, медиаторы, ферменты и т. д.
2. Дыхательная – гемоглобин эритроцитов переносит кислород к тканям и органам и углекислый газ от них к легким.
3. Питательная – перенос питательных веществ от органов пищеварения к тканям.
4. Защитная – способность свертывания, содержит антитела, пропердин и т. д.
5. Регуляторная – через центральную нервную систему рефлекторно или гуморально при помощи гормонов, солей, ионов водорода и др.
6. Экскреторная – выделительная, транспорт и выведение шлаков из организма.
7. Буферная.
Принято считать, что количество крови человека составляет 1/13 массы его тела, т. е. примерно 5 – 6 л. Надо отметить, что определенная часть крови находится в кровеносном русле, в так называемых депо (печени, селезенке).
Кровь обладает:
1) суспензионными свойствами, так как в ней находятся во взвешенном состоянии форменные элементы крови, грубодисперсные и мелкодисперсные белки;
2) коллоидными свойствами за счет содержания в крови белковых структур, способствующих задержке жидкой части крови в сосудистом русле, обеспечивая тем самым онкотическое давление крови;
3) электролитными свойствами. В связи с присутствующими в крови электролитами, которые обусловливают осмотическое давление и кислотность крови.
В результате исследований обнаружено, что кровь человека на 55 – 60% состоит из плазмы и на 40 – 45% из форменных элементов. К форменным элементам относятся эритроциты, лейкоциты, тромбоциты, лимфоциты. Процентное соотношение плазмы и форменных элементов – это гематокритное число, которое у мужчин составляет 47 ± 7, а у женщин – 42 ± 5.
Плазма представляет собой водно-солевой раствор белков из воды 90% и 10% сухого остатка: неорганического (фосфаты, хлориды) и органического (белки, ферменты, гормоны, витамины).
Белки плазмы крови составляют 7 – 8%, при этом на альбумины приходится 4,5%, на глобулины – 2 – 3%, на фибриноген – 0,2 – 0,4%. Белковый коэффициент характеризуется отношением альбуминов к глобулинам и составляет 2 : 1 (1,7). Альбумины обеспечивают суспензионные свойства крови, коллоидно-онкотическое давление, обладают пластической и транспортной функцией. Глобулины играют важную роль в системе свертывания крови, входят в комплексы металлов (церуплазмин – Cu2+, трансферрин – Fe+3). При заболеваниях сердца, почек и других патологиях в крови обнаруживаются С-реактивный белок, относящийся к глобулиновой фракции и имеющий важное диагностическое значение.
Различные травмы в большинстве случаев вызывают кровотечения, обусловленные нарушением целостности кровеносных сосудов, которые рефлекторно начинают сокращаться, вызывая ослабление кровотечения и застой тока крови. Спазму сосудов помогают активные субстанции тромбоцитов в виде адреналина, серотонина и норадреналина. В месте, где наблюдается повреждение, тромбоциты образуют «пробку» в результате адгезии, агрегации и вискозитентной метаморфозы. Быстро активируется внешняя система свертывания при участии V, VII, X факторов плазмы. Внутренняя система гемостаза начинает активироваться в связи с активацией фактора контакта (XII) и запуском каскадных реакций с образованием активных XIIa, XIa, IXa, VIIIa плазменных факторов. Результатом объединения внешней и внутренней систем будет появление тромбина, который способен протеолизировать молекулу фибриногена, превращая его в фибрин. Фибриновая структура сгустка создается путем синтеза и полимеризации и стабилизируется при помощи VIII фактора. Через несколько дней в процесс включается система фибринолиза, в результате чего происходит восстановление проходимости кровеносного сосуда (реканализация).
Геморрагические диатезы классифицируются по нарушению основных факторов гемостаза
I. Обусловленные изменениями тромбоцитопоэза (или тромбоцитопатии, тромбоцитопении, тромбоцитемии).
1. Геморрагическая тромбоцитемия.
2. Тромбоцитастения Глануманна.
3. Болезнь Верльгофа (иммунная идеопатическая).
4. Тромбогемолитическая и тромбоцитопеническая пурпура (болезнь Мошковицы).
5. Симптоматические тромбоцитопении (радиационные, медикаментозные, инфекционные, токсические, при лейкозах, аплазии и карциноматозе костного мозга).
II. Обусловленные поражения сосудистой системы (вазопатии).
1. Болезнь Виллебранда (антигенмофилия).
2. Болезнь Рондю – Ослера (геморрагические телеангиэктазии).
3. Болезнь Шенлейн – Геноха (геморрагический васкулит).
4. С-авитаминоз (скорбут).
5. Дизовариальная пурпура (геморрагическая метропатия).
6. Геморрагическая пурпура (токсическая, инфекционная, нейровегетативная, трофическая).
III. Обусловленные нарушением системы свертывания (коагулопатии).
1. Гемофилия А, В, С.
2. Гипофибриногенемия (приобретенная и врожденная).
3. Гипопротромбинемия при поражении печени, механической желтухе, дикумариновая.
4. Гипопроконвертинемия (нарушение тромбинообразования).
Схема нормального процесса свертывания крови лежит в основе рабочей классификации геморрагических диатезов, где заболевания классифицированы соответственно фазам коагуляции. Расстройства первой фазы характеризуются качественной и количественной недостаточностью тромбоцитов, болезнью Виллебранда, дефицитом плазменных компонентов тромбопластинообразования. Нарушением второй фазы свертывания обусловлены дефициты плазменных компонентов тромбинообразования – фактора II. Наличие ингибиторов к факторам II, V, VII, X и антагонистов тромбинообразования также ведут к нарушению второй коагуляционной фазы. Нарушение III фазы свертывания обусловливают коагулопатии потребления, ускоренный фибринолиз, диссеминирвоанное внутрисосудистое свертывание, дефицит плазменных компонентов фибринообразования. Особую диагностическую и клиниче скую значимость имеет определение типа кровоточивости.
В настоящее время выделяют следующие синдромы:
1. Петехиально-пятнистый (синячковый) характеризуется спонтанным появлением, в большинстве случаев в ночное время, несимметричных кровоизлияний в слизистые и кожу. Могут наблюдаться микрогематурия (кровь в моче), периодические кровотечения из носа, длительные кровотечения после небольших хирургических вмешательств (удаление зуба, тонзилэктомии и т. д.), у женщин умеренные менструальные кровотечения. При данном синдроме кровоизлияния в кожу безболезненны, гематомы отсутствуют. Петехиально-пятнистый синдром наблюдается при всех видах тромбоцитопатий, тромбоцитопений, дисфибриногении и гипофибриногении.
2. Гематомный тип геморрагий. Имеет место при гемофилии, когда нарушен внутренний механизм свертывания крови. Характеризуется длительными кровотечениями из ран, массивными, глубокими, болезненными кровоизлияниями в суставы, мягкие ткани, под апоневрозы, фасции, серозные оболочки, забрюшинную и подкожную клетчатку.
3. Микроциркуляторный тип кровотечений возникает вследствие нарушения тромбоцитарного звена гемостаза, в частности дисфункции тромбоцитов со снижением активности антигемофильного глобулина (болезнь Виллебранда). Преимущественно имеет место петехиально-пятнистая кровоточивость. Такой синдром еще называют синячково-гематомным или смешанным. Характерен также при ДВС-синдроме, дефиците факторов протромбинового комплекса и XIII фактора, при передозировке тромболитиков и антикоагулянтов, наличии в организме иммунных ингибиторов XIII и IV факторов плазмы.
4. Ангиоматозный тип геморрагии наблюдается при ангиомах, артерио-венозных шунтах, телеангиэктазии (например, болезнь Рандю – Ослера). Кровотечения строго локализованы, носят упорный характер.
5. Васкулитно-пурпурный тип кровоточивости обусловлен аллергическими и инфекционными васкулитами и характеризуется наличием геморрагической или эритематозной сыпи на коже в сочетании с кишечным кровотечением. Кожные высыпания нецветущие, симметричные. Такой тип геморрагии наблюдается, например, при болезни Шейнлейн – Геноха.
Болезни системы гемостаза (гемостазиопатии) по своему происхождению делятся на наследственные (врожденные) и приобретенные. Врожденные патологии гемостаза характеризуются, как правило, нарушением одного из компонентов системы свертывания крови и тромбоцитопатиями. Дефект гемостаза сохраняется всю жизнь, терапевтическими воздействиями может быть устранен, но только временно. Приобретенные геморрагические диатезы развиваются на фоне какого-либо основного заболевания и проявляются не одним нарушением гемостаза.
Гемостазиопатии разделяют.
1. По клиническим формам:
1) геморрагические;
2) тромбогеморрагические (ДВС, ДНК);
3) тромбофилические (тромбофилии).
2. По этиологическим формам:
1) врожденные;
2) приобретенные.
3. По патогенетическим формам:
1) тромбоцитоз и тромбоцитемия;
2) парапротеинемическая тромбофилия;
3) наличие люпус-антикоагулянта;
4) патология синтеза и (или) освобождения простациклина из эндотелия;
5) комбинированные дефекты в противосверытвающем механизме;
6) полиглобулическая тромбофилия;
7) дефицит тканевого или сосудистого активатора плазминогена;
8) избыток антиплазминов;
9) гипоальфа-2-макроглобулинемия;
10 ) диспроконвертинемия;
11 ) повышение уровня фактора Виллебранда, VIII:C;
12) тромбофилическая тромбоцитопатия (функциональные и структурные нарушения мембраны тромбоцитов);
13 ) гиперпродукция фактора Виллебранда;
14 ) нарушение взаимодействия тромбоцитов и эндотелия;
15 ) дефицит АТ-III;
16 ) дефицит экзогенного гепарина;
17 ) дефект молекулы АТ-III;
18 ) дефицит плазминогена;
19 ) дисфибриногенемия;
20 ) неполноценность плазминогена (дисплазминогенемия);
21 ) дефицит или аномалия молекулы фактора Фитцжеральда, Флетгера или Хагемана;
22 ) дефицит протеина S;
23 ) дефицит протеина С.
Адекватное взаимодействие тромбоцитов и факторов коагуляции при неповрежденной сосудистой стенке обеспечивает поддержание гемостаза.
Установление диагноза с максимально возможной достоверностью требует правильной оценки состояния системы свертывания крови. Для выявления нарушения со стороны всех ее компонентов необходим набор лабораторных методов и знание основных параметров гемостаза. При исследовании тромбоцитов учитывается множество показателей.
Приведем примеры некоторых с соответствующими нормальными величинами.
1. Спонтанная агрегация тромбоцитов – ниже 15%.
2. Ретенция тромбоцитов в ранке по Борхгривенку – 25 – 60% к концу второй минуты.
3. Агрегация тромбоцитов при стимуляции – 55 – 195% (по В. П. Балуде).
4. Ретенция (адгезивность) тромбоцитов при контакте со стеклом – 25 – 55%.
5. Электрофоретическая подвижность тромбоцитов – 0,84 – 1,42 мкмоль·см–1·В·с–1.
6. Суммарный индекс агрегации тромбоцитов (по В. Г. Лычевой):
1) воздействие АДФ – 53,1 – 93,1%;
2) воздействие тромбином – 52,6 – 93,4%;
3) воздействие коллагеном – 62,7 – 87,9%;
4) воздействие ристомицином – 48,1 – 91,7%.
7. Микрометод определения агрегации тромбоцитов в цельной крови (по В. П. Балуде):
1) степень агрегации через 1 мин – 50 ± 3%;
2) максимальная степень агрегации – 66 ± 3%;
3) время наступления максимальной степени агрегации – 3 – 6 мин;
4) время начала дезагрегации – 10 мин;
5) степень дезагрегации через 25 мин – 53%.
Необходимо отметить, что ретенция тромбоцитов снижена при нарушении их адгезивно-агрегационной функ ции (тромбоастении Гланумана, болезнь Виллебранда, макроцитарная тромбоцитодистрофия Бернара – Сулье, эссенциальная атромбоцитопения, уремии, лейкозы, парциальные тромбоцитопатии). Повышенная агрегация тромбоцитов может наблюдаться при сахарном диабете, атеросклерозе, нарушении мозгового и коронарного кровообращения, ДВС-синдроме, гиперлипопротеинемии). Повышение электрофоретической подвижности тромбоцитов свидетельствует об усиленной их агрегации, а снижение этого показателя говорит о ранних нарушениях гемостатических функций тромбоцитов.
К исследованиям первичного (сосудисто-тромбоцитарного) гемостаза относятся:
1) манжеточная проба Кончаловского – Румпеля – Лееде (в норме при слабоположительной реакции должно быть 10 – 20 петехий, при положительной – 20 – 30 петехий, при резко положительной – более 30 петехий);
2) время кровотечения (по Дуке) – 2 – 4 мин;
3) тест толерантности к аспирину по Квику (в норме время кровотечения либо не изменяется, либо изменяется не более чем в полтора раза);
4) баночная проба по А. И. Нестеровой (появление петехий при 197 ± 7 мм рт. ст.).
Манжеточная и баночная пробы имеют завышенные показатели при передозировке антикоагулянтов, дефиците протромбинового комплекса, ДВС-синдроме, любых тромбоцитопениях и тромбоцитопатиях, тяжелых инфекциях (сепсис, сыпной тиф), гиповитаминозе С, эндокринных сдвигах, тромбогеморрагических синдромах.
Увеличение показателей времени кровотечения может говорить о болезни Виллебранда, гипергепаринемии, тяжелых тромбогеморрагических синдромах. Увеличение времени после приема аспирина свидетельствует о наличии коагулопатий, гемофилии А и В или может быть после лечения больного салицилатами.
Существует множество тестов, с помощью которых исследуются тромбин и протромбиназа, а именно:
1) время свертывания крови, определяемое однопробирочным методом (в норме 5 – 10 мин);
2) время свертывания нестабилизированной крови (по Ли и Уайту) – 8 – 12 мин;
3) активированное частичное (парциальное) тромбопластиновое время – АЧТВ 35 – 50 с;
4) силиконовое время свертывания плазмы – 200 – 260 с;
5) АВР – активированное время рекальцификации (каолиновое время) – 50 – 70 с;
Фактор VIII. Антигемофильный глобулин – нужен для образования кровяного тромбопластина.
Фактор IX. Антигемофильный глобулин В. Катализирует процессы свертывания. Это фактор Кристмаса. Синтезируется в печени в присутствии витамина К.
Фактор X. Фактор Стюарта – Прауэра. Образует кровяной тромбопластин.
Фактор XI. Фактор Розенталя. Является плазменным предшественником тромбопластина.
Фактор XII. Фактор Хагемана. Это фактор «контакта», он активируется при контакте с поврежденным участком сосуда.
Фактор XIII. Фибринстабилизирующий фактор. Фибриназа синтезируется в печени и полностью потребляется в процессе свертывания.
Система свертывания крови представляет собой совокупность органов, синтезирующих и утилизирующих факторы свертывания и фибринолиза. Механизм коагуляции был из-
учен Шмидтом в 1861 г. Общепризнанной считается трехфазность процесса.
Первая фаза. Образование активного тромбопластина. Начинается с момента контакта крови с раневой поверхностью, когда из тканевых клеток и тромбоцитов высвобождаются липопротеиды. Кровяной тромбопластин играет определяющую роль во внутренней системе коагуляции, а тканевый – во внешней системе свертывания. Также образуется активный фактор Ха в присутствии ионов кальция.
Вторая фаза. Образование тромбина. В эту фазу происходит расщепление молекулы протромбина до тромбина при участии тромбоцитарного акцелератора.
Третья фаза. Образование фибрина. Переход фибриногена в фибрин осуществляется в три этапа.
1 этап: ферментативный, когда под воздействием тромбина из фибриногена образуется золеподобный фибрин – мономер.
2 этап: физико-химический, под влиянием ионов кальция происходит полимеризация фибрина-мономера в фибрин-полимер (или растворимый фибрин «S»).
3 этап: ферментативный. При участии VIII фактора и фибриназы тканей, тромбоцитов цементируются связи в фиб рине-полимере и образуется нерастворимый фибрин «I», устойчивый к фибринолизу.
Необходимо отметить, что 1 и 2 фазы коагуляции протекают в течение 2 – 5 мин, а 3 фаза – 10 – 15 с. Процесс заканчивается образованием фибрина, нити которого в дальнейшем укорачиваются, отжимается жидкость из сгустка, он становится меньших размеров, а затем активизируются механизмы ретракции тромба и реканализации сосудов крови.
Результатом взаимодействия внешней (extrinsic) и внутренней (intrinsic) систем коагуляции является образование кровяного сгустка. В рамках сказанного необходимо подчеркнуть, что механизм энзиматического каскада свертывающей системы крови очень сложен. По сути дела, здесь нет строгой последовательности протекания процесса. И хотя на первый взгляд реакции являются цепными, при глубоком же изучении многие из них развиваются в некоторой степени параллельно.
Коагуляционная система очень динамична, и ни о какой статичности говорить не приходится.
Протеканию всех фаз свертывания крови препятствуют так называемые первичные и вторичные ингибиторы (угнетатели). В качестве первичных ингибиторов выступает прежде всего гепарин, представляющий собой кислый мукополисахарид, образующийся в печени тучными клетками соединительной ткани. Это антикоагулянт широкого спектра действия, он тормозит все три фазы свертывания. Дозируется в МЕ (международных единицах). Количество гепарина у человека составляет 4 – 9 МЕ. Одна МЕ соответствует тому количеству антикоагулянта, которое способно тормозить свертывание 1 мл крови в течение 2 ч. Для действия гепарина необходимо наличие еще одного первичного ингибитора – антитромбина III. Он образует с гепарином комплекс, имеющий очень высокую антикоагуляционную активность. При помощи данного комплекса происходит переход из неактивной формы в активную альфа-2-макроглобулинов, являющиеся также первичными ингибиторами свертывания. Сюда же относятся и антитромбопластины, вещества, препятствующие действию протромбиназы. Вторичными ингибиторами коагуляции являются сами коагуляционные вещества (фибрин, тромбин, протромбиназа и др.), которые, выполнив свою основную свертывающую функцию, начинают угнетать процессы свертывания, т. е. с момента образования кровяного сгустка в него уже заранее заложено начало его гибели. Фибринолитическая (декоагуляционная) система является антиподом системе свертывания. Она функционирует с целью поддержания жидкого состояния крови, расщепления фибрина на растворимые пептиды, восстановления просвета сосудов, закупоренных сгустками (реканализация). Компонентами фибринолиза является фермент плазмин, находящийся в неактивном состоянии в виде плазминогена (профибринолизин). Синтезируется в гранулах созревающих эозинофилов костного мозга. Фибринолизин (плазмин) относится к бета-глобулиновой фракции, он расщепляет и фибрин, и фибриноген. Имеет строго локальное действие, т. е. только там, где есть фибрин.
Активаторами фибринолиза являются следующие группы веществ.
1. Плазменные:
1) физиологические (трипсин, фосфатазы и др.), которые находятся в активном состоянии в плазме крови. Это прямые активаторы;
2) непрямые активаторы присутствуют в плазме в неактивной форме. Для их активации необходимы лизокиназы и XII плазменный фактор;
3) бактерицидные активаторы (для растворения сгустка некоторые микроорганизмы начинают вырабатывать ферменты, например стрептоминазу, стафилокиназу и др.).
2. Тканевые активаторы: обладают очень высокой активностью, действуя только местно, имеют тесную взаимосвязь с белковыми структурами тканей. Таких веществ много в сосудистой стенке, щитовидной железе, легких, предстательной железе. Выходят из поврежденных тканей.
К ингибиторам фибринолиза относится группа антиплазминов двух видов. Одна группа препятствует образованию плазмина, другая – его активации (Е-аминокапроновая кислота, контрикал и другие). Относятся к альфа-глобулиновой фракции, синтезируются в печени.
Фазы фибринолиза
Первая фаза: образование кровяного активатора плазминогена. Кровяной проактиватор под влиянием тканевых лизокиназ, антилизокиназ и XII плазменного фактора превращается в кровяной активатор.
Вторая фаза: переход плазминогена в плазмин. Процесс происходит при участии множества факторов (кровяного активатора, тканевого активатора, урокиназы, щелочной и кислой фосфотазы, трипсина, XII фактора, комплемента С1).
Третья фаза: расщепление фибрина с помощью плазмина и антиплазмина до пептидов и аминокислот.
Существует так называемый неферментативный фибринолиз, в результате которого фибрин из фибриллярной формы превращается в глобулярную. Такой фибринолиз представлен комплексами гепарина с различными веществами, в частности: «гепарин + тромбопластин», «гепарин + тромбин», «гепарин + XIII фактор», «гепарин + факторы системы фибринолиза», «гепарин + адреналин», «гепарин + инсулин» и т. д.
Необходимо отметить, что данные комплексы обладают высокой активностью. Они вызывают не лизис (расщепление) фибрина, а изменение его структуры. В основном неферментативный фибринолиз направлен на растворимый фибрин (фибрин S) и действует до того, как начнет функционировать фибринстабилизирующий XIII плазменный фактор.
Особое значение имеет тот факт, что коагуляционная и фибринолитическая системы находятся в состоянии подвижного равновесия, изменяющегося под влиянием различных физиологических и патологических моментов.
Исключительную роль, например, играет кининовая система и ее связь с системой свертывания крови. Основными кининами являются брадикинин, каледин, колимедин, метилэтил брадикинин. Они обладают активностью и строго локальным действием в организме. В целом система кининов направлена на снятие спазма кровеносных сосудов и восстановление кровотока. Компоненты кининовой системы вызывают снижение тонуса сосудистой стенки, тем самым понижая давление крови, регулируют частоту сердечных сокращений и коронарный кровоток сердца. Участвуют в регуляции водно-солевого обмена и системы ренин-ангиотензин. Наряду с этим кинины повышают проницаемость сосудистой стенки и способствуют развитию воспалительных реакций. Активаторами кининовой системы являются каллекреин (неактивная форма прокаллекреин переходит в активную при помощи XII плазменного фактора). Кининазы ингибируют (подавляют) процессы кининовой системы. Таким образом, за счет XII фактора осуществляется связь системы коагуляции и кининовых реакций, вследствие чего обеспечивается нормальное жидкое состояние крови, образование при травме нитей фибрина и при остановке кровотечения – растворение сгустка.
Как было уже отмечено, системы свертывания и фибринолиза находятся в адекватном равновесии, что обеспечивает способность организма сохранять постоянство физико-химических свойств внутренней среды (гомеостаза). Внутренняя среда организма представляет собой комплекс жидкостей – крови, лимфы, ликвора, она ограждена от окружающей среды внешними (кожа, слизистые) и внутренними (тканевая жидкость) барьерами. Гомеостаз – состояние относительное, так как нет в мире ничего абсолютно постоянного и статичного. Гомео стаз выражается в биологических константах – относительно устойчивых количественных показателях, характеризующих нормальную жизнедеятельность организма (например, температура тела, осмотическое давление крови и тканевой жидкости, содержание белков, сахара и т. д.). Биологические константы могут быть:
1) жесткие, когда их малейшие отклонения от нормальных значений вызывают серьезные последствия (рН крови = 7,34 – 7,36, при понижении кислотности наблюдается сдвиг внутренней среды организма в кислую сторону, развивается ацидоз, при повышении кислотности – в щелочную сторону – алкалоз. И то, и другое состояние требует врачебного вмешательства во избежание необратимых изменений в тканях и органах;
2) пластические константы характеризуются тем, что даже при их значительном отклонении от нормы не наблюдаются какие-либо серьезные нарушения в жизнедеятельности организма человека. В данном случае эффективно срабатывают саморегулятивные механизмы внутренней среды – гомеостатические реакции, имеющие прежде всего приспособительный характер.
Приведем пример. В норме у человека в крови содержится примерно от 3,3 до 5,5 ммоль/л глюкозы. При снижении уровня глюкозы (например, при длительном голодании) организм реагирует следующим образом: возбуждается симптоматическая система, вследствие чего из мозгового вещества надпочечников выбрасывается большое количество адреналина, поступающего с кровью в печень. Там происходит повышенный синтез и активация ферментов, способных расщепить гликоген до глюкозы, которая поступит в кровь, достигнув органов, сильно нуждающихся в глюкозе (головной мозг, сердце, почки). Кровь является универсальной внутренней средой организма. Ланг дал следующее определение системы крови: это кровь и органы, принимающие участие в образовании и разрушении ее клеток вместе с механизмами регуляции. Он включил в систему крови:
1) периферическую кровь;
2) циркулирующую по сосудам кровь;
3) органы кроветворения;
4) органы разрушения крови;
5) нейрогуморальную регуляцию гомеостаза.
Особенности крови заключаются в ее высокой динамичности, выраженной в постоянном изменении ее состава.
Все форменные элементы образуются за пределами кровеносной системы. Кровь функционирует по системе замкнутых сосудов.
Функции крови
1. Транспортная – переносятся питательные вещества, гормоны, медиаторы, ферменты и т. д.
2. Дыхательная – гемоглобин эритроцитов переносит кислород к тканям и органам и углекислый газ от них к легким.
3. Питательная – перенос питательных веществ от органов пищеварения к тканям.
4. Защитная – способность свертывания, содержит антитела, пропердин и т. д.
5. Регуляторная – через центральную нервную систему рефлекторно или гуморально при помощи гормонов, солей, ионов водорода и др.
6. Экскреторная – выделительная, транспорт и выведение шлаков из организма.
7. Буферная.
Принято считать, что количество крови человека составляет 1/13 массы его тела, т. е. примерно 5 – 6 л. Надо отметить, что определенная часть крови находится в кровеносном русле, в так называемых депо (печени, селезенке).
Кровь обладает:
1) суспензионными свойствами, так как в ней находятся во взвешенном состоянии форменные элементы крови, грубодисперсные и мелкодисперсные белки;
2) коллоидными свойствами за счет содержания в крови белковых структур, способствующих задержке жидкой части крови в сосудистом русле, обеспечивая тем самым онкотическое давление крови;
3) электролитными свойствами. В связи с присутствующими в крови электролитами, которые обусловливают осмотическое давление и кислотность крови.
В результате исследований обнаружено, что кровь человека на 55 – 60% состоит из плазмы и на 40 – 45% из форменных элементов. К форменным элементам относятся эритроциты, лейкоциты, тромбоциты, лимфоциты. Процентное соотношение плазмы и форменных элементов – это гематокритное число, которое у мужчин составляет 47 ± 7, а у женщин – 42 ± 5.
Плазма представляет собой водно-солевой раствор белков из воды 90% и 10% сухого остатка: неорганического (фосфаты, хлориды) и органического (белки, ферменты, гормоны, витамины).
Белки плазмы крови составляют 7 – 8%, при этом на альбумины приходится 4,5%, на глобулины – 2 – 3%, на фибриноген – 0,2 – 0,4%. Белковый коэффициент характеризуется отношением альбуминов к глобулинам и составляет 2 : 1 (1,7). Альбумины обеспечивают суспензионные свойства крови, коллоидно-онкотическое давление, обладают пластической и транспортной функцией. Глобулины играют важную роль в системе свертывания крови, входят в комплексы металлов (церуплазмин – Cu2+, трансферрин – Fe+3). При заболеваниях сердца, почек и других патологиях в крови обнаруживаются С-реактивный белок, относящийся к глобулиновой фракции и имеющий важное диагностическое значение.
Различные травмы в большинстве случаев вызывают кровотечения, обусловленные нарушением целостности кровеносных сосудов, которые рефлекторно начинают сокращаться, вызывая ослабление кровотечения и застой тока крови. Спазму сосудов помогают активные субстанции тромбоцитов в виде адреналина, серотонина и норадреналина. В месте, где наблюдается повреждение, тромбоциты образуют «пробку» в результате адгезии, агрегации и вискозитентной метаморфозы. Быстро активируется внешняя система свертывания при участии V, VII, X факторов плазмы. Внутренняя система гемостаза начинает активироваться в связи с активацией фактора контакта (XII) и запуском каскадных реакций с образованием активных XIIa, XIa, IXa, VIIIa плазменных факторов. Результатом объединения внешней и внутренней систем будет появление тромбина, который способен протеолизировать молекулу фибриногена, превращая его в фибрин. Фибриновая структура сгустка создается путем синтеза и полимеризации и стабилизируется при помощи VIII фактора. Через несколько дней в процесс включается система фибринолиза, в результате чего происходит восстановление проходимости кровеносного сосуда (реканализация).
Геморрагические диатезы классифицируются по нарушению основных факторов гемостаза
I. Обусловленные изменениями тромбоцитопоэза (или тромбоцитопатии, тромбоцитопении, тромбоцитемии).
1. Геморрагическая тромбоцитемия.
2. Тромбоцитастения Глануманна.
3. Болезнь Верльгофа (иммунная идеопатическая).
4. Тромбогемолитическая и тромбоцитопеническая пурпура (болезнь Мошковицы).
5. Симптоматические тромбоцитопении (радиационные, медикаментозные, инфекционные, токсические, при лейкозах, аплазии и карциноматозе костного мозга).
II. Обусловленные поражения сосудистой системы (вазопатии).
1. Болезнь Виллебранда (антигенмофилия).
2. Болезнь Рондю – Ослера (геморрагические телеангиэктазии).
3. Болезнь Шенлейн – Геноха (геморрагический васкулит).
4. С-авитаминоз (скорбут).
5. Дизовариальная пурпура (геморрагическая метропатия).
6. Геморрагическая пурпура (токсическая, инфекционная, нейровегетативная, трофическая).
III. Обусловленные нарушением системы свертывания (коагулопатии).
1. Гемофилия А, В, С.
2. Гипофибриногенемия (приобретенная и врожденная).
3. Гипопротромбинемия при поражении печени, механической желтухе, дикумариновая.
4. Гипопроконвертинемия (нарушение тромбинообразования).
Схема нормального процесса свертывания крови лежит в основе рабочей классификации геморрагических диатезов, где заболевания классифицированы соответственно фазам коагуляции. Расстройства первой фазы характеризуются качественной и количественной недостаточностью тромбоцитов, болезнью Виллебранда, дефицитом плазменных компонентов тромбопластинообразования. Нарушением второй фазы свертывания обусловлены дефициты плазменных компонентов тромбинообразования – фактора II. Наличие ингибиторов к факторам II, V, VII, X и антагонистов тромбинообразования также ведут к нарушению второй коагуляционной фазы. Нарушение III фазы свертывания обусловливают коагулопатии потребления, ускоренный фибринолиз, диссеминирвоанное внутрисосудистое свертывание, дефицит плазменных компонентов фибринообразования. Особую диагностическую и клиниче скую значимость имеет определение типа кровоточивости.
В настоящее время выделяют следующие синдромы:
1. Петехиально-пятнистый (синячковый) характеризуется спонтанным появлением, в большинстве случаев в ночное время, несимметричных кровоизлияний в слизистые и кожу. Могут наблюдаться микрогематурия (кровь в моче), периодические кровотечения из носа, длительные кровотечения после небольших хирургических вмешательств (удаление зуба, тонзилэктомии и т. д.), у женщин умеренные менструальные кровотечения. При данном синдроме кровоизлияния в кожу безболезненны, гематомы отсутствуют. Петехиально-пятнистый синдром наблюдается при всех видах тромбоцитопатий, тромбоцитопений, дисфибриногении и гипофибриногении.
2. Гематомный тип геморрагий. Имеет место при гемофилии, когда нарушен внутренний механизм свертывания крови. Характеризуется длительными кровотечениями из ран, массивными, глубокими, болезненными кровоизлияниями в суставы, мягкие ткани, под апоневрозы, фасции, серозные оболочки, забрюшинную и подкожную клетчатку.
3. Микроциркуляторный тип кровотечений возникает вследствие нарушения тромбоцитарного звена гемостаза, в частности дисфункции тромбоцитов со снижением активности антигемофильного глобулина (болезнь Виллебранда). Преимущественно имеет место петехиально-пятнистая кровоточивость. Такой синдром еще называют синячково-гематомным или смешанным. Характерен также при ДВС-синдроме, дефиците факторов протромбинового комплекса и XIII фактора, при передозировке тромболитиков и антикоагулянтов, наличии в организме иммунных ингибиторов XIII и IV факторов плазмы.
4. Ангиоматозный тип геморрагии наблюдается при ангиомах, артерио-венозных шунтах, телеангиэктазии (например, болезнь Рандю – Ослера). Кровотечения строго локализованы, носят упорный характер.
5. Васкулитно-пурпурный тип кровоточивости обусловлен аллергическими и инфекционными васкулитами и характеризуется наличием геморрагической или эритематозной сыпи на коже в сочетании с кишечным кровотечением. Кожные высыпания нецветущие, симметричные. Такой тип геморрагии наблюдается, например, при болезни Шейнлейн – Геноха.
Болезни системы гемостаза (гемостазиопатии) по своему происхождению делятся на наследственные (врожденные) и приобретенные. Врожденные патологии гемостаза характеризуются, как правило, нарушением одного из компонентов системы свертывания крови и тромбоцитопатиями. Дефект гемостаза сохраняется всю жизнь, терапевтическими воздействиями может быть устранен, но только временно. Приобретенные геморрагические диатезы развиваются на фоне какого-либо основного заболевания и проявляются не одним нарушением гемостаза.
Гемостазиопатии разделяют.
1. По клиническим формам:
1) геморрагические;
2) тромбогеморрагические (ДВС, ДНК);
3) тромбофилические (тромбофилии).
2. По этиологическим формам:
1) врожденные;
2) приобретенные.
3. По патогенетическим формам:
1) тромбоцитоз и тромбоцитемия;
2) парапротеинемическая тромбофилия;
3) наличие люпус-антикоагулянта;
4) патология синтеза и (или) освобождения простациклина из эндотелия;
5) комбинированные дефекты в противосверытвающем механизме;
6) полиглобулическая тромбофилия;
7) дефицит тканевого или сосудистого активатора плазминогена;
8) избыток антиплазминов;
9) гипоальфа-2-макроглобулинемия;
10 ) диспроконвертинемия;
11 ) повышение уровня фактора Виллебранда, VIII:C;
12) тромбофилическая тромбоцитопатия (функциональные и структурные нарушения мембраны тромбоцитов);
13 ) гиперпродукция фактора Виллебранда;
14 ) нарушение взаимодействия тромбоцитов и эндотелия;
15 ) дефицит АТ-III;
16 ) дефицит экзогенного гепарина;
17 ) дефект молекулы АТ-III;
18 ) дефицит плазминогена;
19 ) дисфибриногенемия;
20 ) неполноценность плазминогена (дисплазминогенемия);
21 ) дефицит или аномалия молекулы фактора Фитцжеральда, Флетгера или Хагемана;
22 ) дефицит протеина S;
23 ) дефицит протеина С.
Адекватное взаимодействие тромбоцитов и факторов коагуляции при неповрежденной сосудистой стенке обеспечивает поддержание гемостаза.
Установление диагноза с максимально возможной достоверностью требует правильной оценки состояния системы свертывания крови. Для выявления нарушения со стороны всех ее компонентов необходим набор лабораторных методов и знание основных параметров гемостаза. При исследовании тромбоцитов учитывается множество показателей.
Приведем примеры некоторых с соответствующими нормальными величинами.
1. Спонтанная агрегация тромбоцитов – ниже 15%.
2. Ретенция тромбоцитов в ранке по Борхгривенку – 25 – 60% к концу второй минуты.
3. Агрегация тромбоцитов при стимуляции – 55 – 195% (по В. П. Балуде).
4. Ретенция (адгезивность) тромбоцитов при контакте со стеклом – 25 – 55%.
5. Электрофоретическая подвижность тромбоцитов – 0,84 – 1,42 мкмоль·см–1·В·с–1.
6. Суммарный индекс агрегации тромбоцитов (по В. Г. Лычевой):
1) воздействие АДФ – 53,1 – 93,1%;
2) воздействие тромбином – 52,6 – 93,4%;
3) воздействие коллагеном – 62,7 – 87,9%;
4) воздействие ристомицином – 48,1 – 91,7%.
7. Микрометод определения агрегации тромбоцитов в цельной крови (по В. П. Балуде):
1) степень агрегации через 1 мин – 50 ± 3%;
2) максимальная степень агрегации – 66 ± 3%;
3) время наступления максимальной степени агрегации – 3 – 6 мин;
4) время начала дезагрегации – 10 мин;
5) степень дезагрегации через 25 мин – 53%.
Необходимо отметить, что ретенция тромбоцитов снижена при нарушении их адгезивно-агрегационной функ ции (тромбоастении Гланумана, болезнь Виллебранда, макроцитарная тромбоцитодистрофия Бернара – Сулье, эссенциальная атромбоцитопения, уремии, лейкозы, парциальные тромбоцитопатии). Повышенная агрегация тромбоцитов может наблюдаться при сахарном диабете, атеросклерозе, нарушении мозгового и коронарного кровообращения, ДВС-синдроме, гиперлипопротеинемии). Повышение электрофоретической подвижности тромбоцитов свидетельствует об усиленной их агрегации, а снижение этого показателя говорит о ранних нарушениях гемостатических функций тромбоцитов.
К исследованиям первичного (сосудисто-тромбоцитарного) гемостаза относятся:
1) манжеточная проба Кончаловского – Румпеля – Лееде (в норме при слабоположительной реакции должно быть 10 – 20 петехий, при положительной – 20 – 30 петехий, при резко положительной – более 30 петехий);
2) время кровотечения (по Дуке) – 2 – 4 мин;
3) тест толерантности к аспирину по Квику (в норме время кровотечения либо не изменяется, либо изменяется не более чем в полтора раза);
4) баночная проба по А. И. Нестеровой (появление петехий при 197 ± 7 мм рт. ст.).
Манжеточная и баночная пробы имеют завышенные показатели при передозировке антикоагулянтов, дефиците протромбинового комплекса, ДВС-синдроме, любых тромбоцитопениях и тромбоцитопатиях, тяжелых инфекциях (сепсис, сыпной тиф), гиповитаминозе С, эндокринных сдвигах, тромбогеморрагических синдромах.
Увеличение показателей времени кровотечения может говорить о болезни Виллебранда, гипергепаринемии, тяжелых тромбогеморрагических синдромах. Увеличение времени после приема аспирина свидетельствует о наличии коагулопатий, гемофилии А и В или может быть после лечения больного салицилатами.
Существует множество тестов, с помощью которых исследуются тромбин и протромбиназа, а именно:
1) время свертывания крови, определяемое однопробирочным методом (в норме 5 – 10 мин);
2) время свертывания нестабилизированной крови (по Ли и Уайту) – 8 – 12 мин;
3) активированное частичное (парциальное) тромбопластиновое время – АЧТВ 35 – 50 с;
4) силиконовое время свертывания плазмы – 200 – 260 с;
5) АВР – активированное время рекальцификации (каолиновое время) – 50 – 70 с;