Отверждение полимеров ) .
     Ф. характеризуется высокой стойкостью к действию кислот (кроме кислот-окислителей). Изделия из Ф. вдвое легче кислотоупорной керамики и в 4–6 раз прочнее её. Ф. используют для замены свинца, бронзы, нержавеющей стали как конструкционный и футеровочный материал при изготовлении химической аппаратуры и деталей. См. также Асбопластики.
      Г. М. Цейтлин.

лампы накаливания и рифлёного стекла – рассеивателя света. Нить большой мощности, расположенная в фокусе отражателя, даёт дальний свет, направленный вдоль полотна дороги; нить малой мощности смещена от фокуса вверх налево и даёт световой пучок, направленный вниз и вправо, – ближний свет. Такое асимметричное распределение света снижает опасность ослепления водителей встречных транспортных средств и улучшает освещённость правой стороны дороги. Широкое применение находят йодные лампы фар. В колбах таких ламп заключён разрежённый газ, содержащий пары иода. При одинаковой мощности с лампами обычного типа йодные лампы дают в 2 раза большую освещённость дороги и имеют больший срок службы. Каждое транспортное средство должно иметь не менее одной пары Ф. Обе Ф. должны располагаться симметрично относительно продольной оси транспортного средства. Многие автомобили снабжены двумя дополнительными противотуманными Ф., рассеиватель и отражатель которых обеспечивает распространение света в горизонтальном направлении ближе к плоскости дороги (верхний пучок света срезается при помощи металлического экрана). На специальных автомобилях (пожарных, санитарных) допускается установка Ф.-искателей, которые могут поворачиваться в различных направлениях посредством шарнирного устройства. Иногда Ф. устанавливают и сзади (например, на тракторах для наблюдения за прицепными машинами и орудиями).
     Лит.:Ильин Н. М., Электрооборудование автомобилей, 4 изд., М., 1975.
   Фара: 1 — лампа; 2 — патрон; 3 — пружина; 4 — корпус; 5 и 6 — провода дальнего и ближнего света; 7 — регулировочный винт; 8 — уплотнители; 9 — оптический элемент; 10 — ободки; 11 — держатель элемента.

эманации,божество («необходимо-сущее само по себе») производит в вечности мир («необходимо-сущее благодаря другому») через последовательный ряд истечений (эманаций), начинающийся космическими «интеллектами», каждый из которых соответствует определённой небесной сфере; цепь этих «интеллектов» замыкается «активным интеллектом», который управляет процессами, происходящими в подлунном мире – мире возникновения и уничтожения; соединение с «активным интеллектом» – предельная цель человеческого знания.
     В социально-этических трактатах Ф. развивал учение о «добродетельном городе», руководимом правителем-философом, выступающим одновременно и как имам, предводитель религиозной общины, передающий широкой публике в образно-символической форме получаемые им от «активного интеллекта» истины. Идеальному социально-политическому устройству Ф. противопоставлял «невежественные города», воплощающие отрицательные нравственные качества. Ф. – автор комментариев к сочинению Аристотеля (отсюда его почётное прозвище «Второй учитель») и Платона. «Большой трактат о музыке» Ф. – важнейший источник сведений о музыке Востока и древнегреческой музыкальной системе. Ф. оказал влияние на Ибн Сину, Ибн Баджу, Ибн Туфайля, Ибн Рушда,а также на философию и науку средневековой Западной Европы.
     Соч. в рус. пер.: Философские трактаты, А.-А., 1970; Математические трактаты, А.-А., 1972; Социально-этические трактаты, А.-А., 1973; Логические трактаты, А.-А., 1975; О разуме и науке, А.-А., 1975.
     Лит.:Гафуров Б. Г., Касымжанов А. Х., Ал-Фараби в истории культуры, М., 1975; Хайруллаев М. М., Фараби, эпоха и учение, Таш., 1975 (лит.); Madkour J., La place d’al-Farabi dans l’ecole philosophique musulmane. P., 1934.
      А. В. Сахадеев.

Международной системе единиц и в МКСА системе единиц.Названа в честь М. Фарадея.Обозначения: рус. ф,международное F. 1 Ф. – ёмкость конденсатора, при которой заряд в 1 кулон создаёт на обкладках конденсатора разность потенциалов 1 вольт.Единица ёмкости системы СГСЭ 1 см=  (с – числовое значение скорости света в вакууме, выраженное в см/сек) .В практике чаще применяются дольные от Ф. единицы: микрофарада ( мкф,mF), 1 мкф =10 -6 ф,и пикофарада ( пф,pF), 1 пф =10 -12 ф.

Фарадея.1 Ф. = (9,648456 ± 0,000027) (10 4 к(на 1973), т. е. равен стольким же кулонам, сколько к/мольсодержится в Фарадея числе.

Дэви в Королевском институте, которые сыграли большую роль в решении Ф. посвятить себя науке. Ф. обратился к Дэви с просьбой принять его на работу в Королевский институт, и в 1813 его желание исполнилось. В 1813–15, путешествуя вместе с Дэви по Европе, Ф. посетил лаборатории Франции и Италии. Научная деятельность Ф. в дальнейшем протекала в стенах Королевского института, где он сначала помогал Дэви в химических экспериментах, затем начал самостоятельные исследования по химии. К важнейшим из них относятся получение бензола (1825), сжижение хлора (1823) и некоторых др. газов. Имя Ф. получило известность в научных кругах, в 1825 он стал директором лаборатории, в 1827 профессором Королевского института.
     Талантливый экспериментатор, наделённый научной интуицией, Ф. поставил ряд опытов, в которых были открыты фундаментальные физические законы и явления. Ознакомившись с работой Х. Эрстеда об отклонении магнитной стрелки вблизи проводника с током (1820), Ф. занялся исследованием связи между электрическим и магнитными явлениями и в 1821 впервые обнаружил вращение магнита вокруг проводника с током и вращение проводника с током вокруг магнита. В течение последующих 10 лет Ф. пытался «превратить магнетизм в электричество»; его исследования завершились в 1831 открытием индукции электромагнитной.Он детально изучил явление электромагнитной индукции, вывел её основной закон, выяснил зависимость индукционного тока от магнитных свойств среды, исследовал явление самоиндукции и экстратоки замыкания и размыкания. Открытие явления электромагнитной индукции сразу же приобрело огромное научное и практическое значение; оно легло в основу электротехники.
     Ф. высказал новые, оправдавшиеся в дальнейшем идеи о природе тока и магнетизма, о механизме проводимости в различных средах и др. Он доказал тождество различных видов электричества: полученного от трения, «животного», «магнитного» и др. Стремясь установить количественные соотношения между различными видами электричества, Ф. начал исследования по электролизу, открыл его законы (1833–34, см. Фарадея законы ) и ввёл сохранившуюся доныне терминологию в этой области. Законы электролиза явились веским доводом в пользу дискретности вещества и электричества. В 1840, ещё до открытия закона сохранения энергии, Ф. высказал мысль о единстве «сил» природы (различных видов энергии) и их взаимном превращении. Он ввёл представления о силовых линиях, которые считал физически существующими. Идеи Ф. об электрическом и магнитном полях оказали большое влияние на развитие всей физики. В 1832 Ф. высказал мысль о том, что распространение электромагнитных взаимодействий есть волновой процесс, происходящий с конечной скоростью.
     В 1845, исследуя магнитные свойства различных материалов, Ф. открыл явления парамагнетизма и диамагнетизма.В 1845 он установил вращение плоскости поляризации света в магнитном поле ( Фарадея эффект ) ,это было первое наблюдение связи между магнитными и оптическими явлениями, которая позднее явилась подтверждением электромагнитной теории света Дж. Максвелла. Ф. изучал также электрические разряды в газах, пытаясь выяснить природу электричества.
     Открытия Ф. завоевали признание во всём научном мире. Впервые идеи Ф. «перевёл» на общепринятый математический язык Максвелл. В предисловии к своему «Трактату по электричеству и магнетизму» (1873) он писал: «По мере того, как я подвигался вперед в изучении Фарадея, я убедился, что его способ понимания явлений также имеет математический характер, хотя он и не предстает нам облеченным в одежду общепринятых математических формул» (Избр. труды по теории электромагнитного поля, М., 1954, с. 349). Именем Ф. впоследствии были названы законы, явления, единицы физических величин и т.д. ( фарада, фарадей, Фарадея число,цилиндр Фарадея и др.).
     Ф. Энгельс оценивал Ф. как величайшего исследователя в области электричества. Значение Ф. в развитии науки отмечал А. Г. Столетов: «Никогда со времен Галилея свет не видал стольких поразительных и разнообразных открытий, вышедших из одной головы» (Собр. соч., т. 2, 1941, с. 145).
     Соч.: Experimental researches in chemistry and phvsics, L., 1859; Faraday’s Diary..., v. 1–7, L., 1932–36; в рус. пер. – Экспериментальные исследования по электричеству, т. 1–3, [М.], 1947–59 (лит.).
     Лит.:Радовский М. И., Михаил Фарадей. Биографический очерк, М. – Л., 1946.
      Я. М. Гельфер
   М. Фарадей.

электролиза,открытые М. Фарадеем (1833 – 34). Ф. з. выражают связь между количеством прошедшего через электролит электричества, массой и химической природой (через эквиваленты химические ) веществ, претерпевших превращение на электродах, 1-й Ф. з.: массы тпревращенных веществ пропорциональны количеству электричества q,прошедшего через электролит, 2-й Ф. з.: массы различных веществ, превращенных в результате прохождения через электролит одного и того же количества электричества, пропорциональны химическим эквивалентам Аэтих веществ. Из второго Ф. з. следует, что для выделения электрическим током 1 г-экв. различных веществ необходимо одно и то же количество электричества, называемое Фарадея числомF.Математически Ф. з. можно записать в виде одного уравнения т =( A/F) q = kq(коэффициент k= A/Fназывается электрохимическим эквивалентом). Оба Ф. з. абсолютно точны, если ионами электролита переносится всё прошедшее через него количество электричества. Наблюдаемые в некоторых случаях отклонения от этих законов могут быть связаны с неучтенными побочными электрохимическими реакциями (например, выделение газообразного водорода при электроосаждении некоторых металлов) или с частичной электронной проводимостью (например, при электролизе некоторых расплавов).
     Лит.:Фарадей М., Экспериментальные исследования по электричеству, пер. с англ., т. 1, [М.], 1947, с. 176–226, 265–346, См. также лит. при статьях Электрохимия , Электролиз .
      И. А. Кузнецов.

физических постоянных,равная произведению Авогадро числаN Aна элементарный электрический заряд е(заряд электрона): F = N A( е =(9,648456 ± 0,000027) (10 4 к моль -1 . Ф.ч. широко применяется в электрохимических расчётах. Названо в честь М. Фарадея,открывшего основные законы электролиза .

вращении плоскости поляризации электромагнитного излучения (например, света ) ,распространяющегося в веществе вдоль силовых линий постоянного магнитного поля, проходящих через это вещество. Открыт М. Фарадеем в 1845 н явился первым доказательством наличия прямой связи между магнетизмом и светом.
     Феноменологическое объяснение Ф. з. заключается в следующем. Намагниченное вещество в общем случае уже нельзя охарактеризовать единым преломления показателемn.Показатели преломления n +и n -для излучения правой и левой круговых поляризаций становятся различными (см. Магнитооптика ) .Проходящее через изотропную среду линейно поляризованное излучение всегда может быть формально представлено как суперпозиция (наложение) двух поляризованных по правому и левому кругу волн с противоположным направлением вращения. Различие n +и n -приводит к тому, что поляризованные по правому и левому кругу составляющие излучения распространяются в среде сразличными фазовыми скоростями, приобретая разность хода,линейно зависящую от оптической длины пути.В результате плоскость поляризации монохроматического света с длиной волны (после прохождения в среде пути lповорачивается на угол J: ( =pl ( n + – n -)/l .Разность ( n + – n -) линейно зависит от напряжённости магнитного поля Н в области не очень сильных полей, в которой в общем случае справедливо соотношение J = VHl,где константа пропорциональности Vзависит от свойств вещества, длины волны излучения и температуры и носит название Верде постоянной.
     Ф. э. оказался тесно связанным с Зеемана эффектом,открытым в 1896 и обусловленным расщеплением уровней энергии атомов и молекул магнитным полем. Частоты, соответствующие отщепленным уровням, сдвигаются симметрично по отношению к основной частоте. Эта симметричность проявляется, в частности, в том, что