Страница:
Опалесценция критическая
)
,рентгеновских в твёрдых телах], нейтронов в ферромагнетиках. Существенно меняются и динамические явления, что связано с очень медленным рассасыванием образовавшихся флуктуаций. Например, вблизи критической точки жидкость – пар сужается линия рэлеевского
рассеяния света,вблизи
Кюри точки
ферромагнетиков и
Нееля точки
антиферромагнетиков замедляется спиновая диффузия (см.
Спиновые волны
) и т.д. Средний размер флуктуаций (радиус корреляции)
Rрастет по мере приближения к точке Ф. п. II рода и становится в этой точке бесконечно большим.
Современные достижения теории Ф. п. II рода и критических явлений основаны на гипотезе подобия. Предполагается, что если принять Rза единицу измерения длины, а среднюю величину параметра порядка ячейки с ребром R –за единицу измерения параметра порядка, то вся картина флуктуаций не будет зависеть ни от близости к точке перехода, ни от конкретного вещества. Все термодинамические величины являются степенными функциями R.Показатели степеней называют критическими размерностями (индексами). Они не зависят от конкретного вещества и определяются лишь характером параметра порядка. Например, размерности в точке Кюри изотропного материала, параметром порядка которого является вектор намагниченности, отличаются от размерностей в критической точке жидкость – пар или в точке Кюри одноосного магнетика, где параметр порядка – скалярная величина.
Вблизи точки перехода уравнение состояния имеет характерный вид закона соответственных состояний.Например, вблизи критической точки жидкость – пар отношение зависит только от (здесь r- плотность, r к - критическая плотность, r ж – плотность жидкости, r г – плотность газа, p –давление, p k–критическое давление, К т–изотермическая сжимаемость ) ,причём вид зависимости при подходящем выборе масштаба один и тот же для всех жидкостей (см. Критические явления ) .
Достигнуты большие успехи в теоретическом вычислении критических размерностей и уравнений состояния в хорошем согласии с экспериментальными данными. Приближенные значения критических размерностей приведены в таблице.
Таблица критических размерностей термодинамических и кинетических величин
* Изменение плотности с давлением, намагниченности с напряжённостью магнитного поля и др. T k–критическая температура.
Дальнейшее развитие теории Ф. п. II рода связано с применением методов квантовой теории поля, в особенности метода ренормализационной группы. Этот метод позволяет, в принципе, найти критические индексы с любой требуемой точностью.
Деление Ф. п. на два рода несколько условно, т.к. бывают Ф. п. I рода с малыми скачками теплоёмкости и др. величин и малыми теплотами перехода при сильно развитых флуктуациях. Ф. п. – коллективное явление, происходящее при строго определённых значениях температуры и др. величин только в системе, имеющей в пределе сколь угодно большое число частиц.
Лит.:Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 2 изд., М., 1964 (Теоретическая физика, т. 5); Ландау Л. Д., Ахиезер А. И., Лифшиц Е. М., Курс общей физики. Механика и молекулярная физика, 2 изд., М., 1969; Браут Р., Фазовые переходы, пер. с англ., М., 1967; Фишер М., Природа критического состояния, пер. с англ., М., 1968; Стенли Г., Фазовые переходы и критические явления, пер. с англ., М., 1973; Анисимов М. А., Исследования критических явлений в жидкостях, «Успехи физических наук», 1974, т. 114, в. 2; Паташинский А. З., Покровский В. Л., Флуктуационная теория фазовых переходов, М., 1975; Квантовая теория поля и физика фазовых переходов, пер. с англ., М., 1975 (Новости фундаментальной физики, вып. 6); Вильсон К., Когут Дж., Ренормализационная группа и e-разложение, пер, с англ., М., 1975 (Новости фундаментальной физики, в. 5).
В. Л. Покровский.
Фазовой плоскости метод
).
Современные достижения теории Ф. п. II рода и критических явлений основаны на гипотезе подобия. Предполагается, что если принять Rза единицу измерения длины, а среднюю величину параметра порядка ячейки с ребром R –за единицу измерения параметра порядка, то вся картина флуктуаций не будет зависеть ни от близости к точке перехода, ни от конкретного вещества. Все термодинамические величины являются степенными функциями R.Показатели степеней называют критическими размерностями (индексами). Они не зависят от конкретного вещества и определяются лишь характером параметра порядка. Например, размерности в точке Кюри изотропного материала, параметром порядка которого является вектор намагниченности, отличаются от размерностей в критической точке жидкость – пар или в точке Кюри одноосного магнетика, где параметр порядка – скалярная величина.
Вблизи точки перехода уравнение состояния имеет характерный вид закона соответственных состояний.Например, вблизи критической точки жидкость – пар отношение зависит только от (здесь r- плотность, r к - критическая плотность, r ж – плотность жидкости, r г – плотность газа, p –давление, p k–критическое давление, К т–изотермическая сжимаемость ) ,причём вид зависимости при подходящем выборе масштаба один и тот же для всех жидкостей (см. Критические явления ) .
Достигнуты большие успехи в теоретическом вычислении критических размерностей и уравнений состояния в хорошем согласии с экспериментальными данными. Приближенные значения критических размерностей приведены в таблице.
Таблица критических размерностей термодинамических и кинетических величин
Величина | Т- Т k | Теплоемкость | Восприимчивость* | Магнитное поле | Магнитный момент | Ширина линии рэлеевского рассеяния |
Размерность | - 3/ 2 | 3/ 16 | 2 | - 5/2 | - 1/ 2 | - 3/ 2 |
* Изменение плотности с давлением, намагниченности с напряжённостью магнитного поля и др. T k–критическая температура.
Дальнейшее развитие теории Ф. п. II рода связано с применением методов квантовой теории поля, в особенности метода ренормализационной группы. Этот метод позволяет, в принципе, найти критические индексы с любой требуемой точностью.
Деление Ф. п. на два рода несколько условно, т.к. бывают Ф. п. I рода с малыми скачками теплоёмкости и др. величин и малыми теплотами перехода при сильно развитых флуктуациях. Ф. п. – коллективное явление, происходящее при строго определённых значениях температуры и др. величин только в системе, имеющей в пределе сколь угодно большое число частиц.
Лит.:Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 2 изд., М., 1964 (Теоретическая физика, т. 5); Ландау Л. Д., Ахиезер А. И., Лифшиц Е. М., Курс общей физики. Механика и молекулярная физика, 2 изд., М., 1969; Браут Р., Фазовые переходы, пер. с англ., М., 1967; Фишер М., Природа критического состояния, пер. с англ., М., 1968; Стенли Г., Фазовые переходы и критические явления, пер. с англ., М., 1973; Анисимов М. А., Исследования критических явлений в жидкостях, «Успехи физических наук», 1974, т. 114, в. 2; Паташинский А. З., Покровский В. Л., Флуктуационная теория фазовых переходов, М., 1975; Квантовая теория поля и физика фазовых переходов, пер. с англ., М., 1975 (Новости фундаментальной физики, вып. 6); Вильсон К., Когут Дж., Ренормализационная группа и e-разложение, пер, с англ., М., 1975 (Новости фундаментальной физики, в. 5).
В. Л. Покровский.