ммиз высокопрочного и негорючего полиэтилентерефталата. Подложка негативных П. может быть серой или фиолетовой - для поглощения света и предупреждения образования ореолов при его отражении, иногда на П. наносится .Эмульсионный слой (см. ) состоит из желатины с равномерно распределёнными в ней микрокристаллами (0,2-1,0 мкм) галогенидов серебра. Толщина эмульсионного слоя чёрно-белых П. 15-20 мкм,цветных - до 35 мкм.

 По фотографическим свойствам различают П. общего и специального назначения. Первую группу составляют черно-белые и цветные П. для художественной и документальной фотографии, чувствительные ко всем видимым лучам и различающиеся по светочувствительности (от 22 до 350 единиц ГОСТ). Обычно большей светочувствительности соответствует меньшая контрастность и бо'льшая зернистость. Эти П. выпускают в катушках шириной 16, 35 и 60 ммразличной длины.

  Во вторую группу входят П. для кинематографии (негативные, позитивные, контратипные и фонограммные) и технические фотографии (репродукционные, аэрофотоплёнки, рентгеновские, спектральные и др.). Для любительской кинематографии выпускают обращаемые черно-белые и цветные П. шириной 8 и 16 ммв катушках по 10-15 м.Для профессиональной кинематографии производят черно-белые изопанхроматические и цветные (для дневного света и света ламп накаливания) П. шириной 16, 35 и 70 ммв рулонах длиной до 300 м.Они обладают различной светочувствительностью и могут применяться как фотоплёнки общего назначения. Фототехнические П. для репродуцирования выпускаются в виде плоских листов, для микрофильмирования - в рулонах шириной 35 мм.Разрешающая способность последних (в линиях на 1 мм) обычно указывается в названии, например «Микрат-200», «Микрат-300». Плоские рентгеновские П. предназначаются для медицинских целей (марки «РМ») и для структурного анализа (марки «PC»). Все П. имеют светонепроницаемую упаковку.

  При обработке П. водой или фотографическими растворами эмульсионный слой набухает; при повышении температуры до 37-40 °С может расплавиться и сползти с подложки, поэтому обработка П. ведётся ниже указанных температур.

  Лит.:Гороховский Ю. Н., Баранова В. П., Свойства черно-белых фотографических пленок, М., 1970; Крауш Л. Я., Фотографические материалы, М., 1971.

  Л. Я. Крауш.

Плёнка магнитная

Плёнка магни'тная, см. .

Плёнки полимерные

Плёнки полиме'рные, сплошные слои полимеров толщиной до 0,2-0,3 мм.Более толстые слои полимерных материалов называют листами или пластинами. П. п. производят из природных, искусственных и синтетических .К первой группе относят П. п., изготовляемые из белков, , и некоторых др. веществ. Наибольшее распространение в этой группе получил .Вторую, более обширную группу составляют П. п. из искусственных полимеров, т. е. продуктов химической переработки природных полимеров. В эту группу входят П. п., полученные на основе эфиров целлюлозы, а также из натурального каучука, предварительно подвергнутого гидрохлорированию. Самую обширную группу П. п. составляют плёнки на основе синтетических полимеров. Наибольшее распространение из этой группы получили плёнки на основе , , , , , , .

 Основные промышленные методы изготовления П, п.: расплава полимера; полив раствора полимера на полированную металлическую или др. поверхность (в некоторых случаях раствор полимера подают в осадительную ванну); полив дисперсии полимера на полированную поверхность; .Экструзия расплава полимера пригодна в тех случаях, когда перерабатываемые материалы при переходе в вязкотекучее состояние не подвергаются термической деструкции. Большинство синтетических полимеров перерабатывается в П. п. именно этим методом. Для его осуществления используют экструдеры с кольцевой или плоско-щелевой головкой. В первом случае расплав полимера экструдирустся в виде рукава, который растягивается сжатым воздухом, что приводит к двуосной ориентации плёнки. Рукавный способ - наиболее производительный и экономичный процесс изготовления П. п. Плоскощелевой способ позволяет формовать неориентированные (изотропные), одноосноориентированные и двуосноориентированные П. п., которые в некоторых случаях дополнительно подвергаются разглаживанию на гладильных валках. Этот способ предпочтительнее в тех случаях, когда требуется получить равнотолщинную плёнку с высоким качеством поверхности. П. п. из кристаллизующихся полимеров (например, из полиэтилентерефталата) после ориентации подвергают кристаллизации, которая резко улучшает прочностные свойства плёнки. Производство П. п. поливом раствора полимера на холодную или нагреваемую полированную поверхность - один из первых промышленных методов, имеющий теперь ограниченное применение. Этим методом производятся главным образом плёнки на основе целлюлозы и её производных, а также некоторые плёнки из синтетических полимеров (например, полиимидов, поливинилового спирта, поликарбоната). Метод состоит из приготовления раствора, полива его на гладкую полированную поверхность барабана или металлической бесконечной ленты и отделения растворителя от полимера. Полученную П. п. подвергают термической обработке для снятия внутренних напряжений и при необходимости осуществляют одноосную или двуосную ориентацию. Во многом сходная с методом полива раствора технология производства П. п. основана на использовании дисперсий полимеров. Обычно - это коллоидные системы (например, латексы), в которых дисперсионной средой служит вода, а дисперсной фазой - частицы полимера. Этот метод применяется, в частности, для изготовления резиновых санитарно-гигиенических изделий. Каландрированием получают главным образом плёнки из поливинил-хлорида.

  В большинстве случаев П. п. из синтетических полимеров по комплексу физико-механических и химических свойств (табл. 1 и 2) превосходят плёнки из природных и искусственных полимеров, поэтому их промышленное производство непрерывно возрастает.

  П. п. применяются главным образом в качестве упаковочного материала для пищевых продуктов, товаров широкого потребления, жидких и сыпучих химических и нефтехимических продуктов, для бытовых целей. Для изготовления упаковочных плёнок используют полиэтилен, полипропилен, целлюлозу и её эфиры, поливинилхлорид, полистирол, полиамиды, полиэфиры, гидрохлорид натурального каучука и др. полимеры. Некоторыми специфическими свойствами обладают упаковочные многослойные материалы типа плёнка - плёнка, плёнка - бумага, плёнка - фольга, а также вспененные плёнки.

  Широкое распространение получили электроизоляционные плёнки (полистирольные, полиолефиновые, полиэтилентерефталатные, поликарбонатные, политетрафторэтиленовые, полиимидные), используемые для изоляции проводов и кабелей, в производстве конденсаторов и для пазовой изоляции электрических машин. П. п. служат основой (подложкой) для кинофотоплёнок (см. кино- и фотографическая) и для записи и воспроизведения звука и изображения. Наиболее соответствуют этой цели ацетилцеллюлозные и полиэтилентерефталатные плёнки (двуосноориентированные и закристаллизованные). Из атмосферостойких прозрачных П. п. (полиэтиленовых, полиамидных, поливинилхлоридных и полиэтилентерефталатных, в некоторых случаях армированных стекловолокном или тканями на основе синтетических волокон) изготовляют парниковые рамы, тепличные крыши, переносные атмосферозащитные покрытия, предохраняющие растения в открытом грунте от заморозков или создающие внутри покрытия микроклимат, благоприятный для вегетации растений. Гидроизоляционные П. п. используют в строительстве, при сооружении искусственных водоёмов и каналов и для др. целей. Ионообменные П. п. применяют для извлечения веществ с помощью электродиализа, опреснения солёной воды, при очистке органических соединений и их растворов (например, сахарных), для концентрирования растворов, разделения и идентификации различных соединений и для др. целей. Поляроидные плёнки широко применяются в качестве светофильтров во избежание ослепления шофёров светом фар встречных машин, для разнообразных способов сигнализации, изготовления и демонстрации стереоскопических фильмов и др. целей.

  Первое место по объёму мирового производства занимают полиолефиновые плёнки, второе - поливинилхлоридные. Так, в 1970 (в США) полиэтиленовые плёнки составляли свыше 62,3% объёма плёночной продукции, поливинилхлоридные - свыше 25,1%, полипропиленовые - 2,4%, полиамидные - 0,1%, остальные - около 10%.

  Лит.:Козлов П. В., Брагинский Г. И., Химия и технология полимерных пленок, М., 1965; Такахаси Г., Пленки из полимеров, пер. с япон., Л., 1971: Гуль В. Е., Полимерные пленочные материалы, М., 1972.

  В. Е. Гуль, П. В. Козлов.

Табл. 1. - Некоторые физико-механические и электрические характеристики полимерных плёнок

Плёнкообра- зующий полимер Прочность при растяжении, Мн/м 2( кгс/см 2) Относи- тельное удлинение при разрыве, % Стойкость к распро- странению надрыва, г Тангенс угла диэлект- рических потерь при 10 6 гц Диэлекри- ческая проница- емость при 10 6 гц Электрич. прочность, Мв/м,или кв/мм
Полиэтилен низкой плотности 10-21 (100-210) 100-700 100-500 0,0003 2,2 30-60
высокой плотности 17-43 (170-430) 10-650 15-300 0,0005 2,3 30-60
Полнвинилхло- рид жёсткий 49-70 (490-700) 25 10-700 0,006-0,017 2,8-3,1 17-54
мягкий 10-40 (100-400) 150-500 60-1400 0,04-0,14 3,3-4,5 45
Полистирол двухосно- ориентирован- ный 55-85 (550-850) 3-40 5 0,0005 2,4-2,7 100
Полиамид-6 65-125 (650-1250) 250-550 50-90 0,025 3,4 50-60*
Полиэтилен- терефталат 140-210 (1400-2100) 70-120 12-27 0,016 3,0 300**
Политетра- фторзтилен 10-28 (100-280) 100-350 10-100 0,0002 2,0-2,1 25-40
Триацетат целлюлозы 65-110 (650-1100) 10-40 4-10** 0,033 3,3 150
Целлофан нелакирован- ный 50-125 (500-1250) 10-50 2-20 - 3,2 80-100

  * Для плёнки толщиной 50 мкм.

  **Для плёнки толщиной 25 мкм.

Табл. 2. - Стойкость полимерных плёнок к различным воздействиям*

Плёнкооб- разующий полимер Силь- ные кисло- ты Силь- ные щёлочи Жиры и масла Орга- ничные раство- рители Водопо- глоще- ние за 24 ч,% Стой- кость к солнеч- ному свету Тепло- стой- кость, °С Мо- розо- стой- кость, °С
Полиэтилен
низкой плотности ++ ++ - + 0,01 от - до + 80-90 -57
высокой плотности ++ ++ + + 0 от - до + 120 -46
Поливи- нилхлорид
жёсткий ++ ++ + + 0 + 65-93 -
мягкий + + + + 0 + 65-93 -46
Полистирол двухосно- ориентиро- ванный + ++ + - 0,04-0,06 - 80-95 от -56 до -70
Полиамид-6 - - ++ ++ ++ 9,5 от - до + 90-200 -70
Полиэтилен- терефталат + + ++ ++ 0,8 от ± до ++ 150 -60
Политетра- фторэтилен ++ ++ ++ ++ 0,005 ++ 260 -90
Триацетат целлюлозы - ++ - 2,4-4,5 ++ 150-200 -
Целлофан лакирован- ный - - + ++ * 45-115 + 130 -18

  *Условные обозначения: ++ очень хорошая; + хорошая: ± умеренная; - плохая; -- очень плохая.

  ** Лаковое покрытие может быть нестойким.

Плёнкообразующие вещества

Плёнкообразу'ющие вещества', плёнкообразующие, плёнкообразователи, вещества, способные образовывать плёнку при нанесении на твёрдую поверхность; основные компоненты всех лакокрасочных материалов. В качестве П. в. применяют главным образом реакционноспособные (превращаемые, необратимые) -алкидные, феноло-формальдегидные, эпоксидные, полиэфирные смолы и др., а также некоторые нереакционноснособные (непревращаемые, обратимые), сравнительно низкомолекулярные полимеры - , , и др. Некоторое значение в лакокрасочной промышленности сохраняют также природные П. в., в частности и производные .П. в. используют чаще всего в виде растворов в органических растворителях (иногда в виде водных растворов или дисперсий), которые наносят на поверхность различными методами (см. ) .Нереакционноспособные П. в. образуют плёнку в результате улетучивания растворителя; плёнкообразование реакционноспособных П. в. сопровождается их химическими превращениями (о механизме плёнкообразования см. также ) .П. в. должны обладать следующими общими свойствами: хорошо смачивать защищаемую поверхность, а также частицы пигментов и наполнителей, которые диспергируют в П. в. при получении , , ,и прочно удерживать эти частицы в плёнке; высыхать в тонком слое за сравнительно короткое время (от нескольких миндо 24 чпри 15-200 °С), образуя прочные, влаго- и газонепроницаемые плёнки, стойкие к длительному воздействию внешней среды и обладающие хорошей к защищаемой поверхности. Необходимый комплекс свойств покрытий во многих случаях достигается при совмещении в лакокрасочном материале двух и более П. в., а также при введении .

  Функции П. в. могут выполнять некоторые высокомолекулярные полимеры (например, полиэтилен или фторопласты), используемые в виде порошков, которые наносят на поверхность напылением (см. ) .

  Лит.:Энциклопедия полимеров, т. 2, М., 1974; см. также лит. при ст. .

  М. М. Гольдберг.

Плёночный конденсатор

Плёночный конденса'тор, ,в котором диэлектриком служит синтетическая плёнка из полистирола, полиэтилена, фторопласта, полиэтилентерефталата и др. П. к. изготовляют ёмкостью от 100 пфдо 100 мкфна напряжения от 40 вдо 20 кв.Применяется в цепях постоянного и переменного тока, главным образом в радиотехнических устройствах.

Пленум

Пле'нум(от лат. Plenum - полное), собрание в полном составе членов выборного руководящего органа какой-либо организации (партийной, государственной, профсоюзной и др.).

Пленум суда

Пле'нум суда', в СССР заседание членов высшего судебного органа СССР или союзной республики. Образуется Верховным судом СССР (подробно см. в ст. ) ,а также Верховными судами союзных республик (за исключением РСФСР, где эту функцию выполняет Президиум Верховного суда РСФСР). В состав пленума Верховного суда союзной республики входят председатель, его заместители, члены Верховного суда республики. В заседаниях П. с. участвуют прокурор и министр юстиции республики. П. с. созывается в одних республиках не реже 1 раза в 2 мес,в других - не реже 1 раза в 3 мес.Решения П. с. оформляются в виде постановлений, принимаемых простым большинством голосов. Пленум Верховного суда республики даёт судам данной республики руководящие разъяснения по вопросам применения республиканского законодательства при рассмотрении гражданских и уголовных дел; входит с представлением в Президиум Верховного Совета союзной республики по вопросам, подлежащим разрешению в законодательном порядке, и по вопросам толкования законов союзной республики; заслушивает отчёты председателей судебных коллегий Верховного суда республики, утверждает их составы и т.д.

Пленум ЦК ВЛКСМ

Пле'нум ЦК ВЛКСМ, заседание всего состава членов и кандидатов в члены .По Уставу ВЛКСМ, утвержденному 17-м съездом комсомола (1974), пленарные заседания ЦК проводятся не менее одного в 6 мес.На первом после очередного съезда ВЛКСМ пленуме ЦК избирает из своего состава бюро для руководства всей работой комсомола между пленумами и секретариат для текущей организационно-исполнительской работы. Кандидаты в члены ЦК участвуют в работе П. с правом совещательного голоса. П. определяет задачи ВЛКСМ по выполнению решений съездов и пленумов ЦК КПСС, принимает постановления, обязательные для всех комсомольских организаций и являющиеся развитием и конкретизацией решений съездов ВЛКСМ, заслушивает информации о деятельности бюро ЦК, отчёты местных комитетов комсомола.

Пленум ЦК КПСС

Пле'нум ЦК КПСС, заседание всего состава членов и кандидатов в члены .По Уставу КПСС, утвержденному 24-м съездом партии (1971), ЦК проводит не менее одного пленарного заседания в 6 мес.На первом после очередного партийного съезда П. ЦК избирает , , .Кандидаты в члены ЦК участвуют в работе П. с правом совещательного голоса. На П. присутствуют члены .Регулярное проведение П. является одним из важнейших условий практического осуществления ленинского принципа коллективности руководства. На П. обсуждаются крупнейшие вопросы жизни и деятельности партии, народа, государства: задачи совершенствования работы партийных органов и партийных организаций, очередные задачи развития экономики, культурного строительства, советской демократии, внешней политики. Большое внимание П. ЦК КПСС уделяет укреплению единства международного коммунистического и рабочего движения, усилению борьбы против буржуазной идеологии. Постановления П. обязательны для всех партийных организаций. В соответствии с решениями П. партийных организаций и коллективы трудящихся намечают конкретные задачи коммунистического строительства.

Пленэр

Пленэ'р(франц. plein air, буквально - открытый воздух) в живописи, термин, означающий передачу в картине всего богатства изменений цвета, обусловленных воздействием солнечного света и окружающей атмосферы. Пленэрная живопись сложилась в результате работы художников на открытом воздухе (а не в мастерской), на основе непосредственного изучения натуры с целью возможно более полного воспроизведения её реального облика. Некоторые моменты, предвосхищающие появление пленэрной живописи, можно проследить в творчестве мастеров итальянского Возрождения и художников 17 в. Однако по существу принципы П. получают распространение в 1-й половины 19 в. (Дж. Констебл в Англии, А. А. Иванов в России). Проводниками П. в середине 19 в. выступают мастера (Т. Руссо, Ж. Дюпре, Н. В. Диаз, Ш. Ф. Добиньи), а также К. Коро. Наиболее полное выражение принципы П. нашли во 2-й половине 19 в. в творчестве мастеров (именно тогда термин «П.» начинает широко употребляться) - К. Моне, К. Писсарро, О. Ренуара и др. В России во 2-й половине 19 - начале 20 вв. значительных успехов в пленэрной живописи добиваются В. Д. Поленов, И. И. Левитан, В. А. Серов, К. А. Коровин, И. Э. Грабарь. Интерес к проблеме П. сохраняется и в живописи 20 в.

  Лит.:Лясковская О. А., Пленэр в русской живописи XIX века, М., 1966.

Плеоназм

Плеона'зм(от греч. pleonasmуs - излишество), многословие, употребление слов, излишних не только для смысловой полноты, но обычно и для стилистической выразительности. Причисляется к стилистическим «фигурам прибавления» (см. ) ,но рассматривается как крайность, переходящая в «порок стиля»; граница этого перехода зыбка и определяется чувством меры и вкусом эпохи. П. обычен в разговорной речи («своими глазами видел»), где он, как и др. фигуры прибавления, служит одной из форм естественной избыточности речи. В фольклоре П. приобретает стилистическую выразительность («путь-дорога», «море-океан», «грусть-тоска»); в литературе некоторые стили культивируют П. («пышный стиль» античные риторики), некоторые избегают его («простой стиль»). Усиленная форма П. - повторение однокоренных слов («шутки шутить», «огород городить») - называется парегменон или figura etimologica. Иногда крайнюю форму П. (повторение одних и тех же слов) называют .Однако в современной стилистике понятие тавтологии нередко отождествляют с П.

Плеонаст

Плеона'ст(от греч. pleonastуs - многочисленный: первые изученные кристаллы обладали многими гранями), цейлонит, минерал из группы химического состава (Mg, Fe)Al 2O 4с отношением Mg 2+: Fe 2+от 3 до 1.

Плеохроизм

Плеохрои'зм(от греч. pleon - более многочисленный, бо'льший и chrуa - цвет), изменение окраски веществ в проходящем через них свете в зависимости от направления распространения этого света и его поляризации (см. ) .Впервые наблюдался в 1816 Ж. Б. и Т. И. .П. - одно из проявлений веществ: поглощение света в них анизотропно, а зависимость поглощения от длины волны («цвета») излучения приводит к П. Одним из видов П. является круговой дихроизм (эффект Коттона) - различие поглощения для света правой и левой круговых поляризаций. Чаще всего П. наблюдается в ,для которых характерна и такая разновидность П., как линейный дихроизм - неодинаковость поглощения обыкновенного и необыкновенного лучей. Для одноосных кристаллов различают 2 «главные» (основные) окраски - при наблюдении вдоль оптической оси и перпендикулярно к ней (по т. н. направлениям N oи N e; см. ) .В двуосных кристаллах - 3 основные окраски по трём направлениям, которые могут совпадать (в этом случае их обозначают N g, N mи N p) или не совпадать с главными направлениями кристалла (см. ) .По др. направлениям кристалл виден окрашенным в иные (т. н. промежуточные) цвета. Сильным П. отличаются, например, турмалин (одноосный кристалл) и ацетат меди (двуосный кристалл). П. окрашенных кристаллов изучают в тонких шлифах с помощью поляризационного -при повороте на столике микроскопа цвет кристалла меняется в соответствии с ориентацией разреза. Это позволяет, в частности, по известным цветовым таблицам идентифицировать минерал. Анизотропией поглощения могут обладать и отдельные молекулы; преимущественная ориентация таких молекул вызывает П. содержащих их веществ. Таковы многие красители. Преимущественная ориентация анизотропно поглощающих молекул, ведущая к П., может быть естественной и искусственной - вызванной внешним полем (например, в ) или механическим деформациями (в плёнках ) .Очень важным практическим применением П. является использование ,действие которых основано на явлении линейного дихроизма.

  Лит.:Белянкин Д. С., Петров В. П., Кристаллооптика, М., 1951; Костов И., Кристаллография, пер. с болг., М., 1965.

Плеохроичные ореолы

Плеохрои'чные орео'лы, «дворики», окрашенные зоны, обычно плеохроирующие, возникающие вокруг мелких включений (циркона, пирохлора, монацита, торита и др.) в прозрачных, бесцветных или слабоокрашенных зёрнах др. минералов (слюд, амфиболов, флюорита, кварца, касситерита и др.). П. о. образуются в результате изменения окраски включающего минерала под воздействием радиоактивного излучения (главным образом a -и b-частиц) минерала-включения. Изменение окраски связано либо с изменением заряда атома-хромофора в кристаллической решётке (например, Fe 2+в Fe 3+), либо с созданием различного типа (в кварце, флюорите и др.). Диаметр П. о. невелик и соответствует возможной длине пробега a (нескольких m) или b (до 2-3 мм) частиц. П. о. наблюдаются в шлифах с помощью поляризационного микроскопа. См. .

Плероцеркоид

Плероцерко'ид(от греч. pleres - полный, законченный и kйrkos - хвост), одна из личиночных стадий развития (широкого лентеца, ремнеца и др.). Тело длиной 2-80 смнерасчленённое. Рыба (второй промежуточный хозяин ленточных червей) заглатывает веслоногого рачка (первого промежуточного хозяина), содержащего личинку - ,который проникает через стенку кишечника рыбы в её полость тела, где превращается в П. Если окончательный хозяин (например, человек, собака, кошка - для широкого лентеца; водоплавающие птицы - для ремнеца) съедает пораженную рыбу, в его кишечнике П. превращается во взрослого червя.

Плероцеркоид ремнеца (Ligula intestinalis).

Плёс (город в Ивановской обл.)

Плёс, город (с 1925) в Фурмановском районе Ивановской области РСФСР, на высоком правом берегу р. Волги, в 18 кмот ж.-д. станции Приволжск. П. неоднократно служил источником вдохновения для русских пейзажистов (в т. ч. для И. И. Левитана). Памятники архитектуры: Успенский собор (1747), Троицкая (1808), Воскресенская (1817), Варвары (1821), Преображенская (1849) церкви. Картинная галерея (в бывшей Воскресенской церкви) и Дом-музей И. И. Левитана. Совхоз-техникум.

  Лит.:Моисеев П. И., Город Плёс, [4 изд.], Ярославль, 1970.

Плёс (участок русла реки)

Плёс, более глубокий, участок русла реки, расположенный между