Квантор ) «все» (или «всякий», «каждый», «любой» и т. п.) и «некоторый» (или «имеется», «существует» и т. п.). Такие предложения могут иметь одну из следующих четырёх форм (прописными лат. буквами обозначаются термины): «Всякое Rесть Q» (такое высказывание называется общеутвердительным и обозначается обычно буквой А), «Ни одно Rне есть Q» (общеотрицательное, обозначается через Е), «Некоторое Rесть Q» (частноутвердительное, I) и «Некоторое Rне есть Q» (частноотрицательное, О). Примерами категорических С. могут служить рассуждения: «Ни одно Рне есть М, некоторые Sсуть М; следовательно, некоторые Sне суть Р» (или, в форме условного высказывания: «Если ни одно Рне есть Ми некоторые Sесть М, то некоторое Sне есть Р»), «Всякое Месть Р, всякое Sесть М; следовательно, всякое Sесть Р» (такой вид имеет хрестоматийный пример С.: «Все люди смертны, все греки - люди; следовательно, все греки смертны») и т. п. Посылку, содержащую предикат заключения («больший термин» Р), называют большей посылкой; посылку, содержащую субъект заключения («меньший термин» S), - меньшей посылкой. По положению «среднего термина» М, входящего лишь в посылки С., различают четыре фигуры С.: в 1-й Мслужит субъектом в большей посылке и предикатом в меньшей, во 2-й - предикатом в обеих посылках, в 3-й - субъектом в обеих посылках, в 4-й - предикатом в большей и субъектом в меньшей. В зависимости же от форм силлогистических предложений ( А, Е, Iили О) говорят о различных модусах С. Поскольку в каждой фигуре мыслимы 4·4·4 = 64 модуса, то имеет смысл говорить всего о 256 модусах. Правильными же (т. е. обеспечивающими получение истинного заключения из истинных посылок) оказываются лишь 24, в том числе 5 «ослабленных» (допускающих усиление, например замену частного предложения в заключении на общее), так что во всех 4 фигурах остаётся 19 неослабленных правильных модусов С. (первая буква характеризует ниже вид большей посылки, вторая - меньшей, третья - заключения): ААА, EAE, Allи EIO1-й фигуры, EAE, AEE, EIOи AOO2-й, AAI, IAI, AII, EAO, OAOи EIO3-й и AAI, AEE, IAI, EAOи EIO4-й фигуры. Обоснование правильности этих модусов С. и неправильности остальных даётся в силлогистике .

  Термином «С.» пользуются также в более широком смысле - в применении к умозаключениям, образованным из предложений других видов; так, говорят об условных, условно-категорических, разделительно-категорических и условно-разделительных С. Наконец, тот же термин употребляется иногда и просто в качестве синонима термина «умозаключение».

  Лит. см. при ст. Силлогистика .

Силлогистика

Силлоги'стика(от греч. syllogistikуs - выводящий умозаключение), теория логического вывода, исследующая умозаключения, состоящие из т. н. категорических высказываний ( суждений ): общеутвердительных («всякое Sесть Р»), общеотрицательных («ни одно Sне есть Р»), частноутвердительных («некоторое Sесть Р») и частноотрицательных («некоторое Sне есть Р»). В С. рассматриваются, например, выводы заключения из одной посылки (т. н. непосредственные умозаключениями «сложные силлогизмы», или полисиллогизмы , имеющие не менее трёх посылок. Однако основное внимание С. уделяет теории категорического силлогизма , имеющего ровно две посылки и одно заключение указанного вида. Классификацию различных форм ( модусов ) силлогизмов и их обоснование дал основатель логики как науки Аристотель . В дальнейшем С. усовершенствовалась различными школами античных (перипатетики, стоики) и средневековых логиков. Несмотря на ограниченный характер применения, отмечавшийся ещё Ф. Бэконом , Р. Декартом , Дж. С. Миллем и другими учёными, С. долгое время являлась неотъемлемым традиционным элементом «классического» гуманитарного образования, из-за чего её часто называют традиционной логикой. С созданием исчислений математической логики роль С. стала весьма скромной. Оказалось, в частности, что почти всё её содержание (а именно все выводы, не зависящие от характерного для С. предположения о непустоте предметной области ) может быть получено средствами фрагмента исчисления предикатов - т. н. одноместного исчисления предикатов. Получен также (начиная с Я. Лукасевича , 1939) ряд аксиоматических изложений С. в терминах современной математической логики.

  Лит.:Аристотель, Аналитики, первая и вторая, пер. с греч., Л., 1952; Бэкон Ф., Новый органон, пер. с англ., Л., 1935; Декарт Р., Избр. произв., пер. с франц., М., 1950; Гильберт Д., Аккерман В., Основы теоретической логики, пер. с нем., М., 1947, гл. II, § 3; Лукасевич Я., Аристотелевская силлогистика с точки зрения современной формальной логики, пер. с англ., М., 1959; Бурбаки Н., Очерки по истории математики, пер. с франц., М., 1963; Калбертсон Д ж., Математика и логика цифровых устройств, пер. с англ., М., 1965, гл. 5; Субботин А. Л., Теория силлогистики в современной формальной логике, М., 1965; его же, Традиционная и современная формальная логика, М., 1969.

Силовая оптика

Силова'я о'птика,раздел физической оптики, в котором изучается воздействие на твёрдые среды настолько интенсивных потоков оптического излучения (света), что оно может приводить к нарушению целостности этих сред. С. о. развилась после появления лазеров в связи с использованием интенсивных световых потоков для оптической обработки материалов, а также с необходимостью создания формирующих и передающих оптических систем, которые не теряют работоспособности при большой плотности энергии излучения (в оптотехнике С. о. называют сами элементы оптических устройств - зеркала, линзы, призмы и т. д., рассчитанные на работу в плотных потоках излучения).

  В С. о. исследуют процессы выделения энергии в прозрачных (слабопоглощающих) или поглощающих средах, подвергающихся действию интенсивных световых потоков, и определяют результаты такого воздействия. При этом для характеристики работоспособности оптических материалов (стекол, кристаллов, покрытий и пр.) вводят по аналогии с механической или электрической прочностью понятие лучевой прочности (ЛП), равной удельной мощности или энергии потока оптического излучения, начиная с которого в веществе появляются необратимые изменения. ЛП увеличивается с уменьшением длительности воздействия и облучаемой площади материала. Она определяется не только поглощения показателем , но и нелинейными процессами в веществе (например, самофокусировкой света ) и микроскопическими неоднородностями его структуры.

  Для поглощающих материалов, таких, как металлы, узкозонные полупроводники, керамика и пр., определяют параметры излучения (удельная мощность, энергия, длительность), при которых происходит разрушение того или иного типа (плавление, испарение, растрескивание). При этом, как и в прозрачных средах, существенное значение имеет изменение характеристик вещества в процессе воздействия лазерного излучения (например, отражения коэффициента и показателя поглощения, появление поглощения в продуктах световой эрозии вещества и др.). Определённые т. о. параметры излучения и режимы его воздействия на вещество используют при разработке лазерных установок для оптической обработки материалов (сварка и резка, получение микроотверстий, изготовление элементов микроэлектроники и т. д.).

  Лит.:Действие излучения большой мощности на металлы, под ред. А. М. Бонч-Бруевича, М. А. Ельяшевича, М., 1970; Алешин И. В., Имас Я. А., Комолов В. Л., Оптическая порочность слабопоглощающих материалов, Л., 1974; Рэди Дж., Действие мощного лазерного излучения, пер. с англ., М., 1974.

  А. М. Бонч-Бруевич.

Силовая передача

Силова'я переда'ча,устройство для передачи механической энергии, обычно с преобразованием сил, моментов и скоростей, а в некоторых случаях - характера движения. С. п. в приводах машин позволяет согласовать режимы работы двигателя и исполнительных органов машины, приводить в движение несколько механизмов от одного двигателя, осуществлять реверсирование движения, изменять вращающие моменты и частоты вращения при сохранении постоянного момента и частоты вращения двигателя, преобразовывать вращательное движение в поступательное, винтовое и др. Наибольшее распространение в машиностроении получили механические С. п. с твёрдыми звеньями, нередко используются также гидравлические (см. Гидропривод машин ), пневматические и другие С. п. Иногда в одной машине для привода различных механизмов могут одновременно применяться С. п. разных типов или их комбинации (например, гидромеханические С. п.). Экономическая целесообразность использования в машинах быстроходных двигателей (в связи с их меньшими габаритом, массой и стоимостью) определяет преимущественное распространение силовых передач, понижающих частоту вращения ведомого вала по сравнению с ведущим. Наибольшую мощность можно передать с помощью зубчатых С. п. (известны, например, редукторы к судовым турбинам мощностью свыше 50 Мвт). Мощность червячных С. п. Ограничена (обычно 200 квт) недостаточно высоким кпд и нагревом. Цепные С. п. могут передавать мощность до 4 Мвт, фрикционные С. п. - до 300, ремённые С. п. - до 1,5 Мвт. Механические С. п. компактны, удобны для компоновки машин, обладают высокой надёжностью, позволяют относительно просто осуществлять необходимые преобразования движения и практически любые передаточные отношения; при надлежащем качестве изготовления большинство С. п. имеет высокий кпд.

  Лит.:Решетов Д. Н., Передачи в машинах, М., 1953; Кудрявцев В. Н., Выбор типов передач, М. - Л., 1955; Проектирование механических передач, 3 изд., М., 1967; Детали машин. Расчет и конструирование. Справочник, под ред. Н. С. Ачеркана, 3 изд., т. 3, М., 1969.

  А. А. Пархоменко.

Силовая установка

Силова'я устано'вка,энергетический комплекс, содержащий тепловой двигатель (реже гидравлический двигатель , ветродвигатель ), машины - преобразователи энергии, например электрогенераторы и электродвигатели, потребители механической энергии. В зависимости от назначения С. у. и числа промежуточных элементов между двигателем и потребителем энергии С. у. бывают транспортные, передвижные и стационарные; простые и сложные. К простым можно отнести автомобильные, тракторные, одновинтовые судовые, одномоторные авиационные и т. д.; к сложным - многовинтовые судовые, многомоторные авиационные, С. у. космических кораблей, термоядерные и др. В С. у. транспортных средств основным потребителем механическом энергии является движитель . В стационарных и передвижных С. у. потребителями механической энергии являются насосы, компрессоры, рабочие органы бензопил, газонокосилок и т.д.

Силовое поле

Силово'е по'ле,часть пространства (ограниченная или неограниченная), в каждой точке которой на помещенную туда материальную частицу действует определённая по величине и направлению сила, зависящая или только от координат x, у, zэтой точки, или же от координат x, у, ги времени t. В первом случае С. п. называется стационарным, а во втором - нестационарным. Если сила во всех точках С. п. имеет одно и то же значение, т. е. не зависит ни от координат, ни от времени, то С. п. называется однородным.

  С. п., в котором работа сил поля, действующих на перемещающуюся в нём материальную частицу, зависит только от начального и конечного положения частицы и не зависит от вида её траектории, называется потенциальным. Эту работу можно выразить через потенциальную энергию частицы П ( х, у, z) равенством А= П ( x 1, y 1, z 1) - П ( x 2, y 2, z 2), где x 1, y 1, z 1и x 2, y 2, z 2- координаты начального и конечного положений частицы соответственно. При движении частицы в потенциальном С. п. под действием только сил поля имеет место закон сохранения механической энергии, позволяющий установить зависимость между скоростью частицы и сё положением в С. п.

  Примеры потенциального С. п.: однородное поле силы тяжести, для которого П = mgz, где т- масса частицы, g- ускорение силы тяжести (ось zнаправлена вертикально вверх); ньютоново поле тяготения, для которого П = - fm/r, где r- расстояние частицы от центра притяжения, f- постоянный для данного поля коэффициент.

  С. М. Тарг.

Силовое ударение

Силово'е ударе'ние(динамическое, экспираторное), вид ударения , при котором усиление выделяемого элемента происходит путём повышения мускульного напряжения, сопровождаемого усилением выдоха. С. у. может реализоваться в двух степенях (например, в русском языке) и в этом случае говорят об ударных и безударных элементах (соответственно о наличии и отсутствии ударения) либо в трёх степенях (например, в немецком языке) и тогда говорят о безударных, слабоударных и сильноударных элементах (соответственно о главном и второстепенном ударении). С. у., основанное на признаке интенсивности, противопоставляется музыкальному и количественному ударению. Однако во многих языках признак интенсивности сопровождается другими признаками. Например, в русском языке ударение является не только силовым, но и количественным, чем и объясняется характерное для русских восприятие долгих гласных иностранных языков как ударных.

Силовой кабель

Силово'й ка'бель,электрический кабель , предназначенный для передачи электроэнергии от места её производства (или преобразования) к промышленным предприятиям, силовым и осветительным установкам стационарного типа, транспортным и коммунальным объектам. Термин «С. к.» в общепринятом смысле относят обычно к кабелям на напряжение до 35 кв, преимущественно с бумажной изоляцией, пропитанной вязким изоляционным составом. Для более высоких напряжений используют кабель с избыточным давлением масла (см. Маслонаполненный кабель ).

  Наиболее массовое применение нашли С. к. на напряжение до 10 кв( рис. ), содержащие три алюминиевые или (реже) медные токопроводящие жилы секторной формы сечением до 240 мм 2. Основная изоляция такого С. к. - спирально наложенные на каждую жилу бумажные ленты, пропитанные вязким изоляционным составом (75-85% минерального масла и 15-25% канифоли). Толщина изоляции жилы (фазной изоляции) зависит от номинального напряжения кабеля и составляет от 0,75 ммпри 1 квдо 2,75 ммпри 10 кв. На скрученные вместе изолированные жилы накладывают т. н. поясную бумажную изоляцию, толщина которой примерно вдвое меньше толщины фазной. Поверх поясной изоляции методом прессования накладывают герметичную металлическую оболочку из свинца или алюминия (последний получает преимущественно распространение), а затем - защитный покров. С. к. на напряжение 20 и 35 квимеют жилы круглой формы с фазной изоляцией толщиной до 9 мм; у каждой жилы - отдельная металлическая оболочка или экран из металлической фольги.

  В диапазоне рабочих температур от 50 до 80 °С вязкость масляно-канифольного состава снижается, поэтому на наклонных участках трассы прокладки С. к. из-за постепенного стекания жидкой изоляции верхние участки С. к. могут придти в негодность. В связи с этим строго ограничивается максимально допустимая разность высот между верхней и нижней точками трассы (от 5 до 25 мдля кабелей с напряжением соответственно от 35 до 1 кв).

  Основные направления совершенствования С. к. - расширение выпуска кабелей с нестекающим пропиточным составом, позволяющим прокладывать трассы с крутонаклонными и вертикальными участками, а также переход от бумажной изоляции к полимерной (поливинилхлоридной, полиэтиленовой). Применение прогрессивных видов изоляции, помимо значительной экономии дефицитной бумаги, масел и канифоли, сокращает трудоёмкость и длительность технологических операций при производстве кабеля, уменьшает его массу, а также повышает допустимую рабочую температуру (С. к. с изоляцией из вулканизируемого полиэтилена даже при температурах до 150 °С в течение некоторого времени сохраняет высокую стойкость к деформациям, что очень важно при коротких замыканиях).

  Лит.:Привезенцев В. А., Ларина Э. Т., Силовые кабели и высоковольтные кабельные линии, М., 1970; Белоруссов Н. И., Электрические кабели и провода, М., 1971; Барнес С., Силовые кабели, пер. с англ., М., 1971.

  В. М. Третьяков.

Трёхжильный силовой кабель на напряжение 6 кв: 1 - секторные многопроволочные алюминиевые жилы; 2 - фазная бумажная изоляция; 3 - поясная бумажная изоляция; 4 - алюминиевая оболочка; 5 - пластмассовая (поливинилхлоридная) защитная оболочка.

Силовые линии

Силовы'е ли'нии,линии, проведённые в каком-либо силовом поле (электрическом, магнитном, гравитационном), касательные к которым в каждой точке пространства совпадают по направлению с вектором, характеризующим данное поле (напряжённостью электрического или гравитационного полей, магнитной индукцией). Изображение силовых полей с помощью С. л. - частный случай изображения любых векторных полей с помощью линий тока . Т. к. напряжённости полей и магнитная индукция - однозначные функции точки, то через каждую точку пространства может проходить только одна С. л. Густота С. л. обычно выбирается так, чтобы через единичную площадку, перпендикулярную к С. л., проходило число С. л., пропорциональное напряжённости поля (или магнитной индукции) на этой площадке. Т. о., С. л. дают наглядную картину распределения поля в пространстве: густота С. л. и их направление характеризуют величину и направление напряжённости поля. С. л. электростатического поля всегда незамкнуты: они начинаются на положительных зарядах и оканчиваются на отрицательных (или уходят на бесконечность). С. л. вектора магнитной индукции всегда замкнуты, т. е. магнитное поле является вихревым. Железные опилки, помещенные в магнитное поле, выстраиваются вдоль С. л.; благодаря этому можно экспериментально определять вид С. л. магнитной индукции. Вихревое электрическое поле, порождаемое изменяющимся магнитным полем, также имеет замкнутые С. л.

Силоксаны

Силокса'ны,соединения, содержащие в молекулах группировку ; ангидриды кислот кремния. Наибольшее значение имеют органосилоксаны (см. Кремнийорганические соединения ) и полиорганосилоксаны (см. Кремнийорганические полимеры ).

Силос

Си'лос(исп. silos, множественное число от silo - подземное помещение, яма для хранения зерна), сочный корм, приготовленный консервированием без доступа воздуха (см. Силосование ). В зависимости от сырья различают С. кукурузный, картофельный, подсолнечниковый, викоовсяный и др. По питательности С. близок к силосуемой массе; в нём сохраняются каротин и витамин С, содержится несколько меньше водо-растворимых сахаров, но присутствуют органические кислоты - молочная (до 2%), уксусная (до 0,6%), в некоторых видах С. пропионовая, валериановая и др.; а при нарушении технологии силосования и неправильном хранении - масляная. Кормовые достоинства С. зависят от вида растений, фазы их развития к моменту уборки, технологии приготовления и условий хранения. В 100 кгподсолнечникового С. около 16 кормовых единиц, 1,4 кгпереваримого протеина, 350 гкальция, 160 гфосфора и 1500 мгкаротина; в 100 кгкукурузного С. - около 20 кормовых единиц, 1,4 кгпереваримого протеина, 150 гкальция, 50 г. фосфора, 1500 мгкаротина; в 100 кглюцернового С. - 18 кормовых единиц, 2,9 кгпереваримого протеина, 600 гкальция, 60 гфосфора и 2500 мгкаротина. Цвет хорошего С. светло-оливковый, желтоватый; тёмно-коричневый цвет имеет сильно прогревшийся С. Запах напоминает запах квашеной капусты, мочёных яблок, иногда фруктовый; при сильном самосогревании - свежеиспечённого хлеба или мёда, при порче - порченой селёдки, навозный. Структура С. должна быть рыхлой; мажущаяся консистенция указывает на порчу. При влажности около 70% pH ( водородный показатель ) хорошего С. - 4,2; при влажности 65% - допускается несколько выше. Скармливание С. улучшает пищеварение, способствует лучшему использованию других кормов, особенно грубых. Кормят С. всех с.-х. животных. В рационах молочного и откормочного крупного рогатого скота С. может составлять по питательности до 50%, в рационах свиней - до 20%. Для телят, свиней и птицы готовят специальный С.: для телят из бобовых трав, мягких злаков и бобово-злаковых травосмесей ранних фаз развития; для свиней - комбинированные, основными компонентами которых являются сахарная свёкла, морковь, фуражный картофель, бахчевые, початки кукурузы и др.; для птицы - из бобовых трав, витаминной тыквы, моркови, ботвы, корнеплодов сахарной свёклы и др. Скармливают С. зимой, а в засушливых районах и летом. В СССР в 1965 расход С. для скота и птицы составил 166,7 млн. т, в 1974 - 185,3 млн. т.

  Лит. см. при ст. Силосование .

  С. Я. Зафрен.

Силосные сооружения

Си'лосные сооруже'ния,сооружения для закладки и хранения силоса . Основное их назначение - защищать силосную массу от доступа воздуха, проникновения воды и промерзания. С. с. бывают в виде траншей, башен и ям. В СССР наиболее распространены траншеи. Их устраивают по возможности на возвышенном месте, на площадках, имеющих уклоны для стока поверхностных вод и удобных для подъезда транспортных средств. Иногда траншеи блокируют с животноводческими помещениями. При наличии на ферме кормоцеха или кормокухни С. с. располагают при них. Различают наземные, полузаглублённые и заглубленные траншеи. Наземные траншеи ( рис. 1 ) сооружают на участках с ровным рельефом и высоким уровнем грунтовых вод. Заглубленные и полузаглублённые траншеи ( рис. 2 ) устраивают на участках со связными грунтами (глина, суглинки), позволяющими сохранять угол естественного откоса грунта; для них пригодны площадки со сравнительно низким уровнем грунтовых вод. Размеры и конструкцию таких С. с. определяют с учётом средств механизации укладки и выемки силоса, а также поголовья животных. Ширина их должна быть не менее 2 длин транспортных, трамбовочных или разгрузочных машин. Высота С. с. наземного - не более 3 м, заглубленного и полузаглублённого - не менее 3 м. Длину принимают, исходя из потребной ёмкости, но не менее чем 2 ширины. Ёмкость от 250 до 3000 тсилоса. Основные материалы для стен и днища: бетон, железобетон, кирпич, бутовый камень; широко применяют сборные железобетонные элементы. Торцы наземных траншей после окончания закладки силоса закрывают деревянными щитами или тюками соломы. Стены их утепляют грунтом. Для обвалования выступающих над землёй стен полузаглублённых траншей используют вынутый грунт. Около С. с. устраивают канавы для стока атмосферных и сточных вод, подводят дороги с твёрдым покрытием и для въезда делают пандусы.

  Лит.:Нормы технологического проектирования силосохранилищ, М., 1965; Справочник зоотехника, 3 изд., ч. 2, М., 1969.

  Л. И. Кропп.

Рис. 1. Наземные траншеи: 1 - из железобетонных блоков; 2 - из бутового камня.

Рис. 2. Полузаглубленные траншеи: 1 - из кирпича; 2 - из железобетонных плит.

Силосование

Силосова'ние,заквашивание, консервирование кормов без доступа воздуха; наиболее распространённый способ заготовки сочных кормов. С. известно в Европе (Швеции, на территории Прибалтики) с 18 в. С начала 19 в. его стали применять в Германии для консервирования свекловичного жома. Во 2-й половине 19 в. распространилось во Франции (в связи с выращиванием зелёной массы кукурузы на корм), затем в США, Великобритании, Швейцарии. В России С. стали применять в конце 19 в. (сначала консервирование ботвы сахарной свёклы и жома, затем клевера, люцерны, луговых трав, кукурузы, кормовых корнеплодов и т. п.). Работа по С. складывается из следующих операций: скашивание растительной массы (или уборка корнеплодов, бахчевых и других культур), ее транспортировка, измельчение, загрузка в силосные сооружения, уплотнение и укрытие. Изоляция силосной массы от доступа воздуха прекращает развитие в ней аэробных бактерий и плесневых грибов, и образовавшаяся в результате жизнедеятельности молочнокислых бактерий молочная кислота, подкисляя корм (оптимальная величина pH - 4,2), подавляет анаэробные гнилостные, масляно-кислые и другие процессы.

  Источником питания молочнокислых бактерий служит сахар, поэтому содержание его в корме определяет силосуемость последнего. Легкосилосуемые растения - кукуруза, подсолнечник, однолетние и многолетние злаковые травы, их смеси с бобовыми травами, кормовая капуста, корнеплоды и их ботва, бахчевые и др.; трудносилосуемые - травы бобовых, ботва картофеля и др.; несилосуемые - крапива, сочная ботва помидоров, тыквы и др. Процесс С. регулируют подбором сырья по силосуемости. К трудносилосуемой массе добавляют различные химические вещества, предотвращающие развитие нежелательных микробиологических процессов. Избыточное количество сахара в силосуемой массе сбраживается дрожжами с образованием спирта и углекислоты. Влажность сырья не должна превышать 75% (при большей влажности добавляют сухие гуменные корма), температура - 35-37°С. При сильном разогревании теряется большое количество питательных веществ, разрушаются витамины. Измельчение растительного сырья вызывает обильное выделение клеточного сока, вследствие чего углеводы лучше используются молочнокислыми бактериями, быстрее накапливается молочная кислота. Измельченную массу легче смешивать с др. кормами, уплотнять, вынимать из хранилищ и раздавать животным. Силосуют зелёные растения в период, когда они дают наибольшее количество питательных веществ и не загрубели. См. также