Центральной процедурой в С. а. является построение обобщённой модели (или моделей), отображающей все факторы и взаимосвязи реальной ситуации, которые могут проявиться в процессе осуществления решения. Полученная модель исследуется с целью выяснения близости результата применения того или иного из альтернативных вариантов действий к желаемому, сравнительных затрат ресурсов по каждому из вариантов, степени чувствительности модели к различным нежелательным внешним воздействиям. С. а. опирается на ряд прикладных математических дисциплин и методов, широко используемых в современной деятельности управления: операций исследование,метод экспертных оценок, метод критического пути, очередей теорию и т. п. Техническая основа С. а. - современные вычислительные машины и информационные системы.

  Методологические средства, применяемые при решении проблем с помощью С. а., определяются в зависимости от того, преследуется ли единственная цель или некоторая совокупность целей, принимает ли решение одно лицо или несколько и т. д. Когда имеется одна достаточно четко выраженная цель, степень достижения которой можно оценить на основе одного критерия, используются методы математического программирования.Если степень достижения цели должна оцениваться на основе нескольких критериев, применяют аппарат теории полезности, с помощью которого проводится упорядочение критериев и определение важности каждого из них. Когда развитие событий определяется взаимодействием нескольких лиц или систем, из которых каждая преследует свои цели и принимает свои решения, используются методы игр теории.

 Несмотря на то, что диапазон применяемых в С. а. методов моделирования и решения проблем непрерывно расширяется, С. а. по своему характеру не тождествен научному исследованию: он не связан с задачами получения научного знания в собственном смысле, но представляет собой лишь применение методов науки к решению практических проблем управления и преследует цель рационализации процесса принятия решений, не исключая из этого процесса неизбежных в нём субъективных моментов.

  Лит.:Квейд Э., Анализ сложных систем, пер. с англ., М., 1969; Оптнер С. Л., Системный анализ для решения деловых и промышленных проблем, пер. с англ., М., 1969; Новое в теории и практике управления производством в США, пер. с англ., М., 1971; США: современные методы управления, М., 1971; Джонсон Р., Каст Ф., Розенцвейг Д., Системы и руководство, пер. с англ., М., 1971; Гвишиани Д. М., Организация и управление, 2 изд., М., 1972; Никаноров С. П., Системный анализ н системный подход, в кн.: Системные исследования. Ежегодник. 1971, М., 1972; Акофф Р. Л., Планирование в больших экономических системах, пер. с англ., М., 1972; Янг С., Системное управление организацией, пер. с англ., М., 1972; Юдин Б. Г., Новые элементы в технологии капиталистического управления, «Вопросы философии», 1973, № 1; Клиланд Д., Кинг В., Системный анализ и целевое управление, пер. с англ., М., 1974; Systems thinking, ed. by F. E. Emery, Harmondsworth, 1969; Rivett P., Principles of model building. The construction of models for decision analysis, [Chichester], 1972; Hoos 1. R., Systems analysis in public policy. A critique, Berk., 1974. см. также лит. при статьях Система , Системный подход .

  Б. Г. Юдин.

Системный подход

Систе'мный подхо'д,направление методологии специально-научного познания и социальной практики, в основе которого лежит исследование объектов как систем.С. п. способствует адекватной постановке проблем в конкретных науках и выработке эффективной стратегии их изучения. Методология, специфика С. п. определяется тем, что он ориентирует исследование на раскрытие целостности объекта и обеспечивающих её механизмов, на выявление многообразных типов связей сложного объекта и сведение их в единую теоретическую картину.

  Стремление к целостному охвату объекта изучения, к системной организации знания, всегда свойственное научному познанию, выступает как проблема уже в античной философии и науке. Но вплоть до середины 19 в. объяснение феномена целостности либо ограничивалось уровнем конкретных предметов (типа живого организма), внутренняя целостность которых была совершенно очевидна и не требовала специальных доказательств, либо переносилось в сферу спекулятивных натурфилософских построений; идея же системной организованности рассматривалась только применительно к знанию (в этой области и была накоплена богатая традиция, идущая ещё от стоиков и связанная с выявлением принципов логической организации систем знания). Подобному подходу к трактовке системности соответствовали и ведущие познавательные установки классической науки, прежде всего элементаризм, который исходил из необходимости отыскания простой, элементарной основы всякого объекта и, таким образом, требовал сведения сложного к простому, и механицизм,опиравшийся на постулат о едином принципе объяснения для всех сфер реальности и выдвигавший на роль такого принципа однозначный детерминизм.

 Задачи адекватного воспроизведения в знании сложных социальных и биологических объектов действительности впервые в научной форме были поставлены К. Марксом и Ч. Дарвином. «Капитал» К. Маркса послужил классическим образцом системного исследования общества как целого и различных сфер общественной жизни, а воплощённые в нём принципы изучения органичного целого ( восхождение от абстрактного к конкретному,единство анализа и синтеза, логического и исторического, выявление в объекте разнокачественных связей и их взаимодействия, синтез структурно-функциональных и генетических представлений об объекте и т. п.) явились важнейшим компонентом диалектико-материалистической методологии научного познания. Созданная Дарвином теория биологической эволюции не только ввела в естествознание идею развития,но и утвердила представление о реальности надорганизменных уровней организации жизни - важнейшую предпосылку системного мышления в биологии.

  В 20 в. С. п. занимает одно из ведущих мест в научном познании. Предпосылкой его проникновения в науку явился прежде всего переход к новому типу научных задач: в целом ряде областей науки центральное место начинают занимать проблемы организации и функционирования сложных объектов: познание начинает оперировать системами, границы и состав которых далеко не очевидны и требуют специального исследования в каждом отдельном случае. Во 2-й половине 20 в. аналогичные по типу задачи возникают и в социальной практике: техника всё более превращается в технику сложных систем,где многообразные технические и другие средства тесно связаны решением единой крупной задачи (например, космические проекты, человеко-машинные системы разного рода, см. Система «человек и машина» ) ;в социальном управлении вместо господствовавших прежде локальных, отраслевых задач и принципов ведущую роль играют крупные комплексные проблемы, требующие тесного взаимоувязывания экономических, социальных и иных аспектов общественной жизни (например, проблемы создания современных производственных комплексов, развития городов, мероприятия по охране природы).

  Изменение типа научных и практических задач сопровождается появлением общенаучных и специально-научных концепций, для которых характерно использование в той или иной форме основных идей С. п. Так, в учении В. И. Вернадского о биосфере и ноосфере научному познанию предложен новый тип объектов - глобальные системы. А. А. Богданов и ряд других исследователей начинают разработку теории организации, имеющей широкое значение. Выделение особого класса систем - информационных и управляющих - послужило фундаментом возникновения кибернетики.В биологии системные идеи используются в экологических исследованиях, при изучении высшей нервной деятельности, в анализе биологической организации, в систематике. Эти же идеи применяются в некоторых психологических концепциях; в частности, гештальтпсихология вводит оказавшееся плодотворным представление о психологических структурах, характеризующих деятельность по решению задач; культурно-историческая концепция Л. С. Выготского,развитая его учениками, основывает психологическое объяснение на понятии деятельности,истолковываемом в системном плане; в концепции Ж. Пиаже основополагающую роль играет представление о системе операций интеллекта. В экономической науке принципы С. п. получают распространение особенно в связи с задачами оптимального экономического планирования, которые требуют построения многокомпонентных моделей социальных систем разного уровня. В практике управления идеи С. п. кристаллизуются в методологических средствах системного анализа.

 Наряду с развитием С. п. «вширь», т. е. распространением его принципов на новые сферы научного знания и практики, с середины 20 в. начинается систематическая разработка этих принципов в методологическом плане. Первоначально методологические исследования группировались вокруг задач построения общей теории систем (первая программа её построения и сам термин были предложены Л. Берталанфи ) .Однако развитие исследований в этом направлении показало, что совокупность проблем методологии системного исследования существенно превосходит рамки задач общей теории систем. Для обозначения этой более широкой сферы методологических проблем и применяют термин «С. п.», который с 70-х гг. прочно вошёл в научный обиход (в научной литературе разных стран для обозначения этого понятия используют и другие термины - «системный анализ», «системные методы», «системно-структурный подход», «общая теория систем»; при этом за понятиями системного анализа и общей теории систем закреплено ещё и специфическое, более узкое значение; с учётом этого термин «С. п.» следует считать более точным, к тому же он наиболее распространён в литературе на русском языке).

  С. п. не существует в виде строгой методологической концепции: он выполняет свои эвристические функции, оставаясь не очень жестко связанной совокупностью познавательных принципов, основной смысл которых состоит в соответствующей ориентации конкретных исследований. Эта ориентация осуществляется двояко. Во-первых, содержательные принципы С. п. позволяют фиксировать недостаточность старых, традиционных предметов изучения для постановки и решения новых задач. Во-вторых, понятия и принципы С. п. существенно помогают строить новые предметы изучения, задавая структурные и типологические характеристики этих предметов и т. о. способствуя формированию конструктивных исследовательских программ.

  Значение критической функции новых принципов познания было убедительно продемонстрировано ещё Марксом, «Капитал» которого далеко не случайно носит подзаголовок «Критика политической экономии»: именно последовательная критика принципов классической политэкономии позволила раскрыть узость, недостаточность её исходной содержательно-концептуальной базы и расчистить путь для построения нового предмета этой науки, адекватного задачам изучения целостного функционирования и развития капиталистической экономики. Решение аналогичных задач выступает важным предварительным условием и при построении современных системных концепций. Например, переходу к конструированию современных технических систем и возникновению системотехники (которая выступила одной из важных конкретизаций С. п. в области современной техники) предшествовали осознание и критика подхода, господствовавшего на прежних ступенях развития техники, когда «единицей» конструирования было отдельное техническое средство (машина, отдельное орудие и т. д.), а не целостная функция, как это стало теперь. Условием разработки эффективных мероприятий по защите окружающей среды явилась весьма последовательная критика прежнего подхода к развитию производства, игнорировавшего системную связь общества и природы. Утверждение системных принципов в современной биологии сопровождалось критическим анализом односторонности узкоэволюционистского подхода к живой природе, не позволявшего зафиксировать важную самостоятельную роль факторов биология, организации. Т. о., эта функция С. п. носит конструктивный характер и связана прежде всего с обнаружением неполноты наличных предметов изучения, их несоответствия новым научным задачам, а также с выявлением недостаточности применяемых в той или иной отрасли науки и практики принципов объяснения и способов построения знания. Эффективное проведение этой работы предполагает последовательную реализацию принципа преемственности в развитии систем знания.

  Позитивная роль С. п. может быть сведена к следующим основным моментам. Во-первых, понятия и принципы С. п. выявляют более широкую познавательная реальность по сравнению с той, которая фиксировалась в прежнем знании (например, понятие биосферы в концепции Вернадского, понятие биогеоценоза в современной экологии, оптимальный подход в экономическом управлении и планировании).

  Во-вторых, С. п. содержит в себе новую по сравнению с предшествующими схему объяснения, в основе которой лежит поиск конкретных механизмов целостности объекта и выявление достаточно полной типологии его связей (см. Связь ) .Реализация этой функции обычно сопряжена с большими трудностями: для действительно эффективного исследования мало зафиксировать наличие в объекте разнотипных связей, необходимо ещё представить это многообразие в операциональном виде, т. е. изобразить различные связи как логически однородные, допускающие непосредственное сравнение и сопоставление (такая задача была успешно решена, например, в экологии благодаря введению представления о пищевых цепях сообществ, позволившего установить измеримые связи между их разнообразными элементами).

  В-третьих, из важного для С. п. тезиса о многообразии типов связей объекта следует, что сложный объект допускает не одно, а несколько расчленений. При этом критерием обоснованного выбора наиболее адекватного расчленения изучаемого объекта может служить то, насколько в результате удаётся построить операциональную «единицу» анализа (такую, например, как товар в экономическом учении Маркса или биогеоценоз в экологии), позволяющую фиксировать целостные свойства объекта, его структуру и динамику.

  Широта принципов и основных понятий С. п. ставит его в тесную связь с др. общенаучными методологическими направлениями современной науки. По своим познавательным установкам С. п. имеет особенно много общего со структурализмом и структурно-функциональным анализом,с которыми его роднит не только оперирование понятиями структуры и функции,но и акцент на изучение разнотипных связей объекта; вместе с тем принципы С. п. обладают более широким и более гибким содержанием, они не подверглись слишком жёсткой концептуализации и абсолютизации, как это имело место с некоторыми линиями в развитии указанных направлений.

  Будучи в принципе общенаучным направлением методологии и непосредственно не решая философских проблем, С. п. сталкивается с необходимостью философского истолкования своих положений. Сама история становления С. п. убедительно показывает, что он неразрывно связан с фундаментальными идеями материалистической диалектики, что нередко признают и многие из западных учёных. Именно диалектический материализм даёт наиболее адекватное философско-мировоззренческое истолкование С. п.: методологически оплодотворяя его, он вместе с тем обогащает собственное содержание; при этом, однако, между диалектикой и С. п. постоянно сохраняются отношения субординации, т. к. они представляют разные уровни методологии; С. п. выступает как конкретизация принципов диалектики.

  Лит.:Исследования по общей теории систем. Сб. пер., М., 1969; Кремянский В. И.. Структурные уровни живой материи, М., 1969; Проблемы методологии системного исследования, М., 1970; Блауберг И. В., Юдин Б. Г., Понятие целостности и его роль в научном познании, М., 1972; Блауберг И. В., Юдин Э. Г., Становление и сущность системного подхода, М., 1973; Тюхтин В. С., Отражение, системы, кибернетика, М., 1972; Садовский В. Н., Основания общей теории систем, М., 1974; Кузьмин В. П., Проблемы системности в теории и методологии К. Маркса, М., 1974; Системные исследования. Ежегодник, М., 1969-74; General systems theory, v. 1-20, N. Y., 1956-75; Churchman С. W., The systems approach, N. Y., [1968]; Bertalanffy L. von, General systems theory. Foundations, development, applications, 2 ed., N. Y., 1969; Trends in general systems theory, N. Y., 1972. См. также лит. при статьях Система , Системотехника , Системный анализ .

  И. В. Блауберг, Э. Г. Юдин.

Системотехника

Системоте'хника,научно-техническая дисциплина, охватывающая вопросы проектирования, создания, испытания и эксплуатации сложных систем (больших систем, систем большого масштаба, large scale systems). При разработке сложных систем возникают проблемы, относящиеся не только к свойствам их составных частей (элементов, подсистем), но также и к закономерностям функционирования объекта в целом (общесистемные проблемы); появляется широкий круг специфических задач, таких, как определение общей структуры системы, организация взаимодействия между подсистемами и элементами, учёт влияния внешней среды, выбор оптимальных режимов функционирования, оптимальное управление системой и т. д. По мере усложнения систем всё более значительное место отводится общесистемным вопросам, они и составляют основное содержание С. Научной, главным образом математической, базой С. служит сравнительно новая научная дисциплина - теория сложных систем.

  Для сложных систем характерна своеобразная организация проектирования - в две стадии: макропроектирование (внешнее проектирование), в процессе которого решаются функционально-структурные вопросы системы в целом, и микропроектирование (внутреннее проектирование), связанное с разработкой элементов системы как физичических единиц оборудования. С. объединяет точки зрения, подходы и методы по вопросам внешнего проектирования сложных систем.

  Макропроектирование начинается с формулировки проблемы, которая включает в себя по крайней мере 3 основных раздела: определение целей создания системы и круга решаемых ею задач; оценка действующих на систему факторов и определение их характеристик; выбор показателей эффективности системы. Цели и задачи системы определяют, исходя из потребностей их практического использования, с учётом тенденций и особенностей технического прогресса, а также народнохозяйственной целесообразности. Существенное значение при этом имеет опыт применения имеющихся аналогичных систем, а также чёткое понимание роли проектируемой системы в народном хозяйстве. Для оценки внешних и внутренних факторов, действующих на систему, помимо опыта эксплуатации аналогичных систем, используют статистические данные, полученные в результате специальных экспериментальных исследований. В качестве показателей эффективности выбирают числовые характеристики, оценивающие степень соответствия системы задачам, поставленным перед ней, например: для системы слепой посадки самолётов показателем эффективности может служить вероятность успешной посадки, для междугородной телефонной связи - среднее время ожидания соединения с абонентом, для производственного процесса - среднее число изделий, выпускаемых за смену, и т. д. Материалы по изучению целей и задач и результаты проведённых экспериментов используют для обоснования технического задания на разработку системы.

  В соответствии с техническим заданием намечают один или несколько вариантов системы, которые, по мнению проектировщиков, заслуживают дальнейшего рассмотрения и подробного исследования. Анализ вариантов системы ( системный анализ ) проводится по результатам математического моделирования.На практике обычно отдаётся предпочтение имитационному моделированию системы на ЦВМ. Имитационная модель представляет собой некий алгоритм,при помощи которого ЦВМ вырабатывает информацию, характеризующую поведение элементов системы и взаимодействие их в процессе функционирования. Получаемая информация позволяет определить показатели эффективности системы, обосновать её оптимальную структуру и составить рекомендации по совершенствованию исследуемых вариантов. Существуют и аналитические методы оценки свойств сложных систем, основанные на результатах применения теории вероятностных (случайных) процессов.

  Проектировщики сложных систем - специалисты широкого профиля, инженеры-системотехники, обладающие достаточными знаниями в конкретной области техники (например, в машиностроении, электронике, пищевой промышленности, авиации), имеющие повышенную математическую подготовку, а также знающие основы вычислительной техники, автоматизации управления, исследования операций и особенности их практического применения. Помимо них в группу внешнего проектирования сложных систем обычно включают специалистов по системному анализу и математическому моделированию, а также инженеров, способных организовать взаимодействие между элементами системы.

  Существенные особенности имеют испытания сложных систем. Натурный эксперимент в чистом виде используется только для оценки параметров важнейших элементов системы. В комплексных же испытаниях системы значительную роль играют имитационные модели. В частности, на их основе строят имитаторы воздействий внешней среды, генераторы фиктивных сигналов и сообщений, формируют реализации процессов функционирования элементов, участие которых в натурном эксперименте нецелесообразно.

  Лит.:Гуд Г.-Х., Макол Р.-Э., Системотехника. Введение в проектирование больших систем, пер. с англ., М., 1962; Справочник по системотехнике, пер. с англ., М., 1970; Бусленко Н. П., Калашников В. В., Коваленко И. Н., Лекции по теории сложных систем, М., 1973.

  Н. П. Бусленко.

Системы мира

Систе'мы ми'ра,термин, употребляемый в астрономии для обозначения представлений о строении системы небесных тел - Земля, Луна, Солнце, планеты. Попытки создания С. м. предпринимались в Древней Греции уже в 6 в. до н. э. (Фалес, Анаксимандр, Анаксимен). Исторически наибольшее значение имела геоцентрическая С. м., разработанная древнегреческими учёными Аристотелем (4 в. до н. э.) и Птолемеем (2 в. н. э.), и гелиоцентрическая С. м. польского астронома Н. Коперника (1-я половина 16 в.).

  В геоцентрической С. м., принимавшейся за истинную в течение около 2000 лет, нашёл яркое воплощение антропоцентризм в форме идеи о центральном положении Земли во Вселенной. В системе мира Аристотеля неподвижная Земля окружена снаружи семью «небесами», принадлежащими «планетам»: Луне, Меркурию, Венере, Солнцу, Марсу, Юпитеру и Сатурну. Восьмое «небо» занимают звёзды. На девятом - находится «дух», или «первый двигатель», который каким-то непостижимым образом сообщает движение всем небесам. Для того чтобы объяснить довольно сложное видимое движение планет по небу, Аристотель использовал идею Евдокса Книдского (4 в. до н. э.) о системе концентрических вращающихся прозрачных сфер. Всего, согласно его взглядам, имелось 56 сфер. Эта сложность объяснения связана с тем, что движение планет Аристотель, следуя своему учителю Платону (5-4 вв. до н. э.), стремился воспроизвести как результат совершенно равномерного вращения нескольких вложенных друг в друга сфер. Взаимный наклон осей и скорости вращения сфер подбирались для каждой планеты отдельно.

  Во 2 в. до н. э. Гиппарх заменил систему сфер системой эпициклов, идею о которых он заимствовал у Аполлония Пергского (около 200 до н. э.). Система мира Гиппарха была использована и получила законченное развитие в «Альмагесте» Птолемея. В теории эпициклов вместо вращающихся сфер введено равномерное движение планет по окружностям, называемым эпициклами. В то же время сами эпициклы предполагаются перемещающимися т. о., что их центры движутся по другим окружностям, т. н. деферентам. В большинстве случаев одного эпицикла оказывалось недостаточно для представления наблюдаемого сложного движения планет с удовлетворительной точностью и тогда вводился второй, третий и т. д. эпициклы. При этом считалось, что планета движется по последнему из них, а центр каждого эпицикла движется по окружности предыдущего. Углы наклона плоскостей деферентов и эпициклов, их относительные радиусы и угловые скорости перемещения по ним подбирались так, чтобы наилучшим образом описывать видимые движения планет по небу. В течение всего средневековья геоцентрическая С. м. провозглашалась католической церковью как единственно соответствующая христианскому вероучению. В средние века к первоначальным девяти небесным сферам прибавляли ещё одну или две сферы, самая крайняя из которых называется эмпиреем и объявлялась местопребыванием бога и «праведников».