В живой природе (как и в неживой) из-за различных ограничений обычно встречается значительно меньшее число видов С., чем возможно теоретически. Например, на низших этапах развития живой природы встречаются представители всех классов точечной С. - вплоть до организмов, характеризующихся С. правильных многогранников и шара (см. рис. 3 ). Однако на более высоких ступенях эволюции встречаются растения и животные в основном т. н. аксиальной (вида n) и актиноморфной (вида n( m) С. (в обоих случаях nможет принимать значения от 1 до Ґ). Биообъекты с аксиальной С. (см. рис. 1 ) характеризуются лишь осью С. порядка n. Биообъекты сактиноморфной С. (см. рис. 2 ) характеризуются одной осью порядка nи пересекающимися по этой оси плоскостями m. В живой природе наиболее распространены С. вида n =1 и 1Ч m = m, называется соответственно асимметрией и двусторонней, или билатеральной, С. Асимметрия характерна для листьев большинства видов растений, двусторонняя С. - до известной степени для внешней формы тела человека, позвоночных животных и многих беспозвоночных. У подвижных организмов такая С., по-видимому, связана с различиями их движении вверх-вниз и вперёд-назад, тогда как их движения направо-налево одинаковы. Нарушение у них билатеральной С. неизбежно привело бы к торможению движения одной из сторон и превращению поступательного движения в круговое. В 50-70-х гг. 20 в. интенсивному изучению (прежде всего в СССР) подверглись т. н. диссимметрические биообъекты ( рис. 4 ). Последние могут существовать по крайней мере в двух модификациях - в форме оригинала и его зеркального отражения (антипода). При этом одна из этих форм (неважно какая) называется правой или D (от лат. dextro), другая - левой или L (от лат. laevo). При изучении формы и строения D- и L-биообъектов была развита теория диссимметризующих факторов, доказывающая возможность для любого D- или L-объекта двух и более (до бесконечного числа) модификаций (см. также рис. 5 ); одновременно в ней содержались и формулы для определения числа и вида последних. Эта теория привела к открытию т. н. биологической изомерии (разных биообъектов одного состава; на рис. 5 изображены 16 изомеров листа липы).
При изучении встречаемости биообъектов было установлено, что в одних случаях преобладают D-, в других L-формы, в третьих они представлены одинаково часто. Бешаном и Пастером (40-е гг. 19 в.), а в 30-х гг. 20 в. советским учёным Г. Ф. Гаузе и другими было показано, что клетки организмов построены только или преимущественно из L-amинокислот, L-белков, D-дезоксирибонуклеиновых кислот, D-сахаров, L-алкалоидов, D- и L-терпенов и т. д. Столь фундаментальная и характерная черта живых клеток, названная Пастером диссимметрией протоплазмы, обеспечивает клетке, как было установлено в 20 в., более активный обмен веществ и поддерживается посредством сложных биологических и физико-химических механизмов, возникших в процессе эволюции. Сов. учёный В. В. Алпатов в 1952 на 204 видах сосудистых растений установил, что 93,2% видов растений относятся к типу с L-, 1,5% - с D-ходом винтообразных утолщений стенок сосудов, 5,3% видов - к типу рацемическому (число D-сосудов примерно равно числу L-сосудов).
При изучении D- и L-биообъектов было установлено, что равноправие между D-и L-формами в ряде случаев нарушено из-за различия их физиологических, биохимических и др. свойств. Подобная особенность живой природы была названа диссимметрией жизни. Так, возбуждающее влияние L-amинокислот на движение плазмы в растительных клетках в десятки и сотни раз превосходит такое же действие их D-форм. Многие антибиотики (пенициллин, грамицидин и др.), содержащие D-amинокислоты, обладают большей бактерицидностью, чем их формы c L-amинокислотами. Чаще встречающиеся винтообразные L-kopнеплоды сахарной свёклы на 8-44% (в зависимости от сорта) тяжелее и содержат на 0,5-1% больше сахара, чем D-kopнеплоды.
Изучение наследования признаков у D- и L-форм показало, что их правизна или левизна может быть наследственной, ненаследственной или имеет характер длительной модификации . Это означает, что по крайней мере в ряде случаев правизну-левизну организмов и их частей можно изменить действием мутагенных или немутагенных химических соединений. В частности, D-штаммы (по морфологии колоний) микроорганизма Bacillus mycoides при выращивании их на агаре с D-сахарозой, L-днгитонином, D-винной кислотой можно превратить в L-штаммы, а L-штаммы можно превратить в D-штаммы, выращивая их на агаре с L-винной кислотой и D-аминокислотами. В природе взаимопревращения D- и L-форм могут происходить и без вмешательства человека. При этом смена видов С. в эволюции происходила не только у диссимметрических организмов. В результате возникли многочисленные эволюционные ряды С., специфичные для тех или иных ветвей древа жизни.
Структурная С. биосистем изучается также с точки зрения более общих типов С. - цветной С., С. подобия, антисимметрии и др.
Разработка учения о С. биообъектов позволит углубить представления как об их свойствах и функциях, так и о происхождении и сущности жизни .
Лит.:Гаузе Г. Ф., Асимметрия протоплазмы, М. - Л., 1940; Вайнштейн Б. К., Дифракция рентгеновых лучей на цепных молекулах, М., 1963; Беклемишев В. Н., Основы сравнительной анатомии беспозвоночных, 3 изд., т. 1-2, М., 1964; Урманцев Ю. А., Симметрия природы и природа симметрии, М., 1974; Ludwig W., Das Rechts-Links-Problem im Tierreich und beim Menschen..., B. - Hdib. - N. Y., 1970; Bentley R., Molecular asymmetry in biology, v. 1-2, N. Y., 1969-70.
Ю. А. Урманцев.
Рис. 3. Биообъекты с совершенной точечной симметрией. Радиолярии: а - шарообразная Ethmosphaera polysyphonia, содержащая бесконечное число осей бесконечного порядка + бесконечное число плоскостей симметрии + центр симметрии; б - кубические Hexastylus marginatus и Lithocubus geometricus, характеризующиеся симметрией куба; в - додекаэдрическая Circorhegma dodecahedra, характеризующаяся симметрией правильных многогранников - додекаэдра и икосаэдра.
Рис. 4. Диссимметрические D- и L-биообъекты: а - цветки анютиных глазок; б - раковины прудовика; в - молекулы винной кислоты; г - листья бегонии.
Рис. 2. Актиноморфная симметрия; а - бабочка; б - лист кислицы; симметрии соответственно 1Чm, 3Чm. Бабочке свойственна двусторонняя, или билатеральная, симметрия.
Рис. 5. Лист липы, иллюстрирующий возможность существования диссимметрических объектов более чем в двух (в данном случае в 16) модификациях. Для листа липы диссфакторы - это 4 морфологических признака: преимущественные ширина (ш) и длина (д), асимметричные жилкование (ж) и загиб главной жилки (г). Так как каждый из диссфакторов может проявляться двояко - в (+)- или ( - )-формах - и соответственно приводить к D- или L-мoдификациям, то число возможных модификаций будет 2 4= 16, а не две.
Рис. 1. Аксиальная симметрия: а - лист плюща; б - медуза Aurelia insulinda; в - цветок флокса. При повороте этих фигур вокруг оси симметрии равные части каждого из них совпадут друг с другом соответственно 1, 4, 5 раз (оси 1, 4, 5-го порядка). Лист плюща асимметричен.
Рис. 3д. Биообъекты с совершенной точечной симметрией. Радиолярии: модель аденовируса в форме икосаэдра.
Рис. 3г. Биообъекты с совершенной точечной симметрией. Радиолярии: частица аденовируса в форме икосаэдра.
Симметрия (в математике)
Симме'трия(от греч. symmetria - соразмерность) в математике,
1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости a в пространстве (относительно прямой ана плоскости), - преобразование пространства (плоскости), при котором каждая точка Мпереходит в точку M'такую, что отрезок MM'перпендикулярен плоскости a (прямой а) и делится ею пополам. Плоскость a (прямая а) называется плоскостью (осью) С.
Отражение - пример ортогонального преобразования , изменяющего ориентацию (в отличие от собственного движения). Любое ортогональное преобразование можно осуществить последовательным выполнением конечного числа отражений - этот факт играет существенную роль в исследовании С. геометрических фигур.
2) Симметрия (в широком смысле) - свойство геометрической фигуры Ф, характеризующее некоторую правильность формы Ф, неизменность её при действии движений и отражений. Точнее, фигура Фобладает С. (симметрична), если существует нетождественное ортогональное преобразование, переводящее эту фигуру в себя. Совокупность всех ортогональных преобразований, совмещающих фигуру Фс самой собой, является группой , называемой группой симметрии этой фигуры (иногда сами эти преобразования называются симметриями).
Так, плоская фигура, преобразующаяся в себя при отражении, симметрична относительно прямой - оси С. ( рис. 1 ); здесь группа симметрии состоит из двух элементов. Если фигура Фна плоскости такова, что повороты относительно какой-либо точки О на угол 360°/ n, n- целое число ³ 2, переводят её в себя, то Фобладает С. n-го порядка относительно точки О- центра С. Примером таких фигур являются правильные многоугольники ( рис. 2 ); группа С. здесь - т. н. циклическая группа n-го порядка. Окружность обладает С. бесконечного порядка (поскольку совмещается с собой поворотом на любой угол).
Простейшими видами пространственной С., помимо С., порожденной отражениями, являются центральная С., осевая С. и С. переноса.
а) В случае центральной симметрии (инверсии) относительно точки О фигура Ф совмещается сама с собой после последовательных отражений от трёх взаимно перпендикулярных плоскостей, другими словами, точка О - середина отрезка, соединяющего симметричные точки Ф ( рис. 3 ). б) В случае осевой симметрии, или С. относительно прямой n-го порядка, фигура накладывается на себя вращением вокруг некоторой прямой (оси С.) на угол 360°/ n. Например, куб имеет прямую ABосью С. третьего порядка, а прямую CD- осью С. четвёртого порядка ( рис. 3 ); вообще, правильные и полуправильные многогранники симметричны относительно ряда прямых. Расположение, количество и порядок осей С. играют важную роль в кристаллографии (см. Симметрия кристаллов ), в) Фигура, накладывающаяся на себя последовательным вращением на угол 360°/2 kвокруг прямой ABи отражением в плоскости, перпендикулярной к ней, имеет зеркально-осевую С. Прямая AB, называется зеркально-поворотной осью С. порядка 2 k, является осью С. порядка k( рис. 4 ). Зеркально-осевая С. порядка 2 равносильна центральной С. г) В случае симметрии переноса фигура накладывается на себя переносом вдоль некоторой прямой (оси переноса) на какой-либо отрезок. Например, фигура с единственной осью переноса обладает бесконечным множеством плоскостей С. (поскольку любой перенос можно осуществить двумя последовательными отражениями от плоскостей, перпендикулярных оси переноса) ( рис. 5 ). Фигуры, имеющие несколько осей переноса, играют важную роль при исследовании кристаллических решёток .
В искусстве С. получила распространение как один из видов гармоничной композиции . Она свойственна произведениям архитектуры (являясь непременным качеством если не всего сооружения в целом, то его частей и деталей - плана, фасада, колонн, капителей и т. д.) и декоративно-прикладного искусства. С. используется также в качестве основного приёма построения бордюров и орнаментов (плоских фигур, обладающих соответственно одной или несколькими С. переноса в сочетании с отражениями) ( рис. 6 , 7 ).
Комбинации С., порожденные отражениями и вращениями (исчерпывающие все виды С. геометрических фигур), а также переносами, представляют интерес и являются предметом исследования в различных областях естествознания. Например, винтовая С., осуществляемая поворотом на некоторый угол вокруг оси, дополненным переносом вдоль той же оси, наблюдается в расположении листьев у растений ( рис. 8 ) (подробнее см. в ст. Симметрия в биологии). С. конфигурации молекул, сказывающаяся на их физических и химических характеристиках, имеет значение при теоретическом анализе строения соединений, их свойств и поведения в различных реакциях (см. Симметрия в химии). Наконец, в физических науках вообще, помимо уже указанной геометрической С. кристаллов и решёток, приобретают важное значение представления о С. в общем смысле (см. ниже). Так, симметричность физического пространства-времени, выражающаяся в его однородности и изотропности (см. Относительности теория ), позволяет установить т. н. сохранения законы ; обобщённая С. играет существенную роль в образовании атомных спектров и в классификации элементарных частиц (см. Симметрия в физике).
3) Симметрия (в общем смысле) означает инвариантность структуры математического (или физического) объекта относительно его преобразований. Например, С. законов теории относительности определяется инвариантностью их относительно Лоренца преобразований . Определение совокупности преобразований, оставляющих без изменения все структурные соотношения объекта, т. е. определение группы Gего автоморфизмов, стало руководящим принципом современной математики и физики, позволяющим глубоко проникнуть во внутреннее строение объекта в целом и его частей.
Поскольку такой объект можно представить элементами некоторого пространства Р, наделённого соответствующей характерной для него структурой, постольку преобразования объекта являются преобразованиями Р. Т. о. получается представление группы Gв группе преобразований Р(или просто в Р), а исследование С. объекта сводится к исследованию действия Gна Ри отысканию инвариантов этого действия. Точно так же С. физических законов, управляющих исследуемым объектом и обычно описывающихся уравнениями, которым удовлетворяют элементы пространства Р, определяется действием Gна такие уравнения.
Так, например, если некоторое уравнение линейно на линейном же пространстве Ри остаётся инвариантным при преобразованиях некоторой группы G, то каждому элементу gиз Gсоответствует линейное преобразование T gв линейном пространстве Rрешений этого уравнения. Соответствие g® T gявляется линейным представлением Gи знание всех таких её представлений позволяет устанавливать различные свойства решений, а также помогает находить во многих случаях (из «соображений симметрии») и сами решения. Этим, в частности, объясняется необходимость для математики и физики развитой теории линейных представлений групп. Конкретные примеры см. в ст. Симметрия в физике.
Лит.:Шубников А. В., Симметрия. (Законы симметрии и их применение в науке, технике и прикладном искусстве), М. - Л., 1940; Кокстер Г. С. М., Введение в геометрию, пер. с англ., М., 1966; Вейль Г., Симметрия, пер. с англ., М., 1968; Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.
М. И. Войцеховский.
Рис. 2. Звездчатый правильный многоугольник, обладающий симметрией восьмого порядка относительно своего центра.
Рис. 3. Куб, имеющий прямую AB осью симметрии третьего порядка, прямую CD - осью симметрии четвёртого порядка, точку О - центром симметрии. Точки М и M' куба симметричны как относительно осей AB и CD, так и относительно центра О.
Рис. 5. Фигуры, обладающие симметрией переноса: верхняя фигура имеет также бесконечное множество вертикальных осей симметрии (второго порядка), т. е. плоскостей отражения
Рис. 7. Орнамент; осью переноса является любая прямая, соединяющая центры двух каких-либо завитков.
Рис. 4. Многогранник, обладающий зеркально-осевой симметрией; прямая AB - зеркально-поворотная ось четвёртого порядка.
Рис. 8. Фигура, обладающая винтовой симметрией, которая осуществляется переносом вдоль вертикальной оси, дополненным вращением вокруг неё на 90°.
Рис. 1. Плоская фигура, симметричная относительно прямой АВ; точка М преобразуется в М’ при отражении (зеркальном) относительно АВ.
Рис. 6. Бордюр, накладывающийся на себя или переносом на некоторый отрезок вдоль горизонтальной оси, или отражением (зеркальным) относительно той же оси и переносом вдоль неё на отрезок, вдвое меньший.
Симметрия (в физике)
Симметри'яв физике. Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях (преобразованиях), которым может быть подвергнута система, то говорят, что эти законы обладают С. (или инвариантны) относительно данных преобразований. В математическом отношении преобразования С. составляют группу .
Опыт показывает, что физические законы симметричны относительно следующих наиболее общих преобразований.
Непрерывные преобразования
1) Перенос (сдвиг) системы как целого в пространстве. Это и последующие пространственно-временные преобразования можно понимать в двух смыслах: как активное преобразование - реальный перенос физической системы относительно выбранной системы отсчёта или как пассивное преобразование - параллельный перенос системы отсчёта. С. физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства, т. е. отсутствие в пространстве каких-либо выделенных точек (однородность пространства).
2) Поворот системы как целого в пространстве. С. физических законов относительно этого преобразования означает эквивалентность всех направлений в пространстве (изотропию пространства).
3) Изменение начала отсчёта времени (сдвиг во времени). С. относительно этого преобразования означает, что физические законы не меняются со временем.
4) Переход к системе отсчёта, движущейся относительно данной системы с постоянной (по направлению и величине) скоростью. С. относительно этого преобразования означает, в частности, эквивалентность всех инерциальных систем отсчёта (см. Относительности теория ).
5) Калибровочные преобразования. Законы, описывающие взаимодействия частиц, обладающих каким-либо зарядом ( электрическим зарядом , барионным зарядом , лептонным зарядом , гиперзарядом ), симметричны относительно калибровочных преобразований 1-го рода. Эти преобразования заключаются в том, что волновые функции всех частиц могут быть одновременно умножены на произвольный фазовый множитель:
, , (1)
где y j - волновая функция частицы j, - комплексно сопряжённая ей функция, z j- соответствующий частице заряд, выраженный в единицах элементарного заряда (например, элементарного электрического заряда е), b - произвольный числовой множитель.
Наряду с этим электромагнитные взаимодействия симметричны относительно калибровочных (градиентных) преобразований 2-го рода для потенциалов электромагнитного поля ( А, j):
А® А + grad f, , (2)
где f( x, у, z, t) - произвольная функция координат ( х, у, z) и времени ( t), с- скорость света. Чтобы преобразования (1) и (2) в случае электромагнитных полей выполнялись одновременно, следует обобщить калибровочные преобразования 1-го рода: необходимо потребовать, чтобы законы взаимодействия были симметричны относительно преобразований (1) с величиной b, являющейся произвольной функцией координат и времени: , где - Планка постоянная. Связь калибровочных преобразований 1-го и 2-го рода для электромагнитных взаимодействий обусловлена двоякой ролью электрического заряда: с одной стороны, электрический заряд является сохраняющейся величиной, а с другой - он выступает как константа взаимодействия, характеризующая связь электромагнитного поля с заряженными частицами.
Преобразования (1) отвечают законам сохранения различных зарядов (см. ниже), а также некоторым внутренним С. взаимодействия. Если заряды являются не только сохраняющимися величинами, но и источниками полей (как электрический заряд), то соответствующие им поля должны быть также калибровочными полями (аналогично электромагнитным полям), а преобразования (1) обобщаются на случай, когда величины b являются произвольными функциями координат и времени (и даже операторами , преобразующими состояния внутренней С.). Такой подход в теории взаимодействующих полей приводит к различным калибровочным теориям сильных и слабых взаимодействий (т. н. Янга - Милса теория).
6) Изотопическая инвариантность сильных взаимодействий. Сильные взаимодействия симметричны относительно поворотов в особом «изотоническом пространстве». Одним из проявлений этой С. является зарядовая независимость ядерных сил , заключающаяся в равенстве сильных взаимодействий нейтронов с нейтронами, протонов с протонами и нейтронов с протонами (если они находятся соответственно в одинаковых состояниях). Изотопическая инвариантность является приближённой С., нарушаемой электромагнитными взаимодействиями. Она представляет собой часть более широкой приближённой С. сильных взаимодействий - SU(3) -C. (см. Сильные взаимодействия ).
Дискретные преобразования
Перечисленные выше типы С. характеризуются параметрами, которые могут непрерывно изменяться в некоторой области значений (например, сдвиг в пространстве характеризуется тремя параметрами смещения вдоль каждой из координатных осей, поворот - тремя углами вращения вокруг этих осей и т. д.). Наряду с непрерывными С. большое значение в физике имеют дискретные С. Основные из них следующие.
1) Пространственная инверсия ( Р). Относительно этого преобразования симметричны процессы, вызванные сильным и электромагнитным взаимодействиями. Указанные процессы одинаково описываются в двух различных декартовых системах координат, получаемых одна из другой изменением направлений осей координат на противоположные (т. н. переход от «правой» к «левой» системе координат). Это преобразование может быть получено также зеркальным отражением относительно трёх взаимно перпендикулярных плоскостей; поэтому С. по отношению к пространственной инверсии называемой обычно зеркальной С. Наличие зеркальной С. означает, что если в природе осуществляется какой-либо процесс, обусловленный сильным или электромагнитным взаимодействием, то может осуществиться и другой процесс, протекающий с той же вероятностью и являющийся как бы «зеркальным изображением» первого. При этом физические величины, характеризующие оба процесса, будут связаны определённым образом. Например, скорости частиц и напряжённости электрического поля изменят направления на противоположные, а направления напряжённости магнитного поля и момента количества движения не изменятся.
Нарушением такой С. представляются явления (например, правое или левое вращение плоскости поляризации света), происходящие в веществах-изомерах (оптическая изомерия ). В действительности, однако, зеркальная С. в таких явлениях не нарушена: она проявляется в том, что для любого, например левовращающего, вещества существует аналогичное по химическому составу вещество, молекулы которого являются «зеркальным изображением» молекул первого и которое будет правовращающим.
Нарушение зеркальной С. наблюдается в процессах, вызванных слабым взаимодействием .
2) Преобразование замены всех частиц на античастицы ( зарядовое сопряжение , С). С. относительно этого преобразования также имеет место для процессов, происходящих в результате сильного и электромагнитного взаимодействий, и нарушается в процессах слабого взаимодействия. При преобразовании зарядового сопряжения меняются на противоположные значения заряды частиц, напряжённости электрического и магнитного полей.
3) Последовательное проведение (произведение) преобразований инверсии и зарядового сопряжения ( комбинированная инверсия ,