сек. Перенапряжения второго вида называются грозовыми, их длительность не превышает десятитысячных долей сек.

  Наиболее распространённым в электрических системах служит обычный воздух, окружающий провода линий электропередачи и другие элементы внешней изоляции электрических систем (например, опорные, проходные и подвесные изоляторы). Удельная электрическая прочность воздуха (отношение пробивного напряжения к расстоянию между электродами) резко падает с увеличением расстояния между электродами ( рис. 2 ), поэтому габариты линий электропередачи должны расти быстрее, чем растёт номинальное напряжение. Это обстоятельство может положить предел увеличению рабочих напряжений воздушных линий электропередачи, который, по-видимому, составит около 1500 квпо отношению к земле (это соответствует номинальному напряжению 2000 квдля трёхфазных линий переменного тока и 3000 квдля линий постоянного тока). При таком напряжении по каждой линии можно передать электрическую мощность нескольких Гвтна расстояние порядка 1000 кми более. Дальнейшее повышение передаваемой мощности будет, по-видимому, достигнуто путём применения линий электропередачи нового типа, среди которых наиболее перспективны , сверхпроводящие, или криогенные, кабельные линии, а также передача электрической энергии по волноводам при частотах порядка десятков Ггц.

  Электрическая прочность воздуха сильно зависит от продолжительности воздействия только при малых отрезках времени (меньше 100 мксек), поэтому она приблизительно одинакова при грозовых и внутренних перенапряжениях. Это положение справедливо для сухих и чистых изоляторов, находящихся в воздушной среде. Если же поверхность изоляторов загрязнена и увлажнена дождём или туманом, то электрическая прочность изолятора снижается и зависит от длительности воздействия напряжения. Поэтому воздушные промежутки на линиях электропередачи (например, расстояние между проводом и землёй или элементами опоры) определяются только перенапряжениями, а количество и тип изоляторов, на которых подвешиваются провода, - также и рабочим напряжением. Величина перенапряжений, степень загрязнения изоляторов, сила ветра, который отклоняет провода от нормального положения и приближает их к опоре, меняются в широких пределах. Поэтому выбор изоляции для линий электропередачи осуществляется с применением методов математической статистики.

  Внутреннюю изоляцию электрических машин и аппаратов (например, изоляцию обмоток трансформатора относительно заземлённого сердечника или корпуса) обычно изготовляют с применением комбинации различных изоляционных материалов. Наиболее распространено сочетание изоляционного минерального масла и изделий из целлюлозы (бумага, электрокартон, прессшпан, бакелит и др.). При конструировании изоляторов принимают меры для выравнивания электрического поля путём, например, применения электродов закруглённой формы, использования различия в величинах диэлектрической проницаемости изоляционных материалов, принудительного распределения напряжения по объёму изоляции. Кратковременная удельная электрическая прочность внутренней изоляции, так же как и воздуха, уменьшается при увеличении расстояния между электродами, поэтому обычно выгодно разбивать изоляцию на ряд последовательно соединённых относительно тонких слоёв. Длительная электрическая прочность внутренней изоляции определяет срок её службы при нормальных эксплуатационных условиях. Основными факторами, приводящими к постепенному ухудшению первоначальных свойств изоляции, являются механические воздействия (например, вследствие электродинамических усилий между токоведущими частями при коротких замыканиях), повышение температуры, увлажнение и загрязнение, воздействие перенапряжений. Особое место занимают частичные разряды в образующихся в толще изоляции газовых включениях, которые могут оказаться одной из основных причин старения изоляции. Под нормальными эксплуатационными условиями понимается ограничение перечисленных выше факторов до определённого уровня, обеспечивающего расчётный срок службы изоляции. Для увеличения срока службы изоляции большое значение имеет система профилактических испытаний изоляции, во время которых путём измерения ряда характерных величин (сопротивление утечки, тангенс угла диэлектрических потерь, ёмкость при двух частотах или при двух температурах, интенсивность частичных разрядов и др.) можно оценить состояние изоляции и своевременно определять сроки и характер необходимого ремонта. В систему профилактических испытаний входит также испытание повышенным напряжением, обязательное после возвращения изоляции из ремонта.

  Необходимые габариты внутренней изоляции определяются уровнем воздействующих на неё грозовых и внутренних перенапряжений, т. е. её кратковременной электрической прочностью, которая для установок с номинальным напряжением 220-500 квприблизительно в 2,5-3 раза превышает максимальное рабочее напряжение. Так как перенапряжения могут иметь и большую кратность, одна из основных задач В. н. т. - исследование перенапряжений и ограничение их амплитуды, обычно достигаемое применением грозовых и коммутационных вентильных разрядников в сочетании с другими мероприятиями. В системах сверхвысокого напряжения (1200 кви выше) перенапряжения будут ограничивать до значений, в 1,5-1,8 раза превышающих номинальное напряжение. При этом на габариты изоляции основное влияние будет оказывать её длительная прочность, т. е. постепенное старение изоляции под действием рабочего напряжения и перечисленных выше внешних воздействий. В этой связи большой интерес представляет возможность применения в качестве внутренней изоляции сжатого газа, обладающего минимальными диэлектрическими потерями и в значительно меньшей степени подверженного старению. Наиболее перспективными изоляционными газами считаются элегаз (шестифтористая сера Sf 6) и фреон (дихлордифторметан CCI 2F 2), электрическая прочность которых приблизительно в 2,5 раза больше, чем у воздуха. При давлении в несколько десятых Мн/м 2(1 Мн/м 2= 10 кгс/см 2) кратковременная электрическая прочность фреона и элегаза не ниже, чем у таких традиционных диэлектриков, как фарфор и трансформаторное масло ( рис. 3 ). Созданы распределительные устройства напряжением до 220 кв, в которых всё оборудование работает в атмосфере элегаза при давлении 0,3-0,4 Мн/м 2.

  Такие устройства очень хорошо сочетаются с газонаполненными кабельными линиями, применение их перспективно, особенно в густонаселённых районах.

  Другая важнейшая проблема В. н. т. - исследование коронного разряда на проводах воздушных линий электропередачи, который сопровождается потерями энергии и высокочастотным излучением, создающим помехи радиоприёму вблизи линии. Так как интенсивность коронного разряда определяется величиной напряжённости электрического поля на поверхности проводов, потери на корону и радиопомехи уменьшаются при увеличении диаметра провода. С этой же целью часто применяют вместо одиночных так называемые расщеплённые провода. На линиях с напряжением от 330 до 750 квприменяют расщеплённые провода, состоящие соответственно из 2, 3 и 4 отдельных проводников, находящихся друг от друга на расстоянии до 50 см. На линиях 1100-1200 квпеременного тока, по-видимому, будут применять расщеплённые провода, состоящие из 6 или 8 отдельных проводников, разнесённых на значительное расстояние для уменьшения волнового сопротивления линии и увеличения её пропускной способности.

  При постоянном токе и уровень радиопомех существенно ниже, чем при переменном, и в этом заключается одно из преимуществ линий передачи постоянного тока. Однако основное их преимущество - в возможности связи несинхронно работающих электрических систем, благодаря чему отпадает проблема устойчивости; дальность передачи электроэнергии при постоянном напряжении ограничивается только экономическими соображениями. Поэтому первая в Советском Союзе сверхдальняя линия электропередачи Экибастуз - Центр проектируется на постоянном токе напряжением 1500 кв(±750 квотносительно земли). Главная трудность освоения электропередачи постоянного тока связана с созданием выпрямителей и инверторов, при изготовлении которых применяют мощные управляемые полупроводниковые приборы или дуговые вентили. В перспективе линии постоянного тока создадут основной костяк Единой высоковольтной сети СССР.

  Важным разделом В. н. т. является разработка установок высокого напряжения, предназначенных для испытания изоляции и для других целей. В качестве источника переменного напряжения промышленной частоты (50 гц) служат испытательные трансформаторы, часто соединяемые в каскады. Каскадные трансформаторы изготовляют на напряжение до 3000 кв. Высокое постоянное напряжение (до 6000 кв) получают с помощью или последовательно соединённых выпрямителей, для которых обычно применяют высоковольтные полупроводниковые диоды. Для имитации грозовых перенапряжений разработаны генераторы импульсных напряжений (ГИН), генерирующие импульсные напряжения с амплитудой до 10 Мв. В 60-е гг. широкое распространение получили также генераторы волн внутренних перенапряжений (ГВП), которые дают импульс напряжения длительностью до 0,01 сек. Генераторы импульсных токов (ГИТ) при умеренном напряжении (до 200 кв) и амплитуде импульсов тока до нескольких миллионов ампер вначале применялись для испытания заземлителей и грозозащитных разрядников. В дальнейшем область применения ГИТ (их часто называют ёмкостными накопителями энергии) значительно расширилась: их применяют при магнитно-импульсной обработке металлов, в установках, использующих электрогидравлический эффект, в контурах накачки лазеров, для получения высокотемпературной плазмы и других целей. Разновидность ГИТ (так называемый контур Горева) применяют для испытания выключателей на отключающую способность. Высокие напряжения повышенной частоты получают на ламповых генераторах или трансформаторах Тесла.

  Создание испытательных установок высокого напряжения потребовало также разработки специальной измерительной аппаратуры. Простейшим прибором для измерения высоких напряжений служит шаровой . Высокие напряжения измеряют также с помощью электростатических и роторных (вращающихся) вольтметров, а импульсные напряжения - электронными осциллографами с делителями напряжения на входе. Большие импульсные токи обычно измеряют электронными осциллографами, на пластины которых подаётся напряжение от шунтов или воздушных трансформаторов (пояс Роговского), включаемых последовательно в цепь тока. При высоковольтных измерениях необходимо считаться с сильными электромагнитными полями, искажающими результаты измерений. Для устранения этих искажений измерительные приборы и подводящие провода тщательно экранируют, применяют заземляющие устройства и другие меры для уменьшения паразитных индуктивностей и ёмкостей. Для измерения напряжений и токов в действующих электрических системах разработаны регистрирующие приборы типа автоматических осциллографов или пиковых вольтметров, массовое использование которых позволяет получить достаточно надёжный статистический материал о перенапряжениях и токах молнии.

  Одним из самостоятельных разделов В. н. т. является так называемая электронно-ионная технология, связанная с аэрозолями, частицы которых заряжаются от трения, коронного разряда или другими методами. С помощью сильного электрического поля можно управлять движением заряженных частиц и таким образом осуществлять необходимый технологический процесс (электрогазоочистку, электросмешивание, электросепарирование, электроокраску и др.). Примером использования электронно-ионной технологии могут служить коронные электрофильтры на ТЭС для очистки газа, выходящего из топок паровых котлов, от золы и других взвешенных частиц.

  Лит.:Техника высоких напряжений, под ред. Л. И. Сиротинского, ч. 1-3, М. - Л., 1951-59; Разевиг Д. В., Атмосферные перенапряжения на линиях электропередачи, М. - Л., 1959; Высоковольтное испытательное оборудование и измерения, М. - Л., 1960; Бумажномасляная изоляция в высоковольтных конструкциях, М. - Л., 1963; Александров Г. Н., Коронный разряд на линиях электропередачи, М. - Л., 1964; Артемьев Д. Е., Тиходеев Н. Н., Шур С. С., Статистические основы выбора изоляции линий электропередачи высоких классов напряжения, М. - Л., 1965; их же. Координация изоляции линий электропередачи, М. - Л., 1966; Иерусалимов М. Е., Орлов Н. Н., Техника высоких напряжений. К., 1967; Долгинов А. И., Техника высоких напряжений в электроэнергетике, М., 1968; Вайда Д., Исследования повреждений изоляции, М., 1968.

  Д. В. Разевиг.

Рис. 2. Удельная электрическая прочность ( кв/см) промежутка «провод - плоскость» в воздухе при температуре 20°С и давлении 760 мм рт. ст.

Рис. 3. Пробивное напряжение в однородном поле для различных диэлектриков: 1 - фарфор; 2 - трансформаторное масло; 3 - элегаз (0,1 Мн/м 2); 4 - элегаз (0,7 Мн/м 2).

Рис. 1. Графики роста наивысшего номинального напряжения (в кв) электрических сетей СССР: 1 - линии переменного тока; 2 - линии постоянного тока.

Высокович Владимир Константинович

Высоко'вичВладимир Константинович [16 (28).1.1854, Гайсин, ныне Винницкой области, - 13 (26).5.1912, Киев], русский патологоанатом, бактериолог и эпидемиолог. Окончил медицинский факультет Харьковского университета (1876). С 1895 профессор кафедры патологической анатомии Киевского университета. Основные работы по патологической анатомии сифилиса и туберкулёза, патогенезу, иммунитету и эпидемиологии ряда инфекционных болезней. Совместно с И. И. создал основы учения о системе, позднее получившей название . Сочетая морфологические и бактериологические методы исследования, В. впервые установил происхождение фибробластов и блуждающих клеток соединительной ткани из гистиоцитов (1882), способность эндотелиальных клеток кровеносных сосудов и блуждающих клеток соединительной ткани захватывать вводимые в кровь бактерии (1886), значение регионарных лимфатических узлов в патогенезе инфекции (1888), пригодность убитых бактерий для вакцинации против сибирской язвы (1889) и чумы (1896), тождество туберкулёза и золотухи (1890). В. - организатор и руководитель экспедиций по борьбе с эпидемиями холеры (1892 - Харьков, 1908 - Киев) и чумы (1896 - Бомбей, Индия; 1902 и 1910 - Одесса).

  Соч.: Патологическая анатомия, 4 изд., в. 1-2, К., 1915-18; Избранные труды, М., 1954.

  Лит.:Планельес Х. Х., В. К. Высокович. 1854-1912, М., 1953 (библ.).

  А. Г. Гериш.

Высоковольтная линия электропередачи

Высоково'льтная ли'ния электропереда'чи, напряжением выше 1 кв. В. л. э. бывают воздушные и подземные (подводные). Воздушной В. л. э. называют устройство для передачи и распределения электрической энергии по проводам, расположенным на открытом воздухе и закреплённым на опорах при помощи изоляторов и арматуры. Опоры, изготовленные из дерева, железобетона или металла, отстоят одна от другой на 50-500 мв зависимости от марки провода и типа опоры (см. ). Расстояние от провода до земли составляет не менее 6-8 м. Подземные (подводные) В. л. э., в которых используются провода в специальной изоляции (см. ), применяют для распределения энергии на территории городов и промышленных предприятий, а также при переходе через широкие водные преграды.

  Лит.см. при ст. .

  М. С. Либкинд.

Высоковск

Высо'ковск,город (до 1940 - посёлок) в Московской области РСФСР. Расположен на р. Вяз, в 10 кмк З. от г. Клин, с которым связан железнодорожной веткой. 12,5 тыс. жителей (1969). Прядильно-ткацкая фабрика (с 1883), кирпичный завод, фабрика ёлочных украшений.

Высокоглинозёмистые огнеупорные изделия

Высокоглинозёмистые огнеупо'рные изде'лия,содержат свыше 45% глинозёма (Al 2O 3). Сырьё для В. о. и. - технический глинозём и электрокорунд с добавкой огнеупорной глины, а также высокоглинозёмистые породы ( , , , и др.). В. о. и. прессуют из порошков крупностью до 3 ммпод давлением 60-120 Мн/м 2(600-1200 кгс/см 2) и обжигают при 1500-1750°С. В СССР массовые В. о. и. делятся на классы (по содержанию глинозёма) и внутри классов на группы, различающиеся по техническим свойствам. Наиболее высокими свойствами обладают корундовые огнеупорные изделия.

  В. о. и. применяют для кладки тепловых агрегатов (имеющих температуры свыше 1300-1400° С), в доменных печах, воздухонагревателях, химических реакторах и др.

  Лит.:Полубояринов Д. Н., Балкевич В. Л., Попильский Р. Я., Высокоглиноземистые керамические и огнеупорные материалы, М., 1960.

  А. К. Карклит.

Высокогорные станции

Высокого'рные ста'нции,постоянные наблюдательные и исследовательские пункты, расположенные в горах на высоте 2000 ми выше. По своему назначению В. с. разделяются на (наиболее многочисленные) и специальные, ведущие наблюдения за ледниками, снежными лавинами, селевыми явлениями, горными озёрами, атмосферным электричеством, озоном, космическими лучами, солнечной радиацией и др. В СССР самая высокорасположенная В. с. - на леднике Федченко (4169 мнад уровнем моря). В России первые стационарные высокогорные наблюдения были проведены на Давдарском леднике на Кавказе в 1862-66 академиком Г. В. Абихом.

Высокогорный

Высокого'рный,посёлок городского типа в Советско-Гаванском районе Хабаровского края РСФСР. Расположен в верховьях р. Мули (приток р. Тумнин). Железнодорожная станция (на линии Комсомольск-на-Амуре - Советская Гавань). Предприятия железнодорожного транспорта, леспромхоз.

Высокогорный тип рельефа

Высокого'рный тип релье'фа,тип рельефа преимущественно молодых горных стран (Альпы, Кавказ, Памир, Гималаи и др.), характеризующийся крутыми склонами, глубоким и резким расчленением, остротой и обнажённостью многочисленных скалистых вершин. В. т. р. обусловлен прежде всего широким развитием ледниковых форм и интенсивно протекающим физическим выветриванием. Абсолютная высота пояса развития В. т. р. колеблется в зависимости от абсолютной высоты гор, географической широты территории и положения древней и современной снеговой границы, но обычно превышает 2000-2500 м.

Высокогорск

Высокого'рск,посёлок городского типа в Кавалеровском районе Приморского края РСФСР. Расположен на шоссейной дороге в 205 кмк В. от железнодорожной станции Варфоломеевка. Добыча олова.

Высокое Возрождение

Высо'кое Возрожде'ние,период в истории искусства в Италии, падающий на конец 15 и 1-ю четверть 16 вв. и знаменующий высшую, классическую фазу в развитии художественной культуры . Основные центры искусства В. В. - Флоренция, Рим, Венеция (в которой В. В. захватывает и 1530-е гг.); главные представители - Браманте, Леонардо да Винчи, Рафаэль, Микеланджело, Джорджоне, Тициан. В архитектуре, скульптуре и живописи В. В. реализм, гуманизм и героические идеалы Ренессанса, жизненная полнота и яркость образов получили синтетически обобщённое, полное титанической силы выражение. Искусству В. В., развивавшемуся необычайно быстро и многогранно, в целом присущи величественный, монументальный характер, гармоническое совершенство, возвышенный идеальный строй. Принципы В. В. сложно и разнообразно преломились во всём итальянском искусстве 16 в. и оказали мощное влияние на мировую художественную культуру. Черты синтетического стиля В. В. присущи творчеству ряда немецких художников 1-й половины 16 в. (А. Дюрер, Х. Хольбейн).

  Лит.:Вельфлин Г., Классическое искусство, пер. с нем., СПБ, 1912; Ротенберг Е. И., Искусство Италии XVI века, [М., 1967] («Памятники мирового искусства», сер. 1, вып. 1).

Высокое (город в Брестской обл.)

Высо'кое,город (с 1940) в Каменецком районе Брестской области БССР, в 3 кмот железнодорожной станции Высоко-Литовск. 3,8 тыс. жителей (1969). Хлебный, маслосыродельный заводы.

Высокое (пос. гор. типа в Донецкой обл.)

Высо'кое,посёлок городского типа в Донецкой области УССР, в 3 кмот железнодорожной станции Рясное. 1,5 тыс. жителей (1969). Население работает главным образом на шахтах г. Макеевка.

Высоколегированная сталь

Высоколеги'рованная сталь,см. .

Высокомолекулярные соединения

Высокомолекуля'рные соедине'ния,вещества, молекулы которых содержат сотни и тысячи атомов, соединённых между собой химическими связями. Характерная особенность большинства В. с., так называемых полимеров, - наличие в их молекуле многократно повторяющихся звеньев. Подробнее см. .

«Высокомолекулярные соединения»

«Высокомолекуля'рные соедине'ния»,научный ежемесячный журнал Академии наук СССР по теоретической и экспериментальной химии и физике полимеров. Основан в 1959 по инициативе академика В. А. ,который и был первым главным редактором журнала (1959-69). Издаётся в Москве. С 1967 журнал выходит в двух сериях - «А» и «Б». Серия «А» публикует оригинальные завершённые исследования и обобщения, а также описание новых методов и приборов для исследования полимеров, обзорные статьи, хронику и персоналии. В серии «Б» публикуются письма в редакцию и краткие сообщения о новых явлениях или закономерностях. Тираж (1971): серия «А» - 2100 экз., серия «Б» - 1100 экз.

  П. В. Козлов.

Высокомолекулярных соединений институт

Высокомолекуля'рных соедине'ний институ'тАкадемии наук СССР (ИВС), основан в 1948 в Ленинграде. В составе института 4 отдела, включающих 22 лаборатории. В ИВС проводятся исследования по созданию новых катализаторов и инициаторов полимеризации, по изучению кинетики и механизма образования макромолекул. Широко представлены работы по синтезу новых термостойких, высокопрочных и физиологически активных полимеров. Всесторонне исследуются молекулярная и надмолекулярная структуры природных и синтетических высокомолекулярных соединений, изучаются их оптические, механические, термические и диэлектрические свойства. Институт имеет аспирантуру.

  М. М. Котон.

Высокообъёмные нити

Высокообъёмные ни'ти,комплексные химические нити, в которых элементарные нити имеют устойчивую извитость. Правильнее - .

Высокооктановые топлива

Высокоокта'новые то'плива,автомобильные и авиационные , применяемые в карбюраторных двигателях внутреннего сгорания, работающих при высокой степени сжатия и с наддувом. В. т. стойки к детонации и обеспечивают плавную работу двигателя без нарушения процесса сгорания. Детонационная стойкость В. т. - важнейшая характеристика топлив - обусловлена высоким содержанием в них изопарафиновых углеводородов, бензола и его гомологов, олефинов и низших циклопарафинов; для авиационных бензинов детонационная стойкость характеризуется и , для автомобильных бензинов - октановым числом. Лучшие сорта авиационных бензинов имеют октановое число 98-100, сортность на богатой смеси 130-160, автомобильные - октановое число 98 (автобензин «Экстра»). Бензины, широко применяемые в автомобильных двигателях, имеют октановое число 76 и 93. В. т. обычно содержат антидетонатор - (в автомобильном бензине до 0,82 г/кг, авиационном - до 3,3 г/кг).

  В. т. получают смешением бензина каталитического с ароматизированным бензином каталитического , полимербензином (продукт полимеризации бутан-бутиленевой фракции) или алкилатом (продукт каталитического алкилирования бутиленов изобутаном). Соотношение компонентов зависит от требуемой детонационной стойкости бензина, его испаряемости, теплоты сгорания, плотности и др.

  Лит.:Нефтепродукты. Свойства, качество, применение. Справочник, под ред. Б. В. Лосикова, М., 1966.

  В. В. Щекин.

Высокополье

Высокопо'лье,посёлок городского типа, центр Высокопольского района Херсонской области УССР. Железнодорожная станция (на линии Херсон - Апостолово). 6,3 тыс. жителей (1968). Комбинат хлебопродуктов, маслосыродельный завод.

Высокопрочный чугун

Высокопро'чный чугу'н,см. .