). В. государственного или общественного имущества наказывается лишением свободы на срок до 4 лет; В. личного имущества граждан - лишением свободы на срок до 3 лет или исправительными работами на срок до одного года.

  Ю. Б. Утевский.

Вымокание растений

Вымока'ние расте'ний,гибель озимых хлебов или других зимующих культур (например, многолетних трав) вследствие нарушения дыхания при застое воды на поле. Наблюдается обычно весной, реже зимой, при длительных оттепелях, когда вода от растаявшего снега в пониженных местах на слабоводопроницаемых почвах затопляет растения. Залитые водой, плохо закалившиеся с осени растения из-за недостатка кислорода через 7-10 дней желтеют (распад хлорофилла), накапливают в клетках этиловый спирт, вызывающий отравление, и через две недели гибнут. Предупредить В. р. можно посевом устойчивых сортов, обвалованием понижений, бороздованием посевов, применением гребневых посевов и другими агротехническими мерами.

  П. И. Подгорный

Вымораживание

Вымора'живание,выделение растворителя в твёрдом виде при охлаждении раствора; остающийся жидкий раствор при этом обогащается растворённым веществом. В. применяют для концентрирования растворов и получения чистого растворителя. В частности, В. можно использовать для концентрирования соляных рассолов и получения поваренной соли из морской воды, а также для опреснения морской воды.

Выморочное имущество

Вы'морочное иму'щество,в гражданском праве имущество умершего, которое не переходит к его наследникам. В. и. может образоваться, если ко дню смерти наследодателя не окажется наследников ни по закону, ни по завещанию, а также если ни один из наследников не принял наследства или все наследники лишены наследства завещанием. Если при отсутствии наследников по закону завещано не всё имущество, то В. и. признаётся незавещанная часть имущества.

  По советскому законодательству В. и. переходит к государству по праву наследования. Государство становится собственником этого имущества на основании свидетельства о праве на наследство, выдаваемого нотариальной конторой по истечении 6 месяцев со дня смерти наследодателя. Государство (в лице местных финансовых органов) несёт ответственность по долгам наследодателя в пределах стоимости перешедшего к нему наследственного имущества. Имущество, перешедшее таким образом в собственность государства, передается для соответствующего использования государственным, кооперативным или общественным организациям.

  В. А. Кабатов.

Вымпел

Вы'мпел(голл. wimpel), 1) узкий, длинный, раздвоенный на конце флаг; поднимается на мачте военного корабля, находящегося в плавании, и служит признаком его национальной принадлежности. 2) Футляр с длинной яркой лентой, используемый для сбрасывания с самолётов донесений, писем, газет и пр.

Вымь

Вымь(Юлва, в верховье - Эмба), река в Коми АССР, правый приток р. Вычегда. Длина 499 км, площадь бассейна 25600 км 2. Берёт начало с Тиманского кряжа. Далее протекает по равнинной лесистой местности с обширными болотами. Выше устья р. Елва имеет пороги. Главные притоки: справа - Ворыква, Едва, Пожег, Чуб; слева - Коин, Весляна. Средний годовой расход воды 196 м 2 /сек(с. Весляна). Сплавная. Судоходна от впадения р. Весляна.

Вымя

Вы'мя,молочные железы с.-х. животных. У жвачных и кобыл В. расположено в паховой области, между бедрами; у свиней - симметрично, справа и слева от «белой» линии живота. В. коровы, верблюда, северного оленя состоит из разделённых между собой 2 передних, или брюшных, и 2 задних, или бедренных, долей. Молоко синтезируется в секреторном эпителии мельчайших полостей - альвеол. Каждая клетка синтезирует молоко со всеми его составными частями. Альвеолы, наиболее крупные из которых включают до 100 клеток эпителия, расположены радиально вокруг молочных протоков. Последние соединяются в более крупные и открываются в молочные цистерны. Молоко удерживается в В. благодаря капиллярности, а также наличию круговых запирательных мышц (сфинктеров) в сосках. В. хорошо снабжается кровью, так как для образования 1 кгмолока через В. должно пройти 500 лкрови. У тёлок железистая ткань В. начинает расти с наступлением половой зрелости и особенно интенсивно незадолго до отёла; у стельной (беременной) коровы - во 2-й половине сухостойного периода (за месяц до отёла). У молочных коров В. чашеобразной формы выдаётся вперёд, прочно примыкает к телу (не отвисает), доли В. ровные и расположены симметрично. На ощупь такое В. - мягкое, гибкое, эластичное, после доения уменьшается, имеет длинные, извитые, отчётливо выраженные вены. В. овец, коз, кобыл состоит из 2 комплексов желёз и 2 сосков.

  Лит.:Закс М. Г., Молочная железа, М. - Л., 1964, гл. 1.

Вынгапур

Вынгапу'р,река в Ямало-Ненецком национальном округе Тюменской области РСФСР, правый приток р. Пякупур (бассейн Пура). Длина 319 км, площадь бассейна 8710 км 2. Берёт начало на северном склоне возвышенности Сибирской Увалы, течёт по заболоченной низменности на С. Наиболее значительный приток - Вынгаяха (справа).

Выносливость

Выно'сливость(в сопротивлении материалов), способность материалов и конструкций сопротивляться действию повторных (циклических) нагрузок. Повреждение или разрушение от действия циклических нагрузок называется усталостью. Различают малоцикловую усталость - развитие пластических деформаций при высоких уровнях нагружения, и собственную усталость - постепенное накопление скрытых необратимых изменений в структуре материалов, последующее образование микроскопических трещин и их слияние в так называемую магистральную макроскопическую трещину, приводящую к разрушению. Зависимость между уровнем нагрузки (напряжений) sи числом циклов N, соответствующим разрушению, представляется графически в виде кривой усталости ( рис. ). Пределом В. s rназывается напряжение, соответствующее разрушению при заданном, большом числе циклов или - горизонтальной асимптоте кривой усталости. В. зависит от свойств материала, вида цикла, вида напряжённого состояния, наличия концентраторов напряжений, состояния поверхности, свойств окружающей среды, размеров детали или конструкции и т.п. Предел В. может оказаться значительно ниже предела прочности или предела материала. Высокая чувствительность предела В. к различным факторам требует повышенного внимания к выбору допускаемых напряжений и коэффициентов запаса при циклических нагрузках.

  Лит.:Серенсен С. В., Когаев В. П., Шнейдерович Р. М., Несущая способность и расчеты деталей машин на прочность, 2 изд., М., 1963; Болотин В. В., Статистические методы в строительной механике, 2 изд., М., 1965; Прочность. Устойчивость. Колебания. Справочник, т. 1, М., 1968, гл. 7.

  В. В. Болотин.

График к ст. Выносливость.

Вынужденное излучение

Вы'нужденное излуче'ние,индуцированное излучение, испускание электромагнитного излучения квантовыми системами под действием падающего на них излучения. Фотоны, испускаемые при В. и., совпадают по частоте, направлению распространения и поляризации с фотонами, вынуждающими их испускание. Подробнее см. , , .

Вынужденное рассеяние света

Вы'нужденное рассе'яние све'та,рассеяние света в среде, обусловленное изменением движения входящих в её состав микрочастиц (электронов, атомов, молекул), происходящим как под влиянием падающей световой волны, так и самого рассеянного излучения. Различают вынужденное комбинационное рассеяние (ВКР), происходящее при участии либо внутримолекулярных колебаний атомов, либо вращении молекул, либо движений электронов внутри атомов; вынужденное рассеяние Мандельштама - Бриллюэна (ВРМБ), в котором участвуют упругие смещения молекул (т. е. звуковые или гиперзвуковые волны); вынужденное рассеяние света на поляритонах (связанных колебаниях молекул и электромагнитного поля) и т.д. В. р. с. наблюдается в твёрдых телах, жидкостях и газах.

  Если интенсивность падающего света невелика, в среде происходит спонтанное рассеяние света, при котором изменение движения микрочастиц происходит только под влиянием поля падающей волны. Интенсивность рассеянного света при этом мала (в 1 см 310 -8-10 -6от интенсивности падающего света), а его частота wў отличается от частоты падающего света на величину Dw, равную частоте колебаний микрочастиц (см. , ).

  При очень большой интенсивности падающего света в среде проявляются нелинейные эффекты (см. ). На её микрочастицы действуют не только силы с частотами падающего w и рассеянного wў излучений, но также сила, действующая на разностной частоте Dw, т. е. на частоте собственных колебаний микрочастиц, что приводит к резонансному возбуждению колебаний. Рассмотрим это на примере вынужденного комбинационного рассеяния с участием внутримолекулярных колебаний атомов. Под влиянием суммарного электрического поля падающего и рассеянного света молекула поляризуется, у неё появляется электрический дипольный момент, пропорциональный суммарной напряжённости электрического поля падающей и рассеянной волн. Потенциальная энергия атомных ядер при этом изменяется на величину, пропорциональную произведению дипольного момента на квадрат напряжённости суммарного электрического поля. Вследствие этого внешняя сила, действующая на ядра, содержит компоненту с разностной частотой Dw, что вызывает резонансное возбуждение колебаний атомов. Это, в свою очередь, приводит к увеличению интенсивности рассеянного излучения, что вновь усиливает колебания микрочастиц, и т.д. Таким образом сам рассеянный свет вынуждает (стимулирует) дальнейший процесс рассеяния. Именно поэтому такое рассеяние называется вынужденным (стимулированным). Интенсивность рассеянного света может быть порядка интенсивности падающего.

  Возбуждение внутримолекулярных колебаний при вынужденном комбинационном рассеянии (гиперзвука при ВРМБ и т.д.) происходит в тех случаях, когда В. р. с. протекает в веществе, состояние которого близко к равновесному. При этом частота wў рассеянного света оказывается меньше частоты w падающего излучения: w = w - Dw (стоксов процесс). Однако при В. р. с. возможно не только возбуждение движения микрочастиц, но и его подавление, если первоначальное состояние вещества не является равновесным. При этом = w + Dw (антистоксов процесс).

  Если при В. р. с. рассеянное излучение выходит из рассеивающего объёма без отражений от его границ, то рассеянный свет, как и в случае спонтанного рассеяния света, является некогерентным (см. ), а угловое распределение рассеянного света зависит от формы рассеивающего тела, например, для удлинённых форм рассеянное излучение сосредоточено главным образом вдоль его оси. Если же рассеивающее тело помещено в , то в результате многократных отражений рассеянного света от зеркал в резонаторе формируется когерентное излучение на частоте рассеяния wў (это достигается лишь при значениях интенсивности падающего света, превышающих некоторое пороговое значение). Направленность рассеянного излучения в этом случае определяется конфигурацией резонатора.

  Поскольку при В. р. с. интенсивности падающего и рассеянного излучений велики (10 6-10 9 вт/см 2), то нередко в веществе одновременно с В. р. с. проявляются и другие нелинейные эффекты, например, параметрические процессы, приводящие к появлению излучения с целым набором новых частот w n= w + nDw, где n= ±1, ±2, ±3... ( рис. 1 ). Компоненты с n³ 1 называются антистоксовыми компонентами, а с nЈ -2 - высшими стоксовыми компонентами. Излучение этих компонент после выхода из рассеивателя происходит преимущественно вдоль поверхностей конусов с различными (для различных компонент) малыми углами (1-10°) при вершинах. В изотропной среде оси всех конусов совпадают с направлением рассеиваемого луча. В кристаллах эти конусы могут иметь различную ориентацию и каждая компонента может излучаться в двух конусах. На фотоплёнке, расположенной за исследуемым образцом перпендикулярно прошедшему лучу частоты w, образуются кольца, соответствующие различным компонентам В. р. с. ( рис. 2 ).

  Так как интенсивность рассеянного света при В. р. с. может быть порядка интенсивности падающего излучения, то рассеянное излучение, в свою очередь, может стать источником В. р. с. Развитие этого процесса может также привести к возникновению целого ряда компонент, частоты которых будут совпадать с параметрическими частотами w n. Однако по другим свойствам они существенно отличаются от параметрического излучения. Иногда в веществе одновременно возникают два (или больше) вида В. р. с., влияющих друг на друга.

  В. р. с. используется для эффективного преобразования интенсивного излучения в излучение с большей яркостью и другими характеристиками; для возбуждения интенсивного и других видов движения микрочастиц; для изучения микроструктуры вещества.

  Лит.:Луговой В. Н., Введение в теорию вынужденного комбинационного рассеяния, М., 1968; Старунов В. С., Фабелинский И. Л., Вынужденное рассеяние Мандельштама - Бриллюэна и вынужденное энтропийное (температурное) рассеяние света, «Успехи физических наук», 1969, т. 98, в. 3; Зельдович Б. Я., Собельман И. И., Вынужденное рассеяние света, обусловленное поглощением, там же, 1970, т. 101, в. 1.

  В. Н. Луговой.

Рис. 1. Спектр рассеянного света при вынужденном комбинационном рассеянии: w - частота падающей волны.

Рис. 2. Пространственная картина излучения первой и второй антистоксовых компонент при вынужденном комбинационном рассеянии в монокристалле кальцита; центральное пятно соответствует прошедшему через кальцит световому лучу частоты w; два неконцентрических кольца меньших диаметров соответствуют двум конусам излучения первой антистоксовой компоненты (частота w + Dw); два неконцентрических кольца больших диаметров соответствуют двум конусам излучения второй антистоксовой компоненты (частота w + 2Dw).

Вынужденные колебания

Вы'нужденные колеба'ния,колебания, возникающие в какой-либо системе под действием переменной внешней силы (например, колебания мембраны телефона под действием переменного магнитного поля, колебания механической конструкции под действием переменной нагрузки и т.д.). Характер В. к. определяется как характером внешней силы, так и свойствами самой системы. В начале действия периодической внешней силы характер В. к. изменяется со временем (в частности, В. к. не являются периодическими), и лишь по прошествии некоторого времени в системе устанавливаются периодические В. к. с периодом, равным периоду внешней силы (установившиеся В. к.). Установление В. к. в колебательной системе происходит тем быстрее, чем больше в этой системе.

  В частности, в линейных при включении внешней силы в системе одновременно возникают свободные (или собственные) колебания и В. к., причём амплитуды этих колебаний в начальный момент равны, а фазы противоположны ( рис. ). После постепенного затухания свободных колебаний в системе остаются только установившиеся В. к.

  Амплитуда В. к. определяется амплитудой действующей силы и затуханием в системе. Если затухание мало, то амплитуда В. к. существенно зависит от соотношения между частотой действующей силы и частотой собственных колебаний системы. При приближении частоты внешней силы к собственной частоте системы амплитуда В. к. резко возрастает - наступает . В разделение на свободные и В. к. возможно не всегда.

  Лит.:Хайкин С. Э., Физические основы механики, М., 1963.

График установления вынужденных колебаний.

Выпадение промежуточных функций

Выпаде'ние промежу'точных фу'нкций,частный случай преобразования органа в филогенетическом развитии, при котором происходит усиление его главной функции за счёт выпадения промежуточной. Этот тип изменения органов установлен А. Н. . Примером В. п. ф. может служить образование у млекопитающих и человека нового причленения нижней челюсти через зубную кость непосредственно к черепу (что усилило её функцию) вместо причленения через квадратную и сочленовную кости (переместившиеся в среднее ухо); это дало возможность пережёвывать пищу во рту.

Выпадение прямой кишки

Выпаде'ние прямо'й кишки',частичный или полный выворот прямой кишки через задний проход наружу. У детей встречается чаще, чем у взрослых. К В. п. к. предрасполагают недостаточное развитие подвешивающего кишку аппарата, слабость мышц тазового дна, отлогое положение крестца и копчика и др. Непосредственно В. п. к. могут вызвать тяжёлый физический труд (особенно у ослабленных людей), травмы живота и таза, заболевания кишечника, тяжёлые роды и т.п. У детей В. п. к. происходит иногда при длительных поносах, запорах, сильном и продолжительном кашле и пр. Субъективные ощущения проявляются незначительными болями во время дефекации; иногда В. п. к. сопровождается недержанием газов и кала. Лечение: у детей - устранение причины, вызвавшей В. п. к., нормализация стула, общеукрепляющая терапия; у взрослых эффективно только хирургическое лечение.

  В. п. к. у животных.Чаще наблюдается у свиней и собак, реже у крупного рогатого скота и лошадей. Предрасполагающие факторы: понижение мышечного тонуса прямой кишки, расслабление сфинктера ануса, слабость животного и др. Непосредственные причины В. п. к. - частые и сильные потуги при родах, введение в прямую кишку раздражающих веществ. Выпавшую часть кишки обмывают холодным дезинфицирующим и вяжущим раствором, вправляют её и суживают анальное отверстие кисетным швом.

Выпаривание

Выпа'ривание,концентрирование растворов (чаще всего твёрдых веществ в воде) частичным испарением растворителя при кипении. При этом повышаются концентрация, плотность и вязкость раствора, а также температура его кипения. При пересыщении раствора растворённое вещество выпадает в осадок. Температура кипения растворов всегда выше температуры кипения растворителей; разность между ними, называется температурной депрессией, растёт с увеличением концентрации растворённого вещества и внешнего давления.

  В. производится за счёт подводимого извне тепла: при температуре ниже 200°C теплоносителем является водяной пар, выше 200°С - высококипящие жидкости (дифенильная смесь, масло) и топочные газы. Обогрев производится через стенку аппарата, а при сильно агрессивных средах - барботажем пузырьков газа сквозь раствор или распылением последнего в струе газа.

  В. ведут при атмосферном, пониженном или повышенном давлении. В большинстве случаев экономически выгодно работать под давлением выше 0,1 Мн/м 2(1 кгс/см 2), так как в этом случае можно использовать вторичный пар для обогрева других аппаратов. При работе с термически нестойкими веществами пользуются вакуум-выпаркой, что позволяет снизить температуру кипения растворов и уменьшить поверхность нагрева (вследствие увеличения разности температур между нагревающими агентами и кипящим раствором). Вакуум в аппаратах создаётся конденсацией вторичного пара и отсасыванием вакуум-насосом несконденсировавшейся паровоздушной смеси.

  В. используется в химической, пищевой и других отраслях промышленности. Существует более 80 разновидностей выпарных аппаратов с паровым обогревом. В малотоннажных производствах обычно применяют вертикальные и горизонтальные цилиндрические выпарные аппараты с обогревом змеевиками или нагревательными рубашками; в крупнотоннажных производствах - аппараты с внутренними и выносными нагревательными камерами ( рис. 1 ), плёночные аппараты, в которых струя пара увлекает вверх тонкую плёнку раствора, в результате чего создаются благоприятные условия для В., и аппараты с принудительной циркуляцией ( рис. 2 ). Последние применяют при необходимости предотвратить осаждение солей на поверхности нагрева, а также при упаривании вязких растворов.

  В однокорпусных аппаратах расход греющего пара составляет 1,2-1,25 кгна испарение 1 кгводы. Значительно экономнее многокорпусные выпарные установки, из которых наиболее распространены прямоточные ( рис. 3 ); в них слабый раствор и греющий пар, движущиеся в одном направлении, последовательно поступают в выпарные аппараты. В последнем аппарате, присоединённом к барометрическому конденсатору и вакуум-насосу, создаётся разрежение, вследствие чего давление и температура кипения раствора постепенно понижаются от первого корпуса к последнему; благодаря этому осуществляется переток раствора и его испарение при обогреве вторичными парами. В противоточных установках раствор и греющий пар движутся навстречу друг другу, при параллельном питании слабый раствор подаётся одновременно во все корпуса.

  На практике число корпусов редко бывает больше пяти, так как дальше полезная разность температур становится очень малой. Расход греющего пара на испарение 1 кгвыпариваемой воды составляет для трёхкорпусной установки 0,4 кг, а для пятикорпусной 0,25-0,28 кг. Многокорпусные выпарные установки широко применяются в многотоннажных производствах, потребляющих большое количество греющего пара (например, производство сахара).

  Лит.:Касаткин А. Г., Основные процессы и аппараты химической технологии, 7 изд., М., 1961; Гельперин Н. И., Выпарные аппараты, М. - Л., 1947; Кичигин М. А., Костенко Г. Н., Теплообменные аппараты и выпарные установки, М. - Л., 1955; Колач Т. А., Радун Д. В., Выпарные станции, М., 1963; Лунин О. Г., Теплообменные аппараты пищевой промышленности, М., 1967.

  В. Л. Пебалк.

Рис. 3. Схема прямоточной многокорпусной выпарной установки: 1 - подогреватель; 2 - выпарные аппараты; 3 - конденсатор; 4 - барометрическая труба.

Рис. 1. Выпарные аппараты: а - с центральной циркуляционной трубой; б - с выносной нагревательной камерой; 1 - корпус; 2 - нагревательные трубки; 3 - циркуляционная труба; 4 - сепаратор; 5 - отбойник.

Рис. 2. Выпарной аппарат с принудительной циркуляцией: 1 - корпус; 2 - циркуляционный насос; 3 - циркуляционная труба; 4 - сепаратор; 5 - отбойник.

Выпарной аппарат

Выпарно'й аппара'т,аппарат для концентрирования растворов твёрдых веществ в жидких растворителях путём полного или частичного удаления растворителя в виде пара (см. ). В. а. для выпаривания воды, поступающей на питание котлов в котельных и ТЭЦ, а также для выпаривания хладоагента в холодильных установках, называются испарителями.

  И. М. Петренко.

Выпи

Вы'пи,два рода птиц семейства цапель отряда голенастых (Ciconiiformes) - большие В. (Botaurus) и малые В., или волчки (Ixobrychus). Держатся скрытно в зарослях по берегам водоёмов, в случае опасности затаиваются, вытянувшись вертикально, среди растений. Гнездятся на земле, а малые В. также и на кустах и деревьях, поодиночке, в отличие от других цапель. В кладке 4-9 яиц, насиживают 28-30 дней. Питаются рыбой, земноводными и беспозвоночными. Распространены на всех континентах. В СССР из 4 видов рода Botaurus встречается большая В. (В. stellaris), которую за громкий весенний крик самцов называют водяным быком; распространена широко к Ю. от 58-64° с. ш. Из 8 видов рода Ixobrychus в СССР - 3 вида: малая В. (I. minutus), распространённая к З. от Алтая, и 2 вида на Дальнем Востоке.

  Лит.:Птицы Советского Союза, под ред. Г. П. Дементьева и Н. А. Гладкова, т. 2, М., 1951.

Большая выпь.

Выпирание растений

Выпира'ние расте'ний,обнажение узлов кущения, верхушек корней растений вследствие попеременного замерзания и оттаивания или оседания почвы. Наблюдается зимой или весной на тяжёлых бесструктурных перенасыщенных влагой почвах. При замерзании почва увеличивается в объёме, а затем при оттаивании оседает, что приводит к обрыву корней и обнажению узлов кущения. В. р. может вызвать и образовавшаяся на посевах , в которую вмерзают растения и при последующем наращивании снизу слоя льда вытесняются из почвы. Особенно часто В. р. происходит при посеве по неосевшей после пахоты почве, оседающей после появления всходов. От выпирания могут страдать озимые хлеба, многолетние травы и др. зимующие растения. Меры борьбы с В. р.: высев сортов, имеющих глубокое залегание узлов кущения, посев по хорошо обработанной и осевшей почве, прикатывание почвы до и после посева и др. Пострадавшие от выпирания посевы весной, пока почва не просохла, прикатывают. Обнажённые узлы кущения при этом оказываются прижатыми к почве и образуют новые корни.