При плавлении металлов теплопроводность изменяется почти так же как электропроводность. Это справедливо также и для Bi, теплопроводность и электропроводность которого при плавлении увеличиваются, а не уменьшаются, как у др. металлов. Свободные электроны переносят большую часть теплового потока; поэтому Ж. м. имеют более высокую теплопроводность, чем жидкие диэлектрики. Некоторые Ж. м. соединяют значительную теплопроводность с высокой теплоёмкостью . Это позволяет использовать Ж. м. в теплотехнике в качестве теплоносителей . Наиболее подробно изучены одноатомные Ж. м. — натрий и калий.Они обладают достаточно низкими точками плавления и применяются либо отдельно, либо в виде сплавов для отвода теплоты в ядерных реакторах.
     Ж. м., так же как и твёрдые металлы, мало сжимаемы (значительно хуже, чем др. жидкости), т. к. для уменьшения объёма в обоих случаях нужно сконцентрировать электроны в меньшем объёме. Поэтому скорость звука в Ж. м. обычно выше, чем в др. жидкостях. Ж. м., как и др. жидкости, неспособны оказывать сопротивление статическим сдвигам, однако ультразвуковые волны очень высокой частоты могут распространяться в Ж. м. как сдвиговые возмущения (см. Жидкость ).
     Лит.:Ашкрофт Н., Жидкие металлы. «Успехи физических наук», 1970, т. 101, в. 3; Алексеев В. А., Андреев А. А., Прохоренко В. Я., Электрические свойства жидких металлов и полупроводников, «Успехи физических наук», 1972, т. 106, в. 3.

полупроводников.Плавление многих твёрдых полупроводников (Si, Ge и др.) сопровождается резким увеличением электропроводности до значений, типичных для металлов.Однако для некоторых полупроводников характерно уменьшение электропроводности при плавлении (HgSe) или сохранение малой электропроводности (Sb 2, Se 3и др.). В жидком состоянии у них сохраняется полупроводниковый характер температурной зависимости электропроводности. Существует ряд Ж. п., которые при повышении температуры теряют полупроводниковые свойства и приобретают металлические. Например, сплавы Te — Se в твёрдом состоянии и при плавлении — полупроводники. При дальнейшем нагреве жидких сплавов Te — Se, богатых Te, их электропроводность быстро увеличивается и они становятся металлами. Сплавы же, богатые Se, ведут себя противоположно — их электропроводность уменьшается, а зависимость от температуры имеет типично полупроводниковый характер.
     Лит.:Фишер И. З., О подвижности электронов и дырок в жидком полупроводнике, «Докл. АН СССР», 1957, т. 117, № 3; Вопросы теории и исследования полупроводников и процессов полупроводниковой металлургии, М., 1955, с. 12—24; Губанов А. И., Квантово-электронная теория аморфных проводников, М., 1963; Мотт Н., Электроны в неупорядоченных структурах, пер. с англ., М., 1969; Алексеев В. А., Андреев А. А., Прохоренко В. Я., Электрические свойства жидких металлов и жидких полупроводников, «Успехи физических наук», 1972, т. 106, в. 3.

Критическая температура ). О давлении пара двойных Ж. с. см. Коновалова законы и Вревского законы.Изотермы вязкости двойных Ж. с. близки к прямым, если компоненты не ассоциированы, не диссоциированы и не образуют химических соединений. В случае образования недиссоциированного соединения изотерма вязкости состоит из двух ветвей, пересекающихся в сингулярной точке , абсцисса которой отвечает составу соединения (Н. С. Курнаков, С. Ф. Жемчужный, 1912). См. также Двойные системы.
   
      Лит.:Аносов В. Я., Погодин С. А., Основные начала физико-химического анализа, М. — Л., 1947.
      С. Л. Погодин.

аммиачная вода (водный аммиак), аммиакаты , концентрированные водные растворы мочевины и аммиачной селитры; сложные удобрения, в состав которых входят 2 или 3 основных питательных элемента растений (азот, фосфор, калий) в различных соотношениях. В СССР азотные Ж. у. стали применять с 1956, в 1969 на поля колхозов и совхозов внесено около 3 млн. тЖ. у.; опытно-промышленное производство и применение сложных Ж. у. начато в 1966. Ж. у. широко используют за рубежом. В США в жидком виде вносят до 50% азотных и около 10% сложных удобрений. Азотные Ж. у. применяют в Чехословакии, Дании и др. странах; сложные Ж. у. — во Франции, Великобритании, Канаде.
     Азотные Ж. у. содержат азот (аммиачная вода 16,5—20,5%, жидкий безводный аммиак 82,2%, аммиакаты 35—45%) в основном или только в форме аммиака (NH 3), который прочно связывается с частицами почвы и не вымывается дождями и талыми водами. В связи с этим Ж. у. можно применять не только весной, но и в конце лета (под посев озимых) и осенью (под урожай яровых следующего года). В почву азотные Ж. у. вносят прицепными или навесными машинами в агрегате с плугами или культиваторами на определённую глубину (чтобы избежать потерь аммиака): аммиачную воду и аммиакаты — на 10—12 см, жидкий безводный аммиак — на 15—20 см(в зависимости от механического состава почвы). Растворы аммиачной селитры и мочевины (до 30—32%) не содержат аммиака, поэтому их можно вносить в подкормку, разбрызгивая по поверхности почвы. Дозы Ж. у. (по азоту) такие же, как и твёрдых азотных удобрений.
     Хранят и перевозят Ж. у., содержащие свободный аммиак, в герметически закрытой таре, безводный аммиак в стальных цистернах, выдерживающих высокое давление его паров — до 2 Мн/м 2(20 атм); для аммиачной воды пригодны цистерны из-под тракторного горючего, для аммиакатов нужна тара из нержавеющей стали, алюминия, пластмасс или с антикоррозийным покрытием. Азотные Ж. у. значительно дешевле твёрдых, меньше и затраты труда на их внесение.
     Сложные Ж. у. — водные растворы, содержащие до 27% азота, фосфора и калия. При введении стабилизирующих добавок, например коллоидной глины, бентонита, предохраняющих раствор от кристаллизации, концентрацию питательных веществ в удобрении можно увеличить до 40%. Сложные Ж. у. не содержат свободного аммиака, поэтому их можно вносить поверхностно под вспашку, культивацию или боронование и в рядки при посеве.
     Лит.:Баранов П. А., Кореньков Д. А., Павловский И. В., Жидкие азотные удобрения, М., 1961; Баранов П. А., Жидкие азотные удобрения, М., 1966; Справочная книга по химизации сельского хозяйства, под ред. В. М. Борисова, М., 1969.
      П. А. Баранов.

Мазут ); сланцевые, состоящие из смол полукоксования сланцев, и угольные, представляющие собой тяжёлые фракции смол полукоксования углей. Топлива различаются по вязкости, содержанию серы, золы, температуре застывания, теплоте сгорания и др. свойствам. Большинство Ж. к. т. составляют нефтяные топлива, которые, в свою очередь, подразделяются по содержанию серы (в %) на малосернистые (0,5), сернистые (2) и высокосернистые (до 3,5). Низкое содержание серы особенно важно для топлив, используемых в промышленных печах (мартены и др.). Преимущество Ж. к. т. перед твёрдыми определяется их высокой теплотой сгорания — 37—42 Мдж/кг(9000—10 000 ккал/кг), удобством транспортировки и хранения, простотой подачи топлива в топку, точностью регулировки термического режима установки и др. В этом отношении Ж. к. т. уступает лишь газообразному топливу.
     Лит.:Геллер З. И., Мазут как топливо, М., 1965; Товарные нефтепродукты, их свойства и применение, М., 1971.

Стекло .

Лазер ).
     В первых Ж. л. использовались растворы редкоземельных хелатов (см. Хелатные соединения ). Они пока не нашли применения вследствие малости достижимой энергии и недостаточной химической стойкости хелатов. Ж. л., работающие на неорганических активных жидкостях, предложенных и синтезированных в СССР, обладают большими импульсными энергиями при значительной средней мощности. При этом Ж. л. генерируют излучение с узким спектром частот.
     Интересными особенностями обладают Ж. л., работающие на растворах органических красителей. Широкие спектральные линии люминесценции органических красителей позволяют осуществить Ж. л. с непрерывной перестройкой длин волн излучения в диапазоне порядка несколько сотен . Заменяя красители, можно обеспечить перекрытие всего видимого и части инфракрасного участков спектра. В Ж. л. на красителях в качестве источника накачки обычно используются твердотельные лазеры. Для некоторых красителей можно использовать накачку от специальных импульсных газосветных ламп, дающих более короткие интенсивные вспышки белого света, чем обычные импульсные лампы (менее 50 мксек).
     Лит.см. при ст. Лазер.
      М. Е. Жаботинский.

Вакуумметрия ).

Циолковским в 1903, доказавшим возможность использования ЖРД для межпланетных полётов. Предложенные им принципы конструктивного решения ЖРД были дополнены Ю. В. Кондратюком и сохранились в современных двигателях. Первые ЖРД были разработаны и испытаны американским учёным Р. Годдардом в 1923 и немецким учёным Г. Обертом в 1929. Над созданием ЖРД за рубежом работали французским учёный Р. Эно-Пельтри, немецкие учёные Э. Зенгер, Г. Вальтер и др. Первые отечественные ЖРД: ОРМ (опытный ракетный мотор) и ОРМ-1 построены и испытаны в Газодинамической лаборатории (ГДЛ) в 1930—1931 В. П. Глушко ; ОР-2 и двигатель-10 разработаны в Группе изучения реактивного движения Ф. А. Цандером и испытаны в 1932—33.
     В 30-е гг. в СССР было создано семейство ЖРД ОРМ-1 — ОРМ-102. Эти ЖРД служили для отработки элементов конструкций, обеспечивающих зажигание, запуск, работу на режиме на различных жидких топливах, а также для практического использования в летательных аппаратах (например, ОРМ-50, ОРМ-52 и др.).
     С 40-х гг. в СССР и за рубежом разработано большое количество типов ЖРД, нашедших широкое применение на ракетах различного назначения и на некоторых самолётах. В 1942 в Германии были начаты лётные испытания ракеты Фау-2 В. фон Брауна с ЖРД тягой 245 кнконструкции В. Тиля. В 1943—46 на самолётах В. М. Петлякова, С. А. Лавочкина, А. С. Яковлева и П. О. Сухого были проведены лётные испытания вспомогательных авиационных ЖРД, созданных в Опытно-конструкторском бюро, выросшем из ГДЛ (ГДЛ-ОКБ). В СССР в начале 50-х гг. полёты совершали баллистические ракеты, ЖРД которых обладали значительно большей тягой. В дальнейшем под руководством Глушко, А. М. Исаева, С. А. Косберга и др. советских конструкторов были разработаны и созданы двигатели ( см. рис. 1 ), обеспечившие полёты первых советских искусственных спутников Земли, искусственных спутников Солнца, Луны, Марса, автоматических станций на Луну, Венеру и Марс, космических кораблей, всех геофизических и др. ракет в 1949—72. ЖРД получили широкое развитие в США, Великобритании, Франции и др. странах.
     ЖРД состоит из камеры сгорания с соплом, систем подачи компонентов топлива, органов регулирования, зажигания и вспомогательных агрегатов (теплообменников, смесителей и др.). ЖРД развивает тягу от мн(микроракетные двигатели) до нескольких Мн(ЖРД 1-й ступени ракеты «Сатурн-5» создаёт тягу около 7 Мн); удельный импульс достигает
     для 2-компонентных и до
     для 3-компонентных топлив. Масса двигателя, отнесённая к единице тяги, составляет 0,7—2 г/н; габаритные размеры изменяются в широких пределах. ЖРД бывают с однократным и многократным запуском, одно- и многокамерные. Ракетные силовые установки могут быть одно- и многодвигательные. Система подачи топлива в ЖРД может быть вытеснительная или с турбонасосным агрегатом (ТНА) ( рис. 2 ). ЖРД с ТНА бывают 2 основных схем: без дожигания генераторного газа и с дожиганием. В ЖРД с ТНА без дожигания генераторного газа продукты газогенерации после срабатывания в турбине выбрасываются в окружающую среду через вспомогательные сопла, часто являющиеся рулевыми. Генераторный газ, продукт неполного сгорания, имеет относительно низкую температуру, а вспомогательные сопла меньшую степень расширения, чем основные, поэтому удельный импульс, получаемый при истечении продуктов сгорания через вспомогательные сопла, меньше удельного импульса основной камеры ЖРД, т. е. имеет место потеря удельного импульса. В ЖРД с дожиганием генераторного газа относительно низкотемпературные продукты газогенерации, получаемые из основных компонентов топлива, после срабатывания в турбине направляются в камеру ЖРД для дожигания. Такие ЖРД не имеют потери удельного импульса, обусловленной приводом ТНА. По назначению различают ЖРД: основные (маршевые), корректирующие, тормозные, рулевые; микроракетные ЖРД могут быть стабилизирующими и ориентационными. Обычно ЖРД работают при постоянном давлении в камере сгорания, но микроракетные двигатели бывают импульсными. Разрабатываются комбинированные двигатели, использующие ЖРД: турбо- и воздушноракетные. По роду окислителя ЖРД бывают: азотно-кислотные, азоттетроксидные, кислородные, перекисьводородные, фторные и др.
     Проблемы, возникающие при создании ЖРД, многочисленны. Необходим рациональный выбор топлива, удовлетворяющего заданным удельному импульсу и условиям эксплуатации, а также совершенство рабочего процесса для достижения заданного удельного импульса. Требуется устойчивая работа на заданных режимах, без развитых низкочастотных и высокочастотных колебаний давления, вызывающих разрушительные вибрации двигателя. Охлаждение двигателя, подверженного воздействию агрессивных продуктов сгорания при весьма высоких температурах (до 5000 К) и давлениях
     усугубляемому в некоторых случаях присутствием конденсированной фазы, представляет значительные трудности. Большинство камер охлаждается одним из компонентов топлива. Если при этом не удаётся охладить сопло и камеру до температуры, требуемой условиями прочности (при использовании всего топлива), то в слое газа, прилегающем к стенке, создают пониженную температуру путём обогащения пристеночного слоя одним из компонентов. Часто применяется смешанное охлаждение, т. е. наружное и внутреннее одновременно ( рис. 3 ). Для защиты стенок камеры и сопла от нагрева одновременно с их охлаждением широко применяют теплозащитные покрытия. Сложной задачей является надёжность подачи топлива (криогенного, агрессивного и др.) при давлениях
     и расходах до нескольких м/сек. Необходимо обеспечение минимальной массы двигателя. См. также ст. Реактивный двигатель , Ракетный двигатель .
   
      Лит.:Циолковский К. Э., Исследование мировых пространств реактивными приборами. Калуга, 1926; Добровольский М. В., Жидкостные ракетные двигатели, М., 1968; Алемасов В. Е., Дрегалин А. Ф., Тишин А. П., Теория ракетных двигателей, 2 изд., М., 1969; Петрович Г. В., Ракетные двигатели ГДЛ-ОКБ. 1929—1969, М., 1969; Волков Е. Б., Головков Л. Г., Сырицын Т. Л., Жидкостные ракетные двигатели, М., 1970; Rocket propulsion, Amst. — L. — N. Y., 1960.
      С. З. Копелев.
   Рис. 2. Схема подачи топлива в жидкостном ракетном двигателе с турбонасосным агрегатом: 1 — топливные баки; 2 — парогенератор; 3 — турбонасосный агрегат; 4 — форсунки; 5 — камера сгорания; 6 — сопло.
   Рис. 3. Схема жидкостного ракетного двигателя со смешанным охлаждением: 1 — баллон со сжатым газом; 2 — редуктор давления; 3 — топливные баки; 4 — клапаны; 5 — камера сгорания; 6 — пояса подачи горючего для внутреннего охлаждения; 7 — сопло.
   Рис. 1. Кислородо-керосиновый 4-камерный жидкостный ракетный двигатель РД-107 с тягой 1 Мн(102 тс) первой ступени ракеты-носителя «Восток» (ГДЛ-ОКБ, 1954-57): 1 — рулевые камеры сгорания; 2 — основные камеры сгорания; 3 — силовая рама; 4 — газогенератор; 5 — теплообменник на турбине; 6 — насос окислителя; 7 — насос горючего.

текучесть.Подобно твёрдому телу, Ж. сохраняет свой объём, имеет свободную поверхность, обладает определённой прочностью на разрыв при всестороннем растяжении и т. д. С другой стороны, взятая в достаточном количестве Ж. принимает форму сосуда, в котором находится. Принципиальная возможность непрерывного перехода Ж. в газ также свидетельствует о близости жидкого и газообразного состояний.
     По химическому составу различают однокомпонентные, или чистые. Ж. и двух- или многокомпонентные жидкие смеси ( растворы ). По физической природе Ж. делятся на нормальные (обычные), жидкие кристаллы с сильно выраженной анизотропией (зависимостью свойств от направления) и квантовые жидкости—жидкие 4He, 3He и их смеси — со специфическими квантовыми свойствами при очень низких температурах. Нормальные чистые Ж. имеют только одну жидкую фазу (т. е. существует один единственный вид каждой нормальной Ж.). Гелий 4He может находиться в двух жидких фазах — нормальной и сверхтекучей, а жидкокристаллические вещества — в нормальной и одной или даже двух анизотропных фазах.
     Общим для всех нормальных Ж., в том числе и для смесей, является их макроскопическую однородность И изотропность при отсутствии внешних воздействий. Эти свойства сближают Ж. с газами, но резко отличают их от анизотропных кристаллических твёрдых тел. Аморфные твёрдые тела (например, стекла), с современной точки зрения, являются переохлажденными Ж. (см. Аморфное состояние ) и отличаются от обычных Ж. только численными значениями кинетических характеристик (существенно большей вязкостью и др.). Область существования нормальной жидкой фазы ограничена со стороны низких температур фазовым переходом в твёрдое состояние — кристаллизацией или (в зависимости от величины приложенного давления) фазовым переходом в сверхтекучее состояние для 4He и в жидко-анизотропное состояние для жидких кристаллов. При давлениях ниже критического давления р кнормальная жидкая фаза ограничена со стороны высоких температур фазовым переходом в газообразное состояние — испарением.При давлениях р> р кфазовый переход отсутствует и по своим физическим свойствам Ж. в этой области неотличима от плотного газа. Наивысшая температура T k, при которой ещё возможен фазовый переход Ж. — газ, называется критической. Значения p k  и T kопределяют критическую точку чистой Ж., в которой свойства Ж. и газа становятся тождественными. Наличие критической точки для фазового перехода Ж. — газ позволяет осуществить непрерывный переход из жидкого состояния в газообразное, минуя область, где газ и Ж. сосуществуют (см. Критическое состояние ). Т. о., при нагревании или уменьшении плотности свойства Ж. (теплопроводность, вязкость, самодиффузия и др.), как правило, меняются в сторону сближения со свойствами газов. Вблизи же температуры кристаллизации большинство свойств нормальных Ж. (плотность, сжимаемость, теплоёмкость, электропроводность и т. д.) близки к таким же свойствам соответствующих твёрдых тел. В табл. приведены значения теплоёмкости при постоянном давлении ( С р) ряда веществ в твёрдом и жидком состояниях при температуре кристаллизации. Малое различие этих теплоёмкостей показывает, что тепловое движение в Ж. и твёрдых телах вблизи температуры кристаллизации имеет примерно одинаковый характер.
     Теплоёмкость некоторых веществ [в дж/( кг· К)] ,при температуре кристаллизации

Na Hg Pb Zn Cl NaCl
С р, тв. 1382 138 146 461 620 1405
С р, ж. 1386 138 155 542