Концепцию панспермии обычно упрекают в том, что она не дает принципиального ответа на вопрос о путях происхождения жизни, и лишь отодвигает решение этой проблемы на неопределенный срок. При этом молчаливо подразумевается, что жизнь должна была произойти в некой конкретной точке (или нескольких точках) Вселенной, и далее расселяться по космическому пространству – подобно тому, как вновь возникшие виды животных и растений расселяются по Земле из района своего происхождения; в такой интерпретации гипотеза панспермии действительно выглядит просто уходом от решения поставленной задачи. Однако действительная суть этой концепции заключается вовсе не в романтических межпланетных странствиях «зародышей жизни», а в том, что жизнь как таковая просто является одним из фундаментальных свойств материи, и вопрос о «происхождении жизни» стоит в том же ряду, что и, например, вопрос о «происхождении гравитации».
   Легко видеть, что из двух исходных положений концепции панспермии – вечность жизни и повсеместность ее распространения – фальсифицируемым (т.е. проверяемым – см. дополнительную главу 1-а) является лишь второе. Однако все попытки обнаружить живые существа (или их ископаемые остатки) вне Земли, и прежде всего – в составе метеоритного вещества, так и не дали положительного результата. Неоднократно появлявшиеся сообщения о находках следов жизни на метеоритах основаны или на ошибочной интерпретации некоторых бактериоподобных неорганических включений, или на загрязнении «небесных камней» земными микроорганизмами. Метеоритное вещество оказалось достаточно богатым органикой, однако вся она, как уже было сказано, не обладает хиральной чистотой; это последнее обстоятельство – весьма сильный довод против принципиальной возможности существования «межзвездной жизни». Таким образом, по крайней мере положение, касающееся повсеместности распространения жизни во Вселенной, не нашло подтверждения. Это заставляет сделать грустный вывод, что панспермия, так же как и абиогенез, не дает удовлетворительного ответа на вопрос о возникновении жизни на Земле [8].
   Реальный прорыв в этой области обозначился лишь в последние 20-25 лет, и связан он был с приложением к проблеме возникновения жизни теории самоорганизующихся систем. Самоорганизующейся называют такую систему, которая обладает способностью корректировать свое поведение на основе предшествующего опыта (сам термин был введен в 1947 г. одним из создателей кибернетики физиологом У. Эшби). Следует сразу оговорить, что при этом было строго показано, что рассмотрение процессов развития (в том числе – биологических систем из добиологических) принципиально невозможно в рамках классической термодинамики. Создатель альтернативной, неравновесной, термодинамики И. Пригожин произвел научную революцию тех же примерно масштабов, что в свое время Ньютон или Эйнштейн, и революция эта еще отнюдь не завершена (подробнее обо всем этом – см. дополнительную главу 4-а). Между тем, все красивые модели последних лет – разрушение зеркальной симметрии с возникновением хиральной чистоты В.И. Гольданского (1986), или более подробно рассматриваемые далее гиперциклы М. Эйгена (1982) – работают только в рамках пригожинской термодинамики. Именно поэтому все они не имеют отношения к классическому абиогенезу: если Геккель и Опарин сводили биологию к химии, то физхимик Эйген, как мы увидим, в известном смысле сводит химию к биологии.
   Эйген выдвинул концепцию образования упорядоченных макромолекул из неупорядоченного вещества на основе матричной репродукци и естественного отбора. Он начинает с того, что дарвиновский принцип естественного отбора (ЕО) – единственный понятный нам способ создания новой информации (это физическая величина, отражающая меру упорядоченности системы). Если имеется система самовоспроизводящихся единиц, которые строятся из материала, поступающего в ограниченном количестве из единого источника, то в ней с неизбежностью возникает конкуренция и, как ее следствие, ЕО. Эволюционное поведение, управляемое ЕО, основано на самовоспроизведении с «информационным шумом» (в случае эволюции биологических видов роль «шума» выполняют мутации). Наличия этих двух физических свойств достаточно, чтобы стало принципиально возможным возникновение системы с прогрессирующей степенью сложности.
   В этом плане предшественником Эйгена является биохимик Г.Кастлер (1966), проанализировавший поведение системы нуклеиновых кислот в рамках теории информации. Он пришел к выводу, что новая информация возникает в системе, только если в ней происходит случайный выбор («методом тыка») с последующим запоминанием его результатов, а не целенаправленный отбор наилучшего варианта. В последнем случае можно говорить лишь о реализации той информации, что заложена в систему изначально, то есть о выделении уже имеющейся информации из «шума». Сама же возможность возникновения «новизны» (т.е. акта творчества) определяется свойствами информации как таковой: как было показано А.А. Ляпуновым (1965), на нее не распространяются законы сохранения, т.е. информация, в отличие от материи и энергии, может быть заново создана (и, соответственно, может быть и безвозвратно утрачена).
   Говоря об усложнении системы, необходимо упомянуть выводы еще одного основоположника кибернетики, Дж. фон Неймана (1960), решавшего проблему самовоспроизведения автоматов. Оказалось, способность к самовоспроизведению принципиально зависит от сложности организации. На низшем уровне сложность является вырождающейся, т.е. каждый автомат способен воспроизводит лишь менее сложные автоматы. Существует, однако, вполне определенный критический уровень сложности, начиная с которого эта склонность к вырождению перестает быть всеобщей: «Сложность, точно так же, как и структура организмов, ниже некого минимального уровня является вырождающейся, а выше этого уровня становится самоподдерживающейся или даже может расти».
   Итак, Эйгену «всего-навсего» осталось найти реальный класс химических реакций, компоненты которых вели бы себя подобно дарвиновским видам, т.е. обладали бы способностью «отбираться» и, соответственно, эволюционировать в сторону увеличения сложности организации. Именно такими свойствами, как выяснилось, и обладают нелинейные автокаталитические цепи, названные им гиперциклами. Здесь необходимо дать некоторые пояснения.
   Простейшим случаем каталитической реакции является превращение исходного вещества (субстрат – S) в конечное (продукт – P) при участии единственного фермента (E); уже этот механизм требует по меньшей мере трехчленного цикла, который называется реакционным (рисунок 14, а). Существуют, однако, и гораздо более сложные реакционные циклы. Таков, например, цикл Кребса – 12-членный цикл, лежащий в основе клеточного дыхания: он катализирует превращение молекулы двухатомной уксусной кислоты (в форме ацетил-кофермента a – CH3CO Koa) в 2 молекулы CO2 и 8 атомов H (рисунок 14, б). Другой пример – углеродный цикл Бете-Вайцзекера, обеспечивающий светимость Солнца за счет превращения четырех атомов водорода 1H в атом гелия 4He (рисунок 14, в). Несмотря на серьезнейшие различия между этими реакциями (первая является химической, а вторая – ядерной), они обладают фундаментальным сходством: в обеих высокоэнергетическое вещество превращается в продукты, бедные энергией, при сохранении – т.е. циклическом воспроизведении – промежуточных компонентов (интермедиатов).
    РИСУНОК 14. Реакционные циклы (абстрактный трехчленный цикл, цикл Кребса и цикл Бете-Вайцзекера); каталитический цикл; гиперцикл.
   Следующий за реакционным циклом уровень организации представляет собой каталитический цикл, в котором некоторые – или все – интермедиаты сами являются катализаторами для одной из последующих реакций. Каждый из них (Ei+1) образуется из высокоэнергетического субстрата (S) при каталитической поддержке от предыдущего интермедиата (Ei) (рисунок 14, г). Таким образом, каталитический цикл как целое эквивалентен автокатализатору.
   Если же такие автокаталитические (т.е. самовоспроизводящиеся) единицы оказываются, в свою очередь, сочленены между собой посредством циклической связи, то возникает каталитический гиперцикл. Гиперцикл, таким образом, основан на нелинейном автокатализе – автокатализе как минимум второго порядка, и представляет собой следующий, более высокий уровень в иерархии автокаталитических систем. Он состоит из самоинструктирующихся единиц (Ii) с двойными каталитическими функциями: в качестве автокатализатора интермедиат Ii способен инструктировать свое собственное воспроизведение, и при этом катализирует воспроизведение из высокоэнеогетического субстрата (S) следующего в цепи интермедиата (Ii+1) (рисунок 14, д).
   Гиперциклы (одним из простейших примеров которых является размножение РНК-содержащего вируса в бактериальной клетке) обладают рядом уникальных свойств, порождающих дарвиновское поведение системы. Гиперцикл конкурирует (и даже более ожесточенно, чем дарвиновские виды) с любой самовоспроизводящейся единицей, не являющейся его членом; он не может стабильно сосуществовать и с другими гиперциклами – если только не объединен с ними в автокаталитический цикл следующего, более высокого, порядка. Состоя из самостоятельных самовоспроизводящихся единиц (что гарантирует сохранение фиксированного количества информации, передающейся от «предков» к «потомкам»), он обладает и интегрирующими свойствами. Таким образом, гиперцикл объединяет эти единицы в систему, способную к согласованной эволюции, где преимущества одного индивида могут использоваться всеми ее членами, причем система как целое продолжает интенсивно конкурировать с любой единицей иного состава.
   Итак, именно гиперцикл (который сам по себе – еще чистая химия) является тем самым критическим уровнем, начиная с которого сложность неймановского «самовоспроизводящегося автомата» перестает быть вырождающейся. Эта концепция, в частности, вполне удовлетворительно описывает возникновение на основе взаимного катализа системы «нуклеиновая кислота-белок» – решающее событие в процессе возникновения жизни на Земле. Вместе с тем, сам Эйген подчеркивает, что в ходе реальной эволюции гиперцикл вполне мог «вымереть» – после того, как ферментные системы следующего поколения (с более высокой точностью репродукции) сумели индивидуализировать интегральную систему в форме клетки.
   Однако на процесс возникновения жизни можно посмотреть и с несколько иной позиции, не биохимической , а геохимической, как это делает, например, А.С. Раутиан (1995). Мы уже говорили о том, что с общепланетарной точки зрения жизнь – это способ упорядочения и стабилизации геохимических круговоротов; откуда же берется сам геохимический круговорот?
   Открытый космос холоден (лишь на 4о теплее абсолютного нуля) потому, что концентрация вещества в нем ничтожно мала (3*10-31 г/см3), и звездам просто нечего нагревать; по этой же самой причине, кстати сказать, Вселенная прозрачна, и мы видим небесные светила. В то же время любая планета, будучи непрозрачной, аккумулирует часть энергии, излучаемой центральным светилом и нагревается, и тогда между нагретой планетой и холодным космосом возникает температурный градиент ТГ. Если планета обладает при этом достаточно подвижной газообразной и/или жидкой оболочкой (атмосферой и/или гидросферой), то ТГ с неизбежностью порождает в ней – просто за счет конвекции – физико-химический круговорот. В этот круговорот с неизбежностью же вовлекается и твердая оболочка планеты (в случае Земли – кора выветривания), в результате чего возникает глобальный геохимический цикл – прообраз биосферы.
   Итак, движущей силой геохимических круговоротов является в конечном счете энергия центрального светила в форме ТГ. Поэтому элементарные геохимические циклы (т.е. прообразы экосистем) существуют в условиях периодического падения поступающей в них энергии – в те моменты, когда они в результате вращения планеты оказываются на ее теневой стороне, где ТГ меньше. Эта ситуация неизбежно должна порождать отбор круговоротов на стабильность, т.е. на их способность поддерживать собственную структуру. Наиболее же стабильными окажутся те круговороты, что «научатся» запасать энергию во время световой фазы цикла с тем, чтобы расходовать ее во время темновой. Другим параметром отбора круговоротов, очевидно, должно быть увеличение скорости оборота вовлеченного в них вещества; здесь выигрывать будут те из них, что обзаведутся наиболее эффективными катализаторами. В конкретных условиях Земли такого рода преимущества будут иметь те круговороты, что происходят при участии высокомолекулярных соединений углерода.
   Итак, жизнь в форме химической активности означенных соединений оказывается стабилизатором и катализатором уже существующих на планете геохимических циклов (включая глобальный); циклы при этом «крутятся» за счет внешнего источника энергии. Вам это ничего не напоминает? Ну конечно – это уже знакомая нам автокаталитическая система, которая, соответственно, обладает потенциальной способностью к саморазвитию, и прежде всего – к совершенствованию самих катализаторов-интермедиатов. Отсюда становится понятным парадоксальный вывод, к которому независимо друг от друга приходили такие исследователи, как Дж. Бернал (1969) и М.М. Камшилов (1972): жизнь как явление должна предшествовать появлению живых существ.
   Не менее замечательно и то, что происходит при этом с другим компонентом такой автокаталитической системы – самой планетой. Далее мы постоянно будем говорить о способности живых организмов кондиционировать (т.е. перестраивать в благоприятном для себя направлении) свою среду обитания. Рассмотрев это явление на планетарном уровне, Дж. Лавлок (1982) выдвинул свою концепцию Геи, согласно которой всякая обитаемая планета (именно планета как астрономическое тело!) в определенном смысле является живым объектом – Геей, названным так по имени древнегреческой богини, олицетворяющей Землю. Наиболее разработанной (в математическом отношении) из моделей Лавлока является «Маргаритковый Мир (Daisyworld)»; методологически она сходна со знакомой вам по курсу экологии моделью Лотки-Вольтерра, описывающей поведение системы из двух взаимодействующих популяций – хищника и жертвы, и тоже является абстракцией, основанной на предельном упрощении.
   Сначала, как водится, несколько пояснений. Система, находящаяся в состоянии динамического равновесия, испытывает различного рода внешние возмущения. Она может либо усиливать исходное возмущение, либо, напротив, гасить его; в этих случаях говорят о процессах, идущих, соответственно, с положительной или отрицательной обратной связью. Примером первого является наступление ледника: при падении температуры часть осадков выпадает в виде белого снега и льда, в результате чего поверхность планеты начинает сильнее отражать солнечные лучи (увеличивается ее альбедо [9]); это вызывает дополнительное падение температуры, в результате покрытая ледником площадь увеличивается – и так далее. Отрицательная же обратная связь работает, например, в упомянутой системе хищник-жертва: увеличение численности зайцев ведет к последующему усилению пресса хищников, так как лисы оказываются способны выкормить больше детенышей; в итоге численность обеих популяций колеблется вокруг неких средних значений. Этот тип обратной связи характерен именно – и прежде всего – для высокоорганизованных систем, биологических и социальных; именно он превращает их в гомеостаты (гомеостазис – способность системы поддерживать свои параметры, например – температуру тела, в определенных пределах, минимизируя воздействия отклоняющих факторов).
   Итак, модель Лавлока. Имеется гипотетическая планета тех же примерно параметров, что и Земля, вращающаяся вокруг звезды того же спектрального класса, что и наше Солнце. Большую часть поверхности планеты занимает суша, которая повсеместно обводнена и допускает существование жизни. Планета называется «Маргаритковый мир», ибо единственная форма жизни на ней – маргаритки (Bellis) с темными и светлыми цветами (ТМ и СМ); растения эти способны существовать в температурном диапазоне от 5 до 40 C, предпочитая температуру 20 C. Светимость местного Солнца, согласно одной из современных астрофизических гипотез, закономерно возрастает по мере его «старения», поэтому температура планетной поверхности вроде бы должна на протяжении всей ее истории увеличиваться, причем практически линейно.
   Но вот экваториальная область планеты нагрелась до оговоренных 5 C, и тут на сцене появляются наши маргаритки – ТМ и СМ в примерно равной пропорции. При этом в тех местах, где доля темных цветов случайно окажется выше средней, локальное альбедо будет несколько уменьшаться, а грунт прогреваться до более высокой температуры – то есть более близкой к оптимальным для маргариток 20 C. В итоге ТМ получат селективное преимущество перед СМ, и доля последних уменьшится до предела. С этого момента в системе складывается положительная обратная связь: темные цветы несколько понижают суммарное альбедо планеты, прогретая до 5 C (и пригодная для жизни маргариток) область расширяется от экватора, что вызывает дальнейшее понижение альбедо, и т.д. Но вот наступает время, когда на планете, уже полностью заселенной ТМ, температура на экваторе – в результате усиления светимости Солнца – переваливает за 20 C. С этого момента селективные преимущества оказываются на стороне светлых цветов, увеличивающих локальное альбедо и понижающих температуру своих местообитаний. Расселение по планете СМ, вытесняющих ТМ, происходит по точно такой же схеме (от экватора к полюсам), и тоже с положительной обратной связью. Светимость Солнца тем временем продолжает расти, и наступает момент, когда возможности СМ по кондиционированию среды обитания оказываются исчерпанными; температура переваливает за 40 C, и планета опять становится безжизненной. Так вот, расчеты Лавлока показали, что на протяжении почти всего времени между этими двумя критическими моментами температура поверхности планеты будет практически постоянной – около 20 C (рисунок 15), несмотря на непрерывное возрастание светимости Солнца.
    РИСУНОК 15.(пропущен) «Маргаритковый мир» Лавлока. Изменения температуы поверхности планеты с изменением светимости Солнца (1.0 – нынешнее состояние) при наличии единственной морфы маргариток (А) и при двух, «светлой» и «темной», способных кондиционировать среду обитания (В).
   Итак, даже такая суперпримитивная биосфера, состоящая из единственного вида растений, которые всего-то и умеют, что варьировать цвет своих лепестков, способна создавать эффект вполне космического характера – глобально менять температуру поверхности планеты. Однако более существенен не факт изменения температуры, а то, что планета превращается в гомеостат, и поддерживает свою температуру постоянной вопреки внешним изменениям (светимости Солнца). Замечательно и то, что система как целое работает с отрицательной обратной связью, хотя каждый из ее элементов – с положительной; это является характерной особенностью именно живых систем (вспомним, например, систему хищник-жертва).
   В качестве завершения этого раздела следует упомянуть еще об одном обстоятельстве: многие ведущие биологические журналы (например, «Журнал общей биологии» Российской Академии наук) не принимают к публикации статей по проблеме происхождения жизни; не принимают в принципе – вроде как проекты вечного двигателя. (Точно также, кстати сказать, журналы по лингвистике не принимают статей на тему «происхождения языка».) Дело в том, что наука вообще имеет дело лишь с неединичными, повторяющимися явлениями, вычленяя их общие закономерности и частные особенности; биологическая эволюция, например, является предметом науки лишь постольку, поскольку представлена совокупностью отдельных эволюционных актов. Между тем, такие явления, как Жизнь и Разум, пока известны нам как уникальные, возникшие однократно в конкретных условиях Земли. И до тех пор, пока мы не разрушим эту уникальность (ну, например, обнаружив жизнь на других планетах, или синтезировав реального гомункулуса), проблема возникновения Жизни, строго говоря, обречена оставаться предметом философии, богословия, научной фантастики – всего, чего угодно, но только не науки: невозможно строить график по единственной точке. Именно поэтому большинство биологов относится к обсуждению этой проблемы с нескрываемой неприязнью: профессионалу, заботящемуся о своей репутации, всегда претит высказывать суждения в чужой для себя области, где он заведомо недостаточно компетентен. Выдающийся генетик Н.В. Тимофеев-Ресовский, к примеру, имел обыкновение на все вопросы о происхождении жизни на Земле отвечать: «Я был тогда очень маленьким, и потому ничего не помню. Спросите-ка лучше у академика Опарина...»
 

4-а (дополнительная). Термодинамические подходы к сущности жизни. Второе начало термодинамики, энтропия и диссипативные структуры.

   Здесь нам опять придется начать издалека. В 1847 году Г. Гельмгольц сформулировал закон сохранения энергии (ЗСЭ). Следует помнить, что ЗСЭ является всего лишь эмпирическим обобщением: вообще говоря, никто не знает, почему энергию нельзя ни сотворить из ничего, ни уничтожить – просто этого не происходит ни в каких, сколь угодно хитроумных, наблюдениях и экспериментах. Мы с вами помним, что однажды ЗСЭ основательно пошатнулся – когда возникла необходимость объяснить, отчего светит Солнце (см. главу 1), однако тут подоспело открытие Эйнштейном эквивалентности массы и энергии, и все опять встало на свои места. Именно поэтому ни одно патентное бюро не станет рассматривать проект устройства для получения большей энергии, чем оно потребляет; такое устройство получило название вечный двигатель первого рода.
   Первой созданной человеком машиной для превращения тепла в механическую энергию был паровой двигатель. Это устройство производит работу путем перемещения энергии в форме тепла из горячего резервуара (с паром) в холодный резервуар (с водой). Поэтому раздел физики, занимающийся взаимными превращениями работы и энергии, назвали термодинамикой, а паровой двигатель очень долго оставался его основной моделью. Первое начало термодинамики гласит, что «если резервуар с паром содержит некоторое количество энергии, то от паровой машины нельзя получить больше работы, чем допускает запас этой энергии». Легко видеть, что оно является одной из формулировок ЗСЭ; именно первое начало термодинамики и нарушает «вечный двигатель первого рода».
   Ну, ладно: нельзя так нельзя. Но уж по крайней мере всю работу, что содержится в паре, мы можем извлечь? Имеется в виду – если полностью устранить трение и всякие иные потери? Увы – оказывается, нет. Даже в идеальном случае не то что выиграть – нельзя даже «получить свое». В 1824 году С. Карно установил, что доля тепловой энергии, которая может быть (даже в идеале!) превращена в работу, зависит от разности температур горячего и холодного резервуаров.
   Идеальная отдача K = (Т2-Т1)/Т2, где Т1 и Т2 – температура холодного и горячего резервуаров (в градусах абсолютной шкалы Кельвина). Пусть, например, Т2 будет 400 (=127 С), а Т1 300 (=27 С). В этом случае K = (400-300)/400=0,25. То есть – даже в этом идеализированном случае лишь четверть энергии сможет быть превращена в работу, а остальные три четверти – бесполезно пропадут.
   Если же у нас имеется только один резервуар (он же горячий, он же и холодный), то идеальная отдача, соответственно, будет равна нулю. То есть – энергии-то в этом резервуаре с паром сколько угодно, но ни единая часть ее не может быть превращена в работу. Все это полностью относится и к другим видам энергии: работа, которую может совершить камень, падающий с края обрыва, зависит от высоты последнего (т.е. от разности потенциальных энергий камня), однако камень, лежащий посреди плоскогорья на высоте 5 километров, никакой работы совершить не может. В этом и состоит одна из формулировок Второго начала термодинамики (ВНТ): «ни одно устройство не может извлечь работу из системы, которая целиком находится на одном потенциальном уровне».
   Устройство, предназначенное для извлечения работы из системы, имеющей единственный энергетический уровень (и, соответственно, нарушающее ВНТ), называется вечным двигателем второго рода. Представляете, как было бы здорово – откачать, например, энергию теплового движения молекул кастрюльки с водой (кастрюлька-то пускай при этом замерзнет – закон сохранения энергии мы чтим!) и перевести ее в механическую, электрическую, или еще какую-нибудь путную форму. Только ничего из этой затеи не выйдет – вечный двигатель второго рода невозможен точно так же, как и первого.
   Между тем, как только в системе появляются два энергетических уровня, энергия тут же начинает перетекать от более высокого уровня к низкому: тепло переходит от горячего тела к холодному, камень падает с обрыва, ток начинает течь от анода к катоду, и т.д. (поэтому существует и другая формулировка ВНТ: «Поток энергии всегда направлен от высокого потенциального уровня к низкому»). В случае, если наша паровая машина представляет собой замкнутую систему (т.е. никакое вещество и энергия не могут ни проникнуть в нее извне, ни покинуть ее), горячий резервуар будет постепенно остывать, а холодный – нагреваться; то есть – в течении всего времени, пока в системе совершается работа разность температур резервуаров будет неуклонно падать. Тогда, в соответствии с соотношением Карно, доля содержащейся в системе энергии, которую можно обратить в работу, будет уменьшаться, а доля той «омертвленной» энергии, что недоступна для такого превращения – необратимо расти. Поэтому ВНТ может быть сформулировано еще и так: «В любом самопроизвольном процессе (когда энергии открыт путь для перетекания с более высокого уровня на низкий) количество недоступной энергии со временем увеличивается».