В далеком прошлом эта местность была покрыта редким лесом. Подобно многим гористым местностям, во времена неолита пустошь была расчищена и сейчас, как и тогда, используется как пастбище. Суровость ее красоты объясняется климатическими условиями. Гранитная возвышенность принимает на себя в полной мере натиск западных штормовых ветров, которые в разгар зимы делают ее совершенно безлюдной и негостеприимной Открытая пустошь может сильно заболочиваться, но в сухие летние месяцы все же открывается доступ к сохранившимся мегалитическим объектам.
   Здешние круги не столь величественны, как в Уилтшире Порой они едва различимы, если только буквально не наступишь на них. Во многих местах менгиры лежат поверженными или были убраны, как в случае круга на холме Лауден, который лишь недавно был открыт заново. Здесь также много «кругов хижин» (оснований древних жилищ), возможно, современных каменным кругам и свидетельствующих о том, что пустошь была густо заселена. Наличие такого большого количества камней сильно затрудняет обнаружение больших, частично скрытых кругов.
   В большинстве кругов средняя высота камней не превышает одного метра, и часто они оказываются еще ниже. И все же круги впечатляют своими характерными чертами. Самые разные исследователи отмечали их астрономическую ориентацию на ключевые положения солнца. Круг Стэннон, например, сориентирован на восход солнца между двумя пиками Раф-Тора, случающийся 1 мая и 1 августа, а также на восход солнца в дни равноденствия над Браун-Уилли. Он также находится на линии визирования с кругом Фернакр и Северным кругом Лескерника.
   Диаметры кругов колеблются между 13 метрами (43 футами) круга девяти камней в Олтарнаме и 45 с лишним метров (148 футами) круга на холме Лауден. Размер этих кругов не отражает предполагаемого числа жителей в ближайших поселениях. В отличие от приходских церквей, обычно расположенных в центре деревень, каменные круги находятся на удалении от центров обитания. Это вполне можно объяснить тем, что их местоположение определялось астрономическими и геометрическими соображениями, или тем, что проводившиеся в них отправления культа требовали их отдельного расположения.
   В статье в журнале «Улд Акиолэджи» (№ 28, 1996 год), посвященной памятникам пустоши, Кристофер Тилли сообщает:
   «Я хочу доказать, что эти камни помогали учить, помогали запоминать, помогали ориентироваться и помогали думать. Учить, запоминать, ориентироваться и думать – все эти процессы требуют воспитания и обучения. И такое знание давало силу человеку и одновременно придавало потенциал эффективности структурам ритуальной власти… Я хочу доказать, что одной жизненно важной частью ритуального знания, которая было воплощена в камнях для того, чтобы специалисты по обрядам передавали и избирательно „предавали гласности“, было знание местности и пронизывающих ее духовных сил».
   Одни круги являются «истинными», поскольку были построены с помощью колышка и шнура постоянной длины, другие – неправильными. Круги Фернакр и Стэннон – сплющенные, и их создали, по мнению Тома, с помощью сложной геометрии. Другие авторы высказывали предположение о том, что они были сооружены на глазок.

Структуры Бодмин-Мура

   Первым делом я решил перепроверить координаты, приведенные Джоном Барнаттом в замечательной работе «Доисторический Корнуолл». Главная ошибка закралась в координаты Камней Стэннона, которые указывает Бар-натт: SX 1257 8010. Эта же ошибка повторяется в брошюре «Руководство земных тайн по Бодмину и Северному Корнуоллу» Черила Страффона. Правильные же координаты такие: SX 1257 8000. Тут очень важно быть точными. Даже малые расхождения способны вызвать заметные изменения угловых отношений, особенно когда объекты расположены близко друг к другу. В настоящей же книге все вычисления сделаны с точностью до 10 метров (32,8 фута).
   Изначально я намеревался принимать во внимание в своем исследовании только каменные круги, но потом решил включить некоторые торы (скалистые вершины холмов), которые могли быть использованы для визирования, а также хенджи Каслуич и Кастилли, расположенные рядом с пустошью. Поддержку идее включить вершины холмов в настоящее исследование я нашел в процитированной выше статье Кристофера Тилли:
   «То, что желание видеть высокие холмы из кругов сыграло важную роль в их точном расположении, становится очевидным при рассмотрении ряда конкретных примеров. Если бы круг Лиз, расположенный на склоне, находился лишь в тридцати метрах к югу от своего нынешнего местоположения, с него не были бы видны очертания Раф-Тора. То же самое случилось бы, если бы круг холма Лауден был расположен к югу и ниже по склону от своего нынешнего местоположения».
   Я также включил в исследование дольмен Третеви и земляные сооружения у Холла Артура, где более 50 камней расположены в форме прямоугольника на валу. Считается, что он использовался для обрядовых целей, и почти не вызывает сомнений его одновременное сооружение с кругами и хенджами этого района. В таблице 4 даются необходимые детали всех включенных объектов.
   В XIX веке А.Л. Льюис опубликовал в «Джорнел ов Ройял Антрополоджикол Инститьют» информацию о выстраивании кругов в определенном порядке. Три таких построения имеют отношение к данному исследованию.
   1. Камни Стрилпл – Гарроу-Тор – круг Фернакр Раф-Тор.
   2. Круг Стэннон – круг Фернакр – Браун Уилли.
   3. Камни Триплет – круг Лиз – Раф-Тор.
   Проверка этих построений на компьютере показала в первом из них погрешность в один градус между камнями Стриппл, с одной стороны, и кругом Фернакр и Раф-Тором – с другой, которая на расстоянии примерно в 5,5 километра (3,41 мили) дает разницу в 100 метров (328 футов). Построение круга Стэннон, круга Фернакр и Браун-Уилли – точное, но включает еще один дополнительный объект – Северный круг Лескерник. Точным является и построение камней Триппет – круг Лиз – Раф-Тор. Джон Барнатт указывает еще одну линию – между Гарроу-Тором, кругом Лауден и кругом Стэннон. Ее правильность также подтверждается при точном выборе точки на Гарроу-Торе. Компьютер выдал дополнительную линию. Хэрлеро – круг Гудейвер – круг Фернакр протяженностью чуть более 14 километров (8,69 мили).
   В сумме получаем пять отдельных линий.
   1. Линия А: Камни Стриппл-Гарроу – Тор-Раф – Тор.
   2. Линия В: Круг Стэннон – круг Фернакр – Браун Уилли – Круг (северный) Лескерник.
   3. Линия С: Камни Триппет – круг Лиз-Раф – Тор.
   4. Линия D: Круг Стэннон – круг Лауден-Гарроу – Тор.
   5. Линия Е: Круг Хэрлерс – круг Гудейвер – круг Фернакр.
   Некоторые из этих линии фактически пересекаются. Другие же пересеклись бы, если бы их продолжить достаточно далеко. Ниже даются угловые отношения между ними в градусах:
   После первоначального вычисления этот список не казался очень перспективным. Единственным явно значимым был угол между Линией А (от Камней Стриппл до Раф-Тора) и Линией В (от круга Стэннон до круга Лескерник), чуть превышающий 90°, а также возможность того, что угол между Линиями А и D составляет 51,57°, что может указывать на связь с углом склона Великой пирамиды (51,84º). Однако вычисление углов между самими объектами оказалось гораздо плодотворнее.
   Угол круг Стэннон-Раф – Тор, круг Стэннон – круг Лиз, равен 90°, а угол в Раф-Тор – круг Стэннон и Раф-Тор – круг Лиз составляет 55°. Отсюда угол в круге Лиз со сторонами до круга Стэннон и до Раф-Тора равен 35°. Это – прямоугольный треугольник с углами в 35º и 55°, основанный на отношении 7: 10, то есть такой же, что и один из первых треугольников, найденных мной на холме Бредон.
   Так было найдено первое ясное доказательство связи с храмовыми объектами Бредон-Хилла. Точные углы в 35º и 55° между двумя кругами и Тором вряд ли получились случайно. Дело в том, что этот треугольник оказался первичным для всего района. Из него могут быть выведены все остальные круговые объекты. На рисунке 67 показано, как это делается.
   Итак, замыслы создателей объектов Бредон-Хилла и Бодмин-Мура, а также – как мне еще предстояло узнать – композиции на Марлборо-Даунс были похожи. Объекты Бодмин-Мура восходят к неолиту. Композиция Бредон-Хилла состоит в основном из средневековых церквей, но включает и две крепости на холмах, относящиеся к железному веку. Круги же Марлборо-Даунс перекрывают все три периода.
   Доказательства неразрывности объектов, выявленные с помощью этого геометрического родства, теперь представлялись существенными. Такая преемственность могла возникнуть благодаря их непрерывному использованию на протяжении тысячелетий, как и предположил Уоткинс. Существует, однако, и другая возможность. Если такие объекты были источниками некой формы энергии, подобные места могли быть найдены повторно в разные эпохи. Тот резонанс, который я испытывал всем телом при посещении таких объектов, мог быть моим собственным способом обнаружения указанной энергии.
   Точно так же древние могли испытывать влечение строить свои церкви в тех местах, которые «воспринимались» правильно, местах, где они тоже ощущали некий резонанс.
   В то жаркое лето 1975 года, когда я впервые посетил каменные круги на Бодмин-Муре, моя жена Диана вместе со мной медитировала в тех местах и «настраивалась» на них. Двое наших маленьких детей часто ныли: «Нет, папа, только не надо больше каменных кругов!» Они предпочитали оставаться внизу, на прекрасных корнуолльских пляжах со своими ведерками и лопатками, но все же спокойно играли среди камней, пока мы с женой пытались, настроиться на атмосферу этих святых мест. Мы получили много сильных впечатлений, которые помогли нам постичь, как и почему были сооружены круги, и пробудили в нас обоих веру в энергию, свойственную этим западающим в память объектам.
   Но вернемся к кругам Бодмина. Как только был построен первичный треугольник, передо мной встала задача точно определить исходную точку на Гарроу-Торе. Ее можно найти исходя из угла в 55° круга Лиз (Стэннон-Лиз-Гарроу – Тор) и из угла в 30° в круге Стэннон (Лис-Стэннон-Гарроу – Тор). Установив опорную точку в Гарроу-Торе, можно произвести съемку всех остальных объектов с четырех объектов – Стэннона, Лиза, Гарроу-Тора и Раф-Тора с помощью простой триангуляции на основе отношений, уже открытых мной.
   На практике эти четыре объекта ставят определенные проблемы. Два из них являются постоянными чертами ландшафта, а два других – передвижными. Остроконечная вершина Раф-Тора – очень точная точка, которую видно с большого расстояния. С другой стороны, Гарроу-Тор не имеет столь четко определенной вершины и по этому дает несколько больший простор для точного местоопределения постоянной опорой точки. На первый взгляд, представляется предпочтительнее установить линию визирования между двумя Торами прежде, чем определить местонахождение кругов, поскольку Торы являются постоянными объектами. Однако трудно установить правильные углы с вершины горы. Хотя такие места представляют собой отличные точки визирования, необходимы более плоские участки для съемки местности, о которой говорится здесь.
   После множества попыток проверить и перепроверить углы между всеми 23 объектами, я пришел к выводу, что ключевой начальной позицией является круг Стэннон. Речь идет о процессе постепенного отбора при постоянной оценке возможности легко определить местоположение других кругов из уже поднятых объектов. Это похоже на прослеживание реки до ее истока.
   Я предположил, что круг Стэннон мог быть сооружен с помощью как тщательных наблюдений, так и методом проб и ошибок, ибо он имеет значимые точки солнечной ориентации.

Анализ круга

   Доказав еще раз, что можно установить геометрическую схему, которая могла бы связать объекты между собой, я приступил к более детальной оценке углов между объектами (рис. 68). Первоначально я проанализировал все углы между кругом Стэннон и 22 другими объектами съемки. На этот раз я решил, что поскольку я имею дело с углами между прямыми линиями, все углы следовало рассчитать заново таким образом, чтобы они разнились от 0° до 90° Все тупые углы (углы больше 90°) должны быть представлены их острыми эквивалентами. Например, угол в 120° будет представлен так 180°-120° или 60°.
   Два обстоятельства побудили меня пойти на такое изменение. Во-первых, это облегчает анализ. Во-вторых, на практике тупые углы можно легко разместить на местности только после построения их острых эквивалентов.
   Например, чтобы разметить угол в 125°, легче всего начать с его противоположности – 55° (180°– 125° = 55°).
   Ниже приводится порядок повторяемости 231 угла, построенных между 22 различными объектами и кругом Стэннон:
   Все остальные углы встречаются менее трех раз. Расчетное среднее арифметическое случайной последовательности для каждого угла можно обозначить как 2,78 случая, следовательно, любое повторение больше трех раз превышает ожидаемое. Угол в 30° повторяется почти в четыре раза чаше чисто случайного. Мало того. Некоторые из углов в 29° могли строиться, чтобы иметь 30°. Например, угол, построенный из Стэннона со сторонами до холма Лауден и Камней Стриппл и составляющий по подсчетам 29°, основан на двух объектах, расположенных менее чем в 1 километре (0,6 мили) друг от друга, а это означает, что один градус меньше допустимой погрешности. Больше того, исследования показали, что визирование подчас проводилось через край кругов, а не через их центры, на которых я построил сетку координат.
   Большое число углов в 1° могло строиться с намерением получить 0°или прямую линию. Опять же подобные вариации могут происходить в пределах допустимой по грешности, особенно в тех случаях, когда объекты близко расположены друг к другу, как, например, круги Стриппл и Лиз или круг Стриппл и два круга на холмах Короля Артура.
   Разумеется, тот же самый, аргумент может быть использован в прямо противоположном смысле. То, что кажется 30°, на самом деле может быть 29°, а 1° – 2°, а не 0°. Если согласиться с тем, что такие погрешности, возможно, взаимно сократятся, все же остается большой процент значимых углов, построенных на основе этого объекта.
   Некоторые углы, повторяющиеся с удивительной частотой на Бодмин-Муре, также появляются в моих обследованиях Бредон-Хилла, а другие оказались новыми. Я составил простую компьютерную программу для построения всех углов от 0° до 90° на основе их простейших отношений. Сразу же становится очевидным, что на самом деле востребованы только 45 отношений. Отношение для получения, скажем, угла в 20° (11:4) эквивалентно тому, которое требуется для угла в 70° (4:11).
   Отсюда следует, что 75 процентов всех углов могут быть с легкостью построены с помощью нескольких колышков, промерной рейки, нескольких стоек для визирования и нескольких отрезков бечевы в сочетании со знанием ряда простых отношений.

Построение углов

   Приведенный в Приложении 3 список первичных отношении показывает, что в большинстве случаев наибольшее числительное в отношении оказывается меньше 20. Исключение составляют два угла: в 5°, который, как я предположил, строится на отношении 23:2, и в 2°, который можно построить приблизительно из отношения 30:1. Многие углы на деле основаны на отношении 19 (в том числе 19:1, 19:2, 19:3 и 19:11) или на отношении 5 и кратных ему чисел (в том числе 10:9, 10:7, 5:6, 5:8 и 15:8).
   Проще всего вписать эти отношения в схему, вычертив круг диаметром в 20 единиц. Вслед за профессором Томом мы можем предположить, что в данном случае в качестве стандартной единицы использовался мегалитический ярд (мя) и что диаметр равнялся 20 мя. Прибегнув к обратному визированию, мы можем отметить точки пересечения диаметра и окружности и провести линию диаметра. На этой линии следует отметить точку 19 мя и построить из нее прямой угол. Это легко сделать с помощью небольших колышков и отрезков бечевки для построения треугольника с отношением сторон 3:4:5.
   Отметки на этой новой линии длин в 1 мя, 2 мя и 11 мя дадут углы в 3,6 и 30 градусов, построенные методом обратного визирования. Угол в 30° можно проверить, при необходимости построив равносторонний треугольник, но на практике отношение 10:11 дает угол с точностью до 4,2 дуговых минут, которая достаточна в большинстве случаев. Угол в 6° получается с точностью до 32 дуговых секунд. Точность этого угла на основе его числового отношения, на мой взгляд, играла основополагающую роль в математике, астрономии и топографии античного мира.

Минуты и секунды

   Мы делим день на часы, минуты и секунды в соответствии с системой, возникшей еще в Древней Месопотамии. Вавилоняне осознали – в результате астрономических наблюдений – связь времени и пространства. Время прохождения какой-либо звезды по неизменной небесной дуге тщательно измерялось с помощью простых водяных часов. Вот почему сегодня и время, и углы измеря ются «минутами» и «секундами». При делении круга на 60 получаем сегмент в 6°. С помощью отношения 19:2 можно легко разделить круг на 60 равных сегментов. При делении каждого сегмента на два получается точный угол в 3° Разделив же прямую линию, пересекающую сегмент в 3° на три равные части, получим годящиеся для большинства практических целей углы до 1°. Дополнительные подразделения могут дать большие приближения по дуговым минутам и секундам.
   Для разметки тех градусов, которые основаны на отношениях пяти или десяти, необходимо лишь отмерить 10 мя на диаметре изначального круга, построить в этой точке прямой угол и затем отметить новую линию. Например, отмерив 7 мя, получим угол в 35°, а отмерив 13 мя -50°(12:10=6:5).
   Хотя профессор Том и предположил, что мегалити ческий ярд служил стандартной единицей для круговой съемки, на практике визирование объектов не зависит от каких-либо фиксированных единиц измерения. После местоопределения любого объекта, его отношение к соседнему объекту может быть установлено путем триангуляции при использовании самых разных мер. Я уверен, что есть все основания считать, что мегалитический ярд использовался при сооружении кругов на Марлборо-Даунс, но менее убежден в том, что он служил стандартом и во всех остальных случаях.
   Все, что понадобилось бы для построения этих углов, – это одна заданная мера.
   Ее можно было получить с помощью двух одинаковых палок длиной в 1-2 метра (3,28-6,56 фута). Первую нужно было положить на землю, а вторую соединить с ней встык. Если затем взять первую и положить с другого конца второй и повторять эти манипуляции, пока не будет отложено нужное число единиц, то можно будет измерить с высокой степенью точности различные расстояния. Для получения максимально точного результата нужно было расчищать из меряемую на земле линию от всяких препятствий и неровностей и проводить ее по ровной поверхности. Не большой колышек, вбитый в землю, мог использоваться как топографическая веха для указания измерений.
   После точного построения прямого угла, что очень легко сделать, и точного измерения пропорций, на земле могли быть разбиты углы высокой точности. Затем они могли быть спроецированы на местности с помощью простой техники визирования. Таким образом каменные круги и другие мегалитические центры вроде продолговатых могильных холмов и менгиров могли быть размещены с большой точностью. Как мы уже видели, продолговатые курганы часто помещались на горизонте, что делало их идеальными точками визирования.
   Свое обследование Бодмин-Мура я завершил более широким анализом почти 3500 углов между семью главными объектами в северной части и обнаружил схожую картину. Чаще всего повторялся угол в 3° – 64 раза, за тем в 30° – 57 раз. Все остальные часто повторяющиеся углы уже были рассмотрены, за исключением одного – угла в 52°. Он очень близок к углу склона Великой пирамиды Гизы, для которого обычно указывается 51,85°. Угол в 52° найден между кругом Лиз, Раф-Тором и Южным кругом Лескерника. Линия Лиз-Лескерник пересекает Кодда-Тор, который образует «пирамидальный» угол с вершиной Раф-Тора.

Каменные круги и леи

   Никто точно не знает, почему доисторические люди считали необходимым сооружать каменные круги. В отдельных случаях – как в Эйвбери или Стоунхендже – их строительство потребовало огромных физических усилий. У них явно было особое предназначение, но в какой степени оно было религиозным и в какой – практичным, мы, может быть, так никогда и не узнаем.
   Концепция леи еще проблематичнее. Хотя ей почти столетие, консервативные археологи не желают признавать их. Уверен, концепция угловых отношений объектов встретит похожее сопротивление. Мое же исследование Бодмина доказало именно осуществимость ландшафтного планирования, а не его вероятность. Однако я не первый отметил это. В глубоком исследовании кругов Пик-Дистрикта в Дербишире, опубликованном в 1978 году в «Каменных кругах Пика», Джон Барнатт говорит:
   «Когда были исследованы линии визирования между кругами, они подсказали новое направление исследования, а именно: геометрическое родство кругов. В них было найдено большое число треугольников, особенно равнобедренных и прямоугольных».
   Барнатт проанализировал линии визирования через 20 круглых объектов и открыл более 140 значимых треугольников. Он допускает, что любые 20 случайно расположенных объектов дадут ряд на вид значимых треугольников, но все же настаивает: «Число найденных треугольников должно быть больше, чем число треугольников, возникших по простому совпадению».
   На рисунке 71 показана одна из конструкций Барнатта, включающая знаменитый хендж Арбор-Лоу. Барнатт отмечает:
   «Все уже рассмотренные углы отличаются большой величиной, имея стороны длиной от одной до пятнадцати миль. Они измеряются скорее по горизонтали, нежели следуя контурам земли, и большинство кругов не видно из других кругов. Очевидно, что доисторический человек не мог задумать и построить их, поскольку это было бы невозможно при их средствах измерения расстоянии без карт той же степени точности, что и использованные в данном исследовании карты картографического управления».
   В заключение Барнатт предположил, что человек неолита, должно быть, выстроил свои объекты по некой невидимой энергетической сетке. И все же я намеревался показать, что более пяти тысячелетий назад мужчины и женщины с примитивной техникой сумели спланировать свои объекты с большой геометрической точностью и что имеется масса косвенных доказательств того, что они проделали это, не прибегая ни к каким невидимым геопатическим силам. И вовсе я не намекаю на то, что частью общей картины не является некая таинственная «энергия», а лишь утверждаю, что отношения объектов не зависят от некой невидимой энергетической сетки.
   Иосеф Хейнш, проводивший в Германии и Франции в 1920-х и 1930-х годах исследования связи древних святых мест, также пришел к выводу, что она основана на «элементарной триангуляции с помощью углов в 30° и 60° и диагоналей квадрата и двойного квадрата среди прочих геометрически значимых углов». (Цит. по книге «Шаманство и таинственные линии» Поля Деверо.)
   Ключ к получению подобного рода композиций – знание отношений, которые следует использовать для построения требуемых углов на основе прямоугольного треугольника. Не так уж и трудно было зазубрить такие отношения. Самое большее требовалось запомнить наизусть лишь 45 углов, и нечетные вполне можно было сократить, деля пополам углы, выраженные четными числами.
Рис. 71. Построение объектов в Дербишире в форме бумажного змея (открытое Джоном Барнаттом).
   Например, угол в 18° может быть построен на отношении 21,5:7. Но ведь гораздо легче было бы построить угол в 36° с помощью отношения 11:8 и затем разделить его пополам, чтобы получить 18°. Подобным образом 7° можно было получить, разделив пополам угол в 14°, построенный на простом отношении 4:1 вместо использования сложного отношения 24,5:3 для прямого построения угла в 7°. С помощью такого метода землемеру неолита пришлось бы запоминать как минимум на треть меньшее число отношений.

Космологическая перспектива и общее представление о парапсихологических явлениях

   Следует помнить, что для точного определения местоположения нового объекта требуются лишь два твердо фиксированных месторасположения и два точных угла. После их установления относительно легко сделать все остальное. На философском уровне становится понятно, что древние наверняка готовы были тратить время и силы на создание композиций на ландшафте только при условии, что воспринимали ландшафт как интегрированное целое. Всеохватывающие космологии вроде тех, что исповедовали коренные американцы, воспринимали небо и землю как отражения друг друга. Каждый круглый объект, независимо от того, был ли он посвящен богу, богине или влиянию звезды либо солнца, должен был восприниматься как средство получить доступ к духовным влияниям, которые наполняли жизнь людей. Могли быть лучший способ представить эту гармоничную концепцию, чем связав объекты вместе в интегрированном геометрическом рисунке?