Страница:
Вспомните, что магнитные полюсы Земли не совпадают с ее географическими полюсами — и вы, вероятно, сами догадаетесь, о каких местах нашей планеты идет в задаче речь. Куда будет показывать стрелка компаса, помещенная на южном географическом полюсе? Один ее конец будет направлен в сторону ближайшего магнитного полюса, другой — в противоположную. Но в какую бы сторону ни идти от южного географического полюса, мы всегда будем направляться на север; другого направления от южного географического полюса нет, — кругом него всюду север. Значит, помещенная там магнитная стрелка будет показывать север обоими концами.
Точно так же стрелка компаса, перенесенного на северный географический полюс, обоими концами должна показывать на юг.
У человека нет магнитного органа чувств; поэтому о существовании магнитных сил, которые окружают магнит, мы можем лишь догадываться[52]. Однако нетрудно косвенным образом обнаружить картину распределения этих сил. Лучше всего сделать это с помощью мелких железных опилок. Насыпьте опилки тонким ровным слоем на кусок гладкого картона или на стеклянную пластинку; подведите под картон или пластинку обыкновенный магнит и встряхивайте опилки легкими ударами. Магнитные силы свободно проходят сквозь картон и стекло; следовательно, железные опилки под действием магнита намагнитятся; когда мы встряхиваем их, они на мгновение отделяются от пластинки и могут под действием магнитных сил легко повернуться, заняв то положение, которое приняла бы в данной точке магнитная стрелка, т. е. вдоль магнитной «силовой линии». В результате опилки располагаются рядами, наглядно обнаруживая распределение невидимых магнитных линий.
Рисунок 91. Магнитные силы проходят через руку.
Рисунок 92. Расположение железных опилок на картоне, покрывающем полюсы магнита. (С фотографии.).
Поместим над магнитом нашу пластинку с опилками и встряхнем ее. Мы получим фигуру, изображенную на рис. 92. Магнитные силы создают сложную систему изогнутых линий. Вы видите, как они лучисто расходятся от каждого полюса магнита, как опилки соединяются между собой, образуя то короткие, то длинные дуги между обоими полюсами. Железные опилки воочию показывают здесь то, что мысленно рисует перед собою физик и что невидимым образом присутствует вокруг каждого магнита. Чем ближе к полюсу, тем линии опилок гуще и четче; напротив, с удалением от полюса они разрежаются и утрачивают свою отчетливость, наглядно доказывая ослабление магнитных сил с расстоянием.
Рисунок 93. а — расположение атомных магнитиков в ненамагниченной полоске стали; б — то жe в намагниченной стали; в — действие полюса магнита на атомные магнитики намагничиваемой стали.
Что же происходит в куске стали, когда его натирают магнитом? Силой своего притяжения магнит поворачивает элементарные магнитики стального бруска одноименными полюсами в одну и ту же сторону. Рис. 93, б наглядно показывает, как ото происходит: элементарные магнитики поворачиваются сначала южными полюсами к северному полюсу магнита, а затем, когда магнит отводится далее, располагаются вдоль по направлению его движения, южными полюсами к середине бруска.
Отсюда легко попять, как надо действовать магнитом при намагничивании бруска стали: надо приставить к концу бруска один полюс магнита и, плотно прижимая, вести магнит вдоль бруска. Это один из простейших и древнейших приемов намагничивания, годный, однако, для получения лишь слабых магнитов небольшого размера. Сильные магниты можно построить, используя свойства электрического тока.
На рис. 94 и 95 вы видите перед собою эту полезную службу магнита. Как хлопотливо было бы собирать и переносить кучу железных плиток, которую разом собрал и перенес могучий магнитный подъемный кран, изображенный на рис. 94; здесь выгода не только в экономии сил, но я в упрощении самой работы. На рис. 95 вы видите, как магнитный кран переносит даже упакованные в бочках гвозди, сразу поднимая по шесть бочек! На одном только металлургическом заводе четыре магнитных крана, каждый из которых может переносить сразу десять рельсов, заменяют ручной труд двухсот рабочих. Не надо заботиться о прикреплении этих тяжестей к подъемному крану: пока идет ток в обмотке электромагнита, до тех пор ни один осколок не упадет с него.
Но если ток в обмотке почему-либо прервется, авария неизбежна. Такие случаи вначале бывали. «На одном американском заводе, — читаем мы в техническом журнале, — электромагнит поднимал железные болванки, подвозимые в вагонах, и бросал их в печь. Внезапно на электростанции Ниагарского водопада, подающей ток, что-то случилось, ток был прорван; масса металла сорвалась с электромагнита и всей своей тяжестью обрушилась на голову рабочего. Чтобы избежать повторения подобных несчастных случаев, а также с целью сэкономить потребление электрической энергии, при электромагнитах устраиваются особые приспособления. После того как переносимые предметы подняты магнитом, сбоку опускаются и плотно закрываются прочные стальные подхватки, которые затем сами поддерживают груз, ток же во время транспортировки прерывается».
Рисунок 94. Электромагнитный подъемный кран, переносящий железные плитки.
Рисунок 95. Электромагнитный подъемный кран, переносящий бочки с гвоздями.
Поперечник электромагнитов, изображенных на рис. 94 и 95, достигает 1, 5 м; каждый магнит способен поднять до 16 тонн (товарный вагон). Один такой магнит переносит за сутки более 600 тонн груза. Есть электромагниты, способные поднять сразу до 75 тонн, т. е. целый паровоз!
При взгляде на такую работу электромагнитов у иного читателя, быть может, мелькнула мысль: как удобно было бы переносить при помощи магнитов раскаленные железные болванки! К сожалению, это возможно только до известной температуры, так как раскаленное железо не намагничивается. Нагретый до 800° магнит утрачивает магнитные свойства.
Современная техника металлообработки широко пользуется электромагнитами для удержания и продвижения стальных, железных и чугунных изделий. Сконструированы сотни различных патронов, столов и других приспособлений, значительно упрощающих и ускоряющих обработку.
«На сцене, — рассказывает фокусник, — находится небольшой окованный ящик с ручкой на крышке. Я вызываю из зрителей человека посильнее. В ответ на мой вызов выступил араб среднего роста, но крепкого сложения, представляющий собой аравийского геркулеса. Выходит он с бодрым и самонадеянным видом и, немного насмешливо улыбаясь, останавливается около меня.
— Очень вы сильны? — спросил я его, оглядев с ног до головы.
— Да, — отвечал он небрежно.
— Уверены ли вы, что всегда останетесь сильным?
— Совершенно уверен.
— Вы ошибаетесь: в одно мгновение ока я могу отнять у вас силу, и вы сделаетесь слабым, подобно малому ребенку.
Араб презрительно улыбнулся в знак недоверия к моим словам.
— Подойдите сюда, — сказал я, — и поднимите ящик. Араб нагнулся, поднял ящик и высокомерно спросил:
— Больше ничего?
— Подождите немножко, — отвечал я. Затем, приняв серьезный вид, я сделал повелительный жест и произнес торжественным тоном:
— Вы теперь слабее женщины. Попробуйте снова поднять ящик.
Силач, нисколько не устрашась моих чар, опять взялся за ящик, но на этот раз ящик оказывает сопротивление и, несмотря на отчаянные усилия араба, остается неподвижным, словно прикованный к месту. Араб силится поднять ящик с такой силой, которой хватило бы для поднятия огромной тяжести, но все напрасно. Утомленный, запыхавшись и сгорая от стыда, он, наконец, останавливается. Теперь он начинает верить в силу чародейства».
Секрет чародейства представителя «цивилизаторов» был прост. Железное дно ящика помещено на подставке, представляющей полюс сильного электромагнита. Пока тока нет, ящик поднять нетрудно; но стоит пустить ток в обмотку электромагнита, чтобы ящик нельзя было оторвать усилиями 2 — 3 человек.
«Я приказал изготовить легкую железную повозку; войдя в нее и устроившись удобно на сиденье, я стал подбрасывать высоко над собой магнитный шар. Железная повозка тотчас же поднималась вверх. Каждый раз, как я приближался к тому месту, куда меня притягивал шар, я снова подбрасывал ею вверх. Даже когда я просто приподнимал шар в руках, повозка поднималась, стремясь приблизиться к шару. После многократного бросания шара вверх и поднятия повозки я приблизился к месту, откуда началось мое падение на Луну. И так как в этот момент я крепко держал в руках магнитный шар, повозка прижималась ко мне и не покидала меня. Чтобы не разбиться при падении, я подбрасывал свой шар таким образом, чтобы падение повозки замедлялось его притяжением. Когда я был уже всего в двух-трех сотнях саженей от лунной почвы, я стал бросать шар под прямым углом к направлению падения, пока повозка не оказалась совсем близко к почве. Тогда я выпрыгнул из повозки и мягко опустился на песок».
Никто, конечно, — ни автор романа, ни читатели его книги — не сомневается в полной непригодности описанной летательной машины. Но не думаю, чтобы многие умели правильно сказать, в чем собственно кроется причина неосуществимости этого проекта: в том ли, что нельзя подкинуть магнит, находясь в железной повозке, в том ли, что повозка не притянется к магниту, или в чем-либо ином?
Нет, подбросить магнит можно, и он подтянул бы повозку, если достаточно силен, — а все-таки летательная машина нисколько не подвигалась бы вверх.
Случалось ли вам бросать тяжелую вещь с лодки на берег? Вы, без сомнения, замечали при этом, что сама лодка отодвигается от берега. Ваши мускулы, сообщая бросаемой вещи толчок в одном направлении, отталкивают одновременно ваше тело (а с ним и лодку) в обратном направлении. Здесь проявляется тот закон равенства действующей и противодействующей сил, о котором нам не раз уже приходилось говорить. При бросании магнита происходит то же самое: седок, подкидывая магнитный шар вверх (с большим усилием, потому что шар притягивается к железной повозке), неизбежно отталкивает всю повозку вниз. Когда же затем шар и повозка снова сближаются взаимным притяжением, они только возвращаются на первоначальное место. Ясно, следовательно, что если бы даже повозка ничего не весила, то бросанием магнитного шара можно было бы сообщить ей только колебания вокруг некоторого среднего положения; заставить ее таким способом двигаться поступательно невозможно.
Во времена Сирано (в середине XVII века) закон действия и противодействия еще не был провозглашен; сомнительно поэтому, чтобы французский сатирик мог отчетливо объяснить несостоятельность своего шутливого проекта.
Кстати, о магометовом гробе. Правоверные мусульмане убеждены, что гроб с останками «пророка» покоится в воздухе, вися в усыпальнице без всякой опоры между полом и потолком.
Рисунок 96. Железная цепь с грузом, торчащая вверх.
Возможно ли это? «Повествуют, — писал Эйлер в своих „Письмах о разных физических материях“, — будто гробницу Магомета держит сила некоторого магнита; это кажется не невозможным, потому что есть магниты, искусством сделанные, которые поднимают до 100 фунтов[54]».
Такое объяснение несостоятельно; если бы указанным способом (т. е. пользуясь притяжением магнита) подобное равновесие было достигнуто на один момент, то малейшего толчка, малейшего дуновения воздуха было бы достаточно, чтобы его нарушить, — и тогда гроб либо упал бы на пол, либо подтянулся бы к потолку. Удержать его неподвижно практически так же невозможно, как поставить конус на его вершине, хотя теоретически последнее и допустимо.
Впрочем, явление «магометова гроба» вполне можно воспроизвести и с помощью магнитов, — но только пользуясь не взаимным их притяжением, а, напротив, взаимным отталкиванием. (О том, что магниты могут не только притягиваться, но и отталкиваться, часто забывают даже люди, еще недавно изучавшие физику.) Как известно, одноименные полюсы магнитов взаимно отталкиваются. Два намагниченных бруска, расположенных так, что их одноименные полюсы приходятся один над другим, отталкиваются; подобрав вес верхнего бруска надлежащим образом, нетрудно добиться того, чтобы он витал над нижним, держась без прикосновения к нему, в устойчивом равновесии. Надо лишь стойками из немагнитного материала — например, стеклянными — предупредить возможность поворота верхнего магнита в горизонтальной плоскости. В подобной обстановке мог бы витать в воздухе и легендарный гроб Магомета.
Рисунок 97. Вагон, мчащийся без трения. Дорога, проектированная проф. Б. П Вейнбергом.
Наконец, явление этого рода осуществимо и силой магнитного притяжения, если добиваться его для тела движущегося. На этой мысли основан замечательный проект электромагнитной железной дороги без трения (рис. 97), предложенный советским физиком проф. Б. П. Вейнбергом. Проект настолько поучителен, что каждому интересующемуся физикой полезно с ним познакомиться.
Осуществляется это следующим образом. Вагоны движутся внутри медной трубы, из которой выкачан воздух, чтобы его сопротивление не мешало движению вагонов. Трение о дно уничтожается тем, что вагоны движутся, не касаясь стенок трубы, поддерживаемые в пустоте силою электромагнитов. С этой целью вдоль всего пути над трубой расставлены, на определенных расстояниях друг от друга, очень сильные электромагниты. Они притягивают к себе железные вагоны, движущиеся внутри трубы, и мешают им падать. Сила магнитов рассчитана так, что железный вагон, проносящийся в трубе, все время остается между ее «потолком» и «полом», не прикасаясь ни к тому, ни к другому. Электромагнит подтягивает проносящийся под ним вагон вверх, — но вагон не успевает удариться о потолок, так как его влечет сила тяжести; едва он готов коснуться пола, его поднимает притяжение следующего электромагнита… Так, подхватываемый все время электромагнитами, вагон мчится по волнистой линии без трения, без толчков, в пустоте, как планета в мировом пространстве.
Что же представляют собой вагоны? Это — сигарообразные цилиндры высотой 90 см, длиной около 2,5 м.
Конечно, вагон герметически закрыт, — ведь он движется в безвоздушном пространстве, — и подобно подводным лодкам снабжен аппаратами для автоматической очистки воздуха.
Способ отправления вагонов в путь также совершенно отличен от всего, что применялось до сих пор: его можно сравнить разве только с пушечным выстрелом. И действительно, вагоны эти буквально «выстреливаются», как ядра, только «пушка» здесь электромагнитная. Устройство станции отправления основано на свойстве спирально закрученной, в форме катушки, проволоки («соленоида») при прохождении тока втягивать в себя железный стержень; втягивание происходит с такой стремительностью, что стержень при достаточной длине обмотки и силе тока может приобрести огромную скорость. В новой магнитной дороге эта-то сила и будет выбрасывать вагоны. Так как внутри туннеля трения нет, то скорость вагонов не уменьшается, и они мчатся по инерции, пока их не задержит соленоид станции назначения.
Вот несколько подробностей, приводимых автором проекта:
«Опыты, которые я ставил в 1911 — 1913гг. в физической лаборатории Томского технологического института, производились с медной трубкой (32 см диаметром), над которой находились электромагниты, а под ними на подставке вагончик — кусок железной трубы с колесами спереди и сзади и с „носом“, которым он для остановки ударялся в кусок доски, опиравшейся о мешок с песком. Вагончик этот весил 10 кг. Можно было придать вагончику скорость около 6 км в час, выше которой при ограниченности размеров комнаты и кольцевой трубы (диаметр кольца был 6,5 м) нельзя было идти. Но в разработанном мною проекте при трехверстной длине соленоидов на станции отправления скорость легко довести до 800 — 1000 км в час, а благодаря отсутствию воздуха в трубе и отсутствию трения о пол или потолок не надо тратить никакой энергии для ее поддержания.
Несмотря на большую стоимость сооружений и, в особенности, самой медной трубы, все же благодаря отсутствию трат на мощность для поддержания скорости, на каких-либо машинистов, кондукторов и т. п., стоимость километра — от нескольких тысячных до 1 — 2 сотых копейки; а пропускная способность двутрубного пути — 15 000 пассажиров или 10 000 тонн в сутки в одном направлении».
Впоследствии это сказание вошло в сказки 1001 ночи.
Конечно, это не более как легенда. Мы знаем теперь, что магнитные горы, т. е. горы, богатые магнитным железняком, действительно существуют, — вспомним знаменитую Магнитную гору, где высятся теперь домны Магнитогорска. Однако сила притяжения подобных гор чрезвычайно мала, почти ничтожна. А таких гор или скал, о каких писал Плиний, на земном шаре никогда не существовало.
Если в настоящее время и строятся суда без железных и стальных частей, то делается это не из боязни магнитных скал, а для удобного изучения земного магнетизма[55].
Научный романист Курт Лассвиц воспользовался идеей легенды Плиния, чтобы придумать грозное военное оружие, к которому в его романе «На двух планетах» прибегают пришельцы с Марса в борьбе с земными армиями. Располагая таким магнитным (вернее, электромагнитным) оружием, марсиане даже не вступают в борьбу с земными жителями, а обезоруживают их еще до начала сражения.
Вот как описывает романист этот эпизод сражения между марсианами и жителями Земли.
«Блестящие ряды всадников неудержимо ринулись вперед. И казалось, будто самоотверженная решимость войска понудила наконец могущественного неприятеля (марсиан. — Я. Я.) к отступлению, так как между его воздушными кораблями возникло новое движение. Они поднялись на воздух, словно собираясь уступить дорогу.
Одновременно с этим, однако, опустилась сверху какая-то темная широко раскинувшаяся масса, теперь только появившаяся над полем. Подобно развевающемуся покрывалу, масса эта, со всех сторон окруженная воздушными кораблями, быстро развернулась над полем. Вот первый ряд всадников попал в район ее действия, — и тотчас же странная машина распростерлась над всем полком. Действие, произведенное ею, было неожиданно и чудовищно! С поля донесся пронзительный вопль ужаса. Лошади и всадники клубком валялись на земле, а воздух был наполнен густой тучей копий, сабель и карабинов, с громом и треском летевших вверх к машине, к которой они и пристали.
Точно так же стрелка компаса, перенесенного на северный географический полюс, обоими концами должна показывать на юг.
Линии магнитных сил
Любопытную картину изображает рис. 91, воспроизведенный с фотографии: от руки, положенной на полюсы электромагнита, торчат вверх пучки «крупных гвоздей, словно жесткие волосы. Сама по себе рука совершенно не ощущает магнитной силы: невидимые нити проходят сквозь нее, ничем не выдавая своего присутствия. А железные гвозди послушно подчиняются ее воздействию и располагаются в определенном порядке, обнаруживая перед нами направление магнитных сил.У человека нет магнитного органа чувств; поэтому о существовании магнитных сил, которые окружают магнит, мы можем лишь догадываться[52]. Однако нетрудно косвенным образом обнаружить картину распределения этих сил. Лучше всего сделать это с помощью мелких железных опилок. Насыпьте опилки тонким ровным слоем на кусок гладкого картона или на стеклянную пластинку; подведите под картон или пластинку обыкновенный магнит и встряхивайте опилки легкими ударами. Магнитные силы свободно проходят сквозь картон и стекло; следовательно, железные опилки под действием магнита намагнитятся; когда мы встряхиваем их, они на мгновение отделяются от пластинки и могут под действием магнитных сил легко повернуться, заняв то положение, которое приняла бы в данной точке магнитная стрелка, т. е. вдоль магнитной «силовой линии». В результате опилки располагаются рядами, наглядно обнаруживая распределение невидимых магнитных линий.
Рисунок 91. Магнитные силы проходят через руку.
Рисунок 92. Расположение железных опилок на картоне, покрывающем полюсы магнита. (С фотографии.).
Поместим над магнитом нашу пластинку с опилками и встряхнем ее. Мы получим фигуру, изображенную на рис. 92. Магнитные силы создают сложную систему изогнутых линий. Вы видите, как они лучисто расходятся от каждого полюса магнита, как опилки соединяются между собой, образуя то короткие, то длинные дуги между обоими полюсами. Железные опилки воочию показывают здесь то, что мысленно рисует перед собою физик и что невидимым образом присутствует вокруг каждого магнита. Чем ближе к полюсу, тем линии опилок гуще и четче; напротив, с удалением от полюса они разрежаются и утрачивают свою отчетливость, наглядно доказывая ослабление магнитных сил с расстоянием.
Как намагничивается сталь?
Чтобы ответить на этот вопрос, который часто задают читатели, надо разъяснить прежде всего, чем отличается магнит от немагнитного бруска стали. Каждый атом железа, входящего в состав стали — намагниченной или ненамагниченной, — мы можем представлять себе как маленький магнитик. В стали ненамагниченной атомные магнитики расположены беспорядочно, так что действие каждого уничтожается противоположным действием обратно расположенного магнитика (рис. 93, а). Напротив, в магните все элементарные магнитики расположены упорядочено, одноименными полюсами в одном и том же направлении, как показано на рис. 93, б.Рисунок 93. а — расположение атомных магнитиков в ненамагниченной полоске стали; б — то жe в намагниченной стали; в — действие полюса магнита на атомные магнитики намагничиваемой стали.
Что же происходит в куске стали, когда его натирают магнитом? Силой своего притяжения магнит поворачивает элементарные магнитики стального бруска одноименными полюсами в одну и ту же сторону. Рис. 93, б наглядно показывает, как ото происходит: элементарные магнитики поворачиваются сначала южными полюсами к северному полюсу магнита, а затем, когда магнит отводится далее, располагаются вдоль по направлению его движения, южными полюсами к середине бруска.
Отсюда легко попять, как надо действовать магнитом при намагничивании бруска стали: надо приставить к концу бруска один полюс магнита и, плотно прижимая, вести магнит вдоль бруска. Это один из простейших и древнейших приемов намагничивания, годный, однако, для получения лишь слабых магнитов небольшого размера. Сильные магниты можно построить, используя свойства электрического тока.
Исполинские электромагниты
На металлургических заводах можно видеть электромагнитные подъемные крапы, переносящие огромные грузы. Такие краны оказывают при подъеме и перемещении железных масс неоценимые услуги на сталелитейных и тому подобных заводах. Массивные железные глыбы или части машин в десятки тонн весом с удобством переносятся этими магнитными подъемными кранами без прикрепления. Точно так же переносят они без ящиков и упаковки листовое железо, проволоку, гвозди, железный лом и другие материалы, переноска которых иным способом потребовала бы немало хлопот.На рис. 94 и 95 вы видите перед собою эту полезную службу магнита. Как хлопотливо было бы собирать и переносить кучу железных плиток, которую разом собрал и перенес могучий магнитный подъемный кран, изображенный на рис. 94; здесь выгода не только в экономии сил, но я в упрощении самой работы. На рис. 95 вы видите, как магнитный кран переносит даже упакованные в бочках гвозди, сразу поднимая по шесть бочек! На одном только металлургическом заводе четыре магнитных крана, каждый из которых может переносить сразу десять рельсов, заменяют ручной труд двухсот рабочих. Не надо заботиться о прикреплении этих тяжестей к подъемному крану: пока идет ток в обмотке электромагнита, до тех пор ни один осколок не упадет с него.
Но если ток в обмотке почему-либо прервется, авария неизбежна. Такие случаи вначале бывали. «На одном американском заводе, — читаем мы в техническом журнале, — электромагнит поднимал железные болванки, подвозимые в вагонах, и бросал их в печь. Внезапно на электростанции Ниагарского водопада, подающей ток, что-то случилось, ток был прорван; масса металла сорвалась с электромагнита и всей своей тяжестью обрушилась на голову рабочего. Чтобы избежать повторения подобных несчастных случаев, а также с целью сэкономить потребление электрической энергии, при электромагнитах устраиваются особые приспособления. После того как переносимые предметы подняты магнитом, сбоку опускаются и плотно закрываются прочные стальные подхватки, которые затем сами поддерживают груз, ток же во время транспортировки прерывается».
Рисунок 94. Электромагнитный подъемный кран, переносящий железные плитки.
Рисунок 95. Электромагнитный подъемный кран, переносящий бочки с гвоздями.
Поперечник электромагнитов, изображенных на рис. 94 и 95, достигает 1, 5 м; каждый магнит способен поднять до 16 тонн (товарный вагон). Один такой магнит переносит за сутки более 600 тонн груза. Есть электромагниты, способные поднять сразу до 75 тонн, т. е. целый паровоз!
При взгляде на такую работу электромагнитов у иного читателя, быть может, мелькнула мысль: как удобно было бы переносить при помощи магнитов раскаленные железные болванки! К сожалению, это возможно только до известной температуры, так как раскаленное железо не намагничивается. Нагретый до 800° магнит утрачивает магнитные свойства.
Современная техника металлообработки широко пользуется электромагнитами для удержания и продвижения стальных, железных и чугунных изделий. Сконструированы сотни различных патронов, столов и других приспособлений, значительно упрощающих и ускоряющих обработку.
Магнитные фокусы
Силой электромагнитов пользуются иногда и фокусники; легко представить, какие эффектные трюки проделывают они с помощью этой невидимой силы. Дари, автор известной книги «Электричество в его применениях», приводит следующий рассказ одного французского фокусника о представлении, данном им в Алжире. На невежественных зрителей фокус произвел впечатление настоящего чародейства.«На сцене, — рассказывает фокусник, — находится небольшой окованный ящик с ручкой на крышке. Я вызываю из зрителей человека посильнее. В ответ на мой вызов выступил араб среднего роста, но крепкого сложения, представляющий собой аравийского геркулеса. Выходит он с бодрым и самонадеянным видом и, немного насмешливо улыбаясь, останавливается около меня.
— Очень вы сильны? — спросил я его, оглядев с ног до головы.
— Да, — отвечал он небрежно.
— Уверены ли вы, что всегда останетесь сильным?
— Совершенно уверен.
— Вы ошибаетесь: в одно мгновение ока я могу отнять у вас силу, и вы сделаетесь слабым, подобно малому ребенку.
Араб презрительно улыбнулся в знак недоверия к моим словам.
— Подойдите сюда, — сказал я, — и поднимите ящик. Араб нагнулся, поднял ящик и высокомерно спросил:
— Больше ничего?
— Подождите немножко, — отвечал я. Затем, приняв серьезный вид, я сделал повелительный жест и произнес торжественным тоном:
— Вы теперь слабее женщины. Попробуйте снова поднять ящик.
Силач, нисколько не устрашась моих чар, опять взялся за ящик, но на этот раз ящик оказывает сопротивление и, несмотря на отчаянные усилия араба, остается неподвижным, словно прикованный к месту. Араб силится поднять ящик с такой силой, которой хватило бы для поднятия огромной тяжести, но все напрасно. Утомленный, запыхавшись и сгорая от стыда, он, наконец, останавливается. Теперь он начинает верить в силу чародейства».
Секрет чародейства представителя «цивилизаторов» был прост. Железное дно ящика помещено на подставке, представляющей полюс сильного электромагнита. Пока тока нет, ящик поднять нетрудно; но стоит пустить ток в обмотку электромагнита, чтобы ящик нельзя было оторвать усилиями 2 — 3 человек.
Магнит в земледелии
Еще любопытнее та полезная служба, которую несет магнит в сельском хозяйстве, помогая земледельцу очищать семена культурных растений от семян сорняков. Сорняки обладают ворсистыми семенами, цепляющимися за шерсть проходящих мимо животных и благодаря этому распространяющимися далеко от материнского растения. Этой особенностью сорняков, выработавшейся у них в течение миллионов лет борьбы за существование, воспользовалась сельскохозяйственная техника для того, чтобы отделить с помощью магнита шероховатые семена сорняков от гладких семян таких полезных растений, как лен, клевер, люцерна. Если засоренные семена культурных растений обсыпать железным порошком, то крупинки железа плотно облепят семена сорняков, но не пристанут к гладким семенам полезных растений. Попадая затем в поле действия достаточно сильного электромагнита, смесь семян автоматически разделяется на чистые семена и на сорную примесь: магнит вылавливает из смеси все те семена, которые облеплены железными опилками.Магнитная летательная машина
В начале этой книги я ссылался на занимательное сочинение французского писателя Сирано де Бержерака «История государств на Луне и Солнце». В ней, между прочим, описана любопытная летательная машина, действие которой основано на магнитном притяжении и с помощью которой один из героев повести прилетел на Луну. Привожу это место сочинения дословно:«Я приказал изготовить легкую железную повозку; войдя в нее и устроившись удобно на сиденье, я стал подбрасывать высоко над собой магнитный шар. Железная повозка тотчас же поднималась вверх. Каждый раз, как я приближался к тому месту, куда меня притягивал шар, я снова подбрасывал ею вверх. Даже когда я просто приподнимал шар в руках, повозка поднималась, стремясь приблизиться к шару. После многократного бросания шара вверх и поднятия повозки я приблизился к месту, откуда началось мое падение на Луну. И так как в этот момент я крепко держал в руках магнитный шар, повозка прижималась ко мне и не покидала меня. Чтобы не разбиться при падении, я подбрасывал свой шар таким образом, чтобы падение повозки замедлялось его притяжением. Когда я был уже всего в двух-трех сотнях саженей от лунной почвы, я стал бросать шар под прямым углом к направлению падения, пока повозка не оказалась совсем близко к почве. Тогда я выпрыгнул из повозки и мягко опустился на песок».
Никто, конечно, — ни автор романа, ни читатели его книги — не сомневается в полной непригодности описанной летательной машины. Но не думаю, чтобы многие умели правильно сказать, в чем собственно кроется причина неосуществимости этого проекта: в том ли, что нельзя подкинуть магнит, находясь в железной повозке, в том ли, что повозка не притянется к магниту, или в чем-либо ином?
Нет, подбросить магнит можно, и он подтянул бы повозку, если достаточно силен, — а все-таки летательная машина нисколько не подвигалась бы вверх.
Случалось ли вам бросать тяжелую вещь с лодки на берег? Вы, без сомнения, замечали при этом, что сама лодка отодвигается от берега. Ваши мускулы, сообщая бросаемой вещи толчок в одном направлении, отталкивают одновременно ваше тело (а с ним и лодку) в обратном направлении. Здесь проявляется тот закон равенства действующей и противодействующей сил, о котором нам не раз уже приходилось говорить. При бросании магнита происходит то же самое: седок, подкидывая магнитный шар вверх (с большим усилием, потому что шар притягивается к железной повозке), неизбежно отталкивает всю повозку вниз. Когда же затем шар и повозка снова сближаются взаимным притяжением, они только возвращаются на первоначальное место. Ясно, следовательно, что если бы даже повозка ничего не весила, то бросанием магнитного шара можно было бы сообщить ей только колебания вокруг некоторого среднего положения; заставить ее таким способом двигаться поступательно невозможно.
Во времена Сирано (в середине XVII века) закон действия и противодействия еще не был провозглашен; сомнительно поэтому, чтобы французский сатирик мог отчетливо объяснить несостоятельность своего шутливого проекта.
Наподобие «магометова гроба»
Любопытный случай наблюдался однажды при работе с электромагнитным подъемным краном. Один из рабочих заметил, что электромагнитом был притянут тяжелый железный шар с короткой цепью, приделанной к полу, которая не дала шару вплотную приблизиться к магниту: между шаром и магнитом оставался промежуток в ладонь шириною. Получилась необычайная картина: цепь, торчащая отвесно вверх! Сила магнита оказалась так велика, что цепь сохранила свое вертикальное положение, даже когда на ней повис рабочий[53]. Оказавшийся поблизости фотограф поспешил запечатлеть на пластинке столь интересный момент, и мы приводим здесь этот Рисунок человека, висящего в воздухе наподобие легендарного магометова гроба (рис.96).Кстати, о магометовом гробе. Правоверные мусульмане убеждены, что гроб с останками «пророка» покоится в воздухе, вися в усыпальнице без всякой опоры между полом и потолком.
Рисунок 96. Железная цепь с грузом, торчащая вверх.
Возможно ли это? «Повествуют, — писал Эйлер в своих „Письмах о разных физических материях“, — будто гробницу Магомета держит сила некоторого магнита; это кажется не невозможным, потому что есть магниты, искусством сделанные, которые поднимают до 100 фунтов[54]».
Такое объяснение несостоятельно; если бы указанным способом (т. е. пользуясь притяжением магнита) подобное равновесие было достигнуто на один момент, то малейшего толчка, малейшего дуновения воздуха было бы достаточно, чтобы его нарушить, — и тогда гроб либо упал бы на пол, либо подтянулся бы к потолку. Удержать его неподвижно практически так же невозможно, как поставить конус на его вершине, хотя теоретически последнее и допустимо.
Впрочем, явление «магометова гроба» вполне можно воспроизвести и с помощью магнитов, — но только пользуясь не взаимным их притяжением, а, напротив, взаимным отталкиванием. (О том, что магниты могут не только притягиваться, но и отталкиваться, часто забывают даже люди, еще недавно изучавшие физику.) Как известно, одноименные полюсы магнитов взаимно отталкиваются. Два намагниченных бруска, расположенных так, что их одноименные полюсы приходятся один над другим, отталкиваются; подобрав вес верхнего бруска надлежащим образом, нетрудно добиться того, чтобы он витал над нижним, держась без прикосновения к нему, в устойчивом равновесии. Надо лишь стойками из немагнитного материала — например, стеклянными — предупредить возможность поворота верхнего магнита в горизонтальной плоскости. В подобной обстановке мог бы витать в воздухе и легендарный гроб Магомета.
Рисунок 97. Вагон, мчащийся без трения. Дорога, проектированная проф. Б. П Вейнбергом.
Наконец, явление этого рода осуществимо и силой магнитного притяжения, если добиваться его для тела движущегося. На этой мысли основан замечательный проект электромагнитной железной дороги без трения (рис. 97), предложенный советским физиком проф. Б. П. Вейнбергом. Проект настолько поучителен, что каждому интересующемуся физикой полезно с ним познакомиться.
Электромагнитный транспорт
В железной дороге, которую предлагал устроить проф. Б. П. Вейнберг, вагоны будут совершенно невесомы; их вес уничтожается электромагнитным притяжением. Вы не удивитесь поэтому, если узнаете, что согласно проекту вагоны не катятся по рельсам, не плавают на воде, даже не скользят в воздухе, — они летят без всякой опоры, не прикасаясь ни к чему, вися на невидимых нитях могучих магнитных сил. Они не испытывают ни малейшего трения и, следовательно, будучи раз приведены в движение, сохраняют по инерции свою скорость, не нуждаясь в работе локомотива.Осуществляется это следующим образом. Вагоны движутся внутри медной трубы, из которой выкачан воздух, чтобы его сопротивление не мешало движению вагонов. Трение о дно уничтожается тем, что вагоны движутся, не касаясь стенок трубы, поддерживаемые в пустоте силою электромагнитов. С этой целью вдоль всего пути над трубой расставлены, на определенных расстояниях друг от друга, очень сильные электромагниты. Они притягивают к себе железные вагоны, движущиеся внутри трубы, и мешают им падать. Сила магнитов рассчитана так, что железный вагон, проносящийся в трубе, все время остается между ее «потолком» и «полом», не прикасаясь ни к тому, ни к другому. Электромагнит подтягивает проносящийся под ним вагон вверх, — но вагон не успевает удариться о потолок, так как его влечет сила тяжести; едва он готов коснуться пола, его поднимает притяжение следующего электромагнита… Так, подхватываемый все время электромагнитами, вагон мчится по волнистой линии без трения, без толчков, в пустоте, как планета в мировом пространстве.
Что же представляют собой вагоны? Это — сигарообразные цилиндры высотой 90 см, длиной около 2,5 м.
Конечно, вагон герметически закрыт, — ведь он движется в безвоздушном пространстве, — и подобно подводным лодкам снабжен аппаратами для автоматической очистки воздуха.
Способ отправления вагонов в путь также совершенно отличен от всего, что применялось до сих пор: его можно сравнить разве только с пушечным выстрелом. И действительно, вагоны эти буквально «выстреливаются», как ядра, только «пушка» здесь электромагнитная. Устройство станции отправления основано на свойстве спирально закрученной, в форме катушки, проволоки («соленоида») при прохождении тока втягивать в себя железный стержень; втягивание происходит с такой стремительностью, что стержень при достаточной длине обмотки и силе тока может приобрести огромную скорость. В новой магнитной дороге эта-то сила и будет выбрасывать вагоны. Так как внутри туннеля трения нет, то скорость вагонов не уменьшается, и они мчатся по инерции, пока их не задержит соленоид станции назначения.
Вот несколько подробностей, приводимых автором проекта:
«Опыты, которые я ставил в 1911 — 1913гг. в физической лаборатории Томского технологического института, производились с медной трубкой (32 см диаметром), над которой находились электромагниты, а под ними на подставке вагончик — кусок железной трубы с колесами спереди и сзади и с „носом“, которым он для остановки ударялся в кусок доски, опиравшейся о мешок с песком. Вагончик этот весил 10 кг. Можно было придать вагончику скорость около 6 км в час, выше которой при ограниченности размеров комнаты и кольцевой трубы (диаметр кольца был 6,5 м) нельзя было идти. Но в разработанном мною проекте при трехверстной длине соленоидов на станции отправления скорость легко довести до 800 — 1000 км в час, а благодаря отсутствию воздуха в трубе и отсутствию трения о пол или потолок не надо тратить никакой энергии для ее поддержания.
Несмотря на большую стоимость сооружений и, в особенности, самой медной трубы, все же благодаря отсутствию трат на мощность для поддержания скорости, на каких-либо машинистов, кондукторов и т. п., стоимость километра — от нескольких тысячных до 1 — 2 сотых копейки; а пропускная способность двутрубного пути — 15 000 пассажиров или 10 000 тонн в сутки в одном направлении».
Сражение марсиан с земножителями.
Естествоиспытатель древнего Рима Плиний передает распространенный к его время рассказ о магнитной скале где-то в Индии, у берега моря, которая с необычайной силой притягивала к себе всякие железные пред-моты. Горе моряку, дерзнувшему приблизиться на своем корабле к этой скале. Она вытянет из судна все гвозди, винты, железные скрепы, — и корабль распадется на отдельные доски.Впоследствии это сказание вошло в сказки 1001 ночи.
Конечно, это не более как легенда. Мы знаем теперь, что магнитные горы, т. е. горы, богатые магнитным железняком, действительно существуют, — вспомним знаменитую Магнитную гору, где высятся теперь домны Магнитогорска. Однако сила притяжения подобных гор чрезвычайно мала, почти ничтожна. А таких гор или скал, о каких писал Плиний, на земном шаре никогда не существовало.
Если в настоящее время и строятся суда без железных и стальных частей, то делается это не из боязни магнитных скал, а для удобного изучения земного магнетизма[55].
Научный романист Курт Лассвиц воспользовался идеей легенды Плиния, чтобы придумать грозное военное оружие, к которому в его романе «На двух планетах» прибегают пришельцы с Марса в борьбе с земными армиями. Располагая таким магнитным (вернее, электромагнитным) оружием, марсиане даже не вступают в борьбу с земными жителями, а обезоруживают их еще до начала сражения.
Вот как описывает романист этот эпизод сражения между марсианами и жителями Земли.
«Блестящие ряды всадников неудержимо ринулись вперед. И казалось, будто самоотверженная решимость войска понудила наконец могущественного неприятеля (марсиан. — Я. Я.) к отступлению, так как между его воздушными кораблями возникло новое движение. Они поднялись на воздух, словно собираясь уступить дорогу.
Одновременно с этим, однако, опустилась сверху какая-то темная широко раскинувшаяся масса, теперь только появившаяся над полем. Подобно развевающемуся покрывалу, масса эта, со всех сторон окруженная воздушными кораблями, быстро развернулась над полем. Вот первый ряд всадников попал в район ее действия, — и тотчас же странная машина распростерлась над всем полком. Действие, произведенное ею, было неожиданно и чудовищно! С поля донесся пронзительный вопль ужаса. Лошади и всадники клубком валялись на земле, а воздух был наполнен густой тучей копий, сабель и карабинов, с громом и треском летевших вверх к машине, к которой они и пристали.