Что такое пассивное расширение объема тела действительно совершается у рыб, подтверждается следующим опытом (рис. 76). Уклейка в захлороформированном состоянии помещается в закрытый сосуд с водой, в котором поддерживается усиленное давление, близкое к тому, какое господствует на определенной глубине в естественном водоеме. на поверхности воды рыбка лежит бездеятельно, вверх брюшком. Погруженная немного глубже, она вновь всплывает на поверхность. Помещенная ближе ко дну, она опускается на дно. Но в промежутке между обоими уровнями существует слой воды, в котором рыбка остается в равновесии — не тонет и не всплывает. Все это становится понятным если вспомним сказанное сейчас о пассивном расширении и сжатии плавательного пузыря.
   Итак, вопреки распространенному мнению, рыба вовсе не может произвольно раздувать и сжимать свой плавательный пузырь. Изменения его объема происходят пассивно, под действием усиленного или ослабленного наружного давления (согласно закону Бойля — Мариотта). Эти изменения объема для рыбы не только не полезны, а, напротив, приносят ей вред, так как обусловливают либо неудержимое, все ускоряющееся падение на дно, либо столь же неудержимый и ускоряющийся подъем на поверхность. Другими словами, пузырь помогает рыбе в неподвижном положении сохранять равновесие, но равновесие это неустойчивое.
   Такова истинная роль плавательного пузыря рыб, — поскольку речь идет о его отношении к плаванию; выполняет ли он также и другие функции в организме рыбы и какие именно, — неизвестно, так что орган этот все же является пока загадочным. И только его гидростатическую роль можно считать в настоящее время вполне выясненной.
   Наблюдения рыболовов подтверждают сказанное.
   Рисунок 76. Опыт с уклейкой.
   При ловле рыб из большой глубины случается, что иная рыба на половине пути высвобождается; но, вопреки ожиданию, она не опускается вновь в глубину, из которой была извлечена, а, напротив, стремительно поднимается на поверхность. У таких-то рыб и замечают иногда, что пузырь выпячивается через рот.
Волны и вихри
   Многие из повседневных физических явлений не могут быть объяснены на основе элементарных законов физики. Даже такое часто наблюдаемое явление, как волнение моря в ветреный день, не поддается исчерпывающему объяснению в рамках школьного курса физики. А чем обусловлены волны, разбегающиеся в спокойной воде от носа идущего парохода? Почему волнуются флаги в ветреную погоду? Почему песок на берегу моря располагается волнообразно? Почему клубится дым, выходящий из заводской трубы?
   Рисунок 77. Спокойное («ламинарное») течение жидкости в трубе.
   Рисунок 78. Вихревое («турбулентное») течение жидкости в трубе.
   Чтобы объяснить эти и другие подобные им явления, надо знать особенности так называемого вихревого движения жидкостей и газов. Постараемся рассказать здесь немного о вихревых явлениях и отметить их главные особенности, так как в школьных учебниках о вихрях едва упоминается.
   Представим себе жидкость, текущую в трубе. Если все частицы жидкости движутся при этом вдоль трубы по параллельным линиям, то перед нами простейший вид движения жидкости — спокойный, или, как физики говорят, «ламинарный» поток. Однако это вовсе не самый частый случай. Напротив, гораздо чаще жидкости текут в трубах неспокойно; от стенок трубы идут к ее оси вихри. Это — вихреобразное или турбулентное движение. Так течет, например, вода в трубах водопроводной сети (если не иметь в виду тонкие трубы, где течение ламинарное). Вихревое течение наблюдается всякий раз, когда скорость течения данной жидкости в трубе (данного диаметра) достигает определенной величины, так называемой критической скорости[44].
   Вихри текущей в трубе жидкости можно сделать заметными для глаз, если в прозрачную жидкость, текущую в стеклянной трубке, ввести немного легкого порошка, например ликоподия. Тогда ясно различаются вихри, идущие от стенок трубки к ее оси.
   Эта особенность вихревого течения используется в технике при устройство холодильников и охладителей. Жидкость, текущая турбулентно в трубке с охлаждаемыми стенками, гораздо быстрее приводит все свои частицы в соприкосновение с холодными стенками, нежели при движении без вихрей; надо помнить, что сами по себе жидкости — плохие проводники теплоты и при отсутствии перемешивания охлаждаются или прогреваются очень медленно. Оживленный тепловой и вещественный обмен крови с омываемыми ею тканями также возможен лишь потому, что ее течение в кровеносных сосудах не ламинарное, а вихревое.
   Сказанное о трубах относится в равной мере и к oткрытым каналам и руслам рек: в каналах и реках вода течет турбулентно. При точном измерении скорости течения реки инструмент обнаруживает пульсации, особенно близ дна: пульсации указывают на постоянно меняющееся направление течения, т. е. на вихри Частицы речной воды движутся не только вдоль речного русла, как обычно представляют себе, но также и от берегов к середине. Оттого и неправильно утверждение, будто в глубине реки вода имеет круглый год одну и ту же температуру, именно +4°С: вследствие перемешивания температура текущей воды близ дна реки (но не озера) такая же, как и на поверхности[45]. Вихри, образующиеся у дна реки, увлекают с собою легкий песок и порождают здесь песчаные «волны». То же можно видеть и на песчаном берегу моря, омываемом набегающей волной (рис. 79). Если бы течение воды близ дна было спокойное, песок на дне имел бы ровную поверхность.
   Рисунок 79. Образование песчаных волн на морском берегу действием водяных вихрей.
   Рисунок 80. Волнообразное движение веревки в текучей воде обусловлено образованием вихрей.
   Итак, близ поверхности тела, омываемого водой, образуются вихри. Об их существовании говорит нам, например, змеевидно извивающаяся веревка, протянутая вдоль по течению воды (когда один конец веревки привязан, а другой свободен). Что тут происходит? Участок веревки, близ которого образовался вихрь, увлекается им; но в следующий момент этот участок движется уже другим вихрем в противоположную сторону — получается змеевидное извивание (рис. 80).
   От жидкостей перейдем к газам, от воды — к воздуху.
   Кто не видал, как воздушные вихри увлекают с земли пыль, солому и т. п? Это — проявление вихревого течения воздуха вдоль поверхности земли. А когда воздух течет вдоль водной поверхности, то в местах образования вихрей, вспедствие понижения здесь воздушною давления, вода возвышается горбом — порождается волнение. Та же причина порождает песчаные волны в пустыне и на склонах дюн (рис. 82).
   Рисунок 81. Реющий флаг на ветру…
   Рисунок 82. Волнообразная поверхность песка в пустыне.
   Легко понять теперь, почему волнуется флаг при ветре: с ним происходит то же, что и с веревкой в текучей воде. Твердая пластинка флюгера не сохраняет при ветре постоянного направления, а, повинуясь вихрям, все время колеблется. Такого же вихревого происхождения и клубы дыма, выходящего из заводской трубы; топочные газы протекают через трубу вихревым движением, которое продолжается некоторое время по инерции за пределами трубы (рис 83).
   Велико значение турбулентного движения воздуха для авиации. Крыльям самолета придается такая форма, при которой место разрежения воздуха под крылом оказывается заполненным веществом крыла, а вихревое действие над крылом, напротив, усиливается. В итоге крыло снизу подпирается, а сверху присасывается (рис. 84). Сходные явления имеют место и при парении птицы с распростертыми крыльями.
   Рисунок 83. Клубы дыма, выходящего из заводской трубы.
   Как действует ветер, обдувающий крышу? Вихри создают над крышей разрежение воздуха; стремясь выровнять давление, воздух из-под крыши, увлекаясь вверх, напирает на нее. В результате происходит то, что, к сожалению, приходится нередко наблюдать: легкая, непрочно прикрепленная крыша уносится ветром. Большие оконные стекла по той же причине при ветре выдавливаются изнутри (а не разламываются напором снаружи). Однако эти явления проще объясняются уменьшением давления в движущемся воздухе (см. выше «Принцип Бернулли», стр. 125).
   Когда два потока воздуха разной температуры и влажности текут один вдоль другого, в каждом возникают вихри. Разнообразные формы облаков в значительной мере обусловлены этой причиной.
   Мы видим, какой обширный круг явлений связан с вихревыми течениями.
   Рисунок 84. Каким силам подвержено крыло самолета.
   Распределение давлений (+) и разрежений (-) воздуха по крылу на основании опытов. В итоге всех приложенных усилий, подпирающих и засасывающих, крыло увлекается вверх. (Сплошные линии показывают распределение давлений; пунктир — то же при резком увеличении скорости полета)
Путешествие в недра Земли
   Ни один человек не опускался еще в Землю глубже 3, 3 км, — а между тем радиус земного шара равен 6400 км. До центра Земли остается еще очень длинный путь. Тем не менее изобретательный Жюль Верн спустил глубоко в недра Земли своих героев — чудака-профессора Лиденброка и его племянника Акселя. В романе «Путешествие к центру Земли» он описал удивительные приключения этих подземных путешественников. В числе неожиданностей, встреченных ими под Землей, было, между прочим, и увеличение плотности воздуха. По мере поднятия вверх воздух разрежается очень быстро: его плотность уменьшается в геометрической прогрессии, в то время как высота поднятия растет в прогрессии арифметической. Напротив, при опускании вниз, ниже уровня океана, воздух под давлением вышележащих слоев должен становиться все плотнее. Подземные путешественники, конечно, не могли не заметить этого.
   Вот какой разговор происходил между дядей-ученым и его племянником на глубине 12 лье (48 км) в недрах Земли.
   «— Посмотри, что показывает манометр? — спросил дядя.
   — Очень сильное давление.
   — Теперь ты видишь, что, спускаясь помаленьку, мы постепенно привыкаем к сгущенному воздуху и нисколько но страдаем от этого.
   — Если не считать боли в ушах.
   — Пустяки!
   — Хорошо, — отвечал я, решив не противоречить дяде. — Находиться в сгущенном воздухе даже приятно. Вы заметили, как громко раздаются в нем звуки?
   — Конечно. В этой атмосфере даже глухой мог бы слышать.
   — Но воздух будет становиться все плотнее. Не приобретет ли он в конце концов плотности воды?
   — Конечно: под давлением в 770 атмосфер.
   — А еще ниже?
   — Плотность увеличится еще больше.
   — Как же ми станем тогда спускаться?
   — Набьем карманы камнями.
   — Ну, дядя, у вас на все есть ответ!
   Я не стал более вдаваться в область догадок, потому что, пожалуй, опять придумал бы какое-нибудь препятствие, которое рассердило бы дядю. Было, однако, очевидно, что под давлением в несколько тысяч атмосфер воздух может перейти в твердое состояние, а тогда, допуская даже, что мы могли вынести такое давление, придется все же остановиться. Тут уже никакие споры не помогут».
Фантазия и математика
   Так повествует романист; но но то окажется, если мы проверим факты, о которых говорится в этом отрывке. Нам не придется спускаться для этого в недра Земли; для маленькой экскурсии в область физики вполне достаточно запастись карандашом и бумагой.
   Прежде всего постараемся определить, на какую глубину нужно опуститься, чтобы давление атмосферы возросло на 1000-ю долю. Нормальное давление атмосферы равно весу 760-миллиметрового столба ртути. Если бы мы были погружены не в воздух, а в ртуть, нам надо было бы опуститься всего на 760/1000 = 0,76 мм, чтобы давление увеличилось на 1000-ю долю. В воздухе же, конечно, мы должны опуститься для этого гораздо глубже, и именно во столько раз, во сколько раз воздух легче ртути — в 10 500 раз. Значит, чтобы давление увеличилось на 1000-ю долю нормального, нам придется опуститься не на 0, 76 мм, как в ртути, а на 0, 76х10500, т. е. почти на 8 м. Когда же мы опустимся еще на 8 м, то увеличенное давление возрастет еще на 1000-то своей величины, и т. д[46]… На каком бы уровне мы ни находились — у самого «потолка мира» (22 км), на вершине горы Эверест (9 км) или близ поверхности океана, — нам нужно опуститься на 8 м, чтобы давление атмосферы возросло на 1000-ю долю первоначальной величины. Получается, следовательно, такая таблица возрастания давления воздуха с глубиной:
   На уровне Земли давление
   760 мм = нормальному
   » глубине 8 м» =1,001 нормального
   » глубине 2х8» =(1,001)2
   » глубине 3х8» =(1,001)3
   » глубине 4х8» =(1,001)4
   И вообще на глубине nх8 м давление атмосферы больше нормального в (1,001)n раз; и пока давление не очень велико, во столько же раз увеличится и плотность воздуха (закон Мариотта).
   Заметим, что в данном случае речь идет, как видно из романа, об углублении в Землю всего на 48 км, а потому ослабление силы тяжести и связанное с ним уменьшение веса воздуха можно не принимать в расчет.
   Теперь можно рассчитать, как велико было, примерно. то давление, которое подземные путешественники Жюля Верна испытывали на глубине 48 км (48 000 м). В нашей формуле n равняется 48000/8 = 6000. Приходятся вычислить 1,0016000. Так как умножать 1,001 само на себя 6000 раз — занятие довольно скучное и отняло бы много времени, то мы обратимся к помощи логарифмов. о которых справедливо сказал Лаплас, что они, сокращая труд, удваивают жизнь вычислителей[47]. Логарифмируя, имеем: логарифм неизвестного равен
   6000 * lg 1,001 = 6000 * 0,00043 = 2,6.
   По логарифму 2,6 находим искомое число; оно равно 400.
   Итак, на глубине 48 км давление атмосферы в 400 раз сильнее нормального; плотность воздуха под таким давлением возрастет, как показали опыты, в 315 раз. Сомнительно поэтому, чтобы наши подземные путники нисколько не страдали, испытывая только «боль в ушах»… В романе Жюля Верпа говорится, однако, о достижении людьми еще больших подземных глубин, именно 120 и даже 325 км. Давление воздуха должно было достигать там чудовищных степеней; человек же способен переносить безвредно для себя воздушное давление не свыше трех-четырех атмосфер.
   Если бы по той же формуле мы стали вычислять, на какой глубине воздух становится так же плотен, как и вода, т. е. уплотняется в 770 раз, то получили бы цифру: 53 км. Но этот результат неверен, так как при высоких давлениях плотность газа уже не пропорциональна давлению. Закон Мариотта вполне верен лишь для не слишком значительных давлений, не превышающих сотни атмосфер. Вот данные о плотности воздуха, полученные на опыте:
   Давление Плотность
   200 атмосфер ... 190
   400» .............. 315
   600» .............. 387
   1500» ............. 513
   1800» ............. 540
   2100» ............. 564
   Увеличение плотности, как видим, заметно отстает от возрастания давления. Напрасно жюль-верновский ученый ожидал, что он достигнет глубины, где воздух плотнее воды, — этого ему не пришлось бы дождаться, так как воздух достигает плотности воды лишь под давлением 3000 атмосфер, а дальше уже почти не сжимается. О том же, чтобы превратить воздух в твердое состояние одним давлением, без сильнейшего охлаждения (ниже минус 146°), не может быть речи.
   Справедливость требует отметить, однако, что упомянутый роман Жюля Верна был опубликован задолго до того, как стали известны приведенные сейчас факты. Это оправдывает автора, хотя и не исправляет повествования.
   Воспользуемся еще приведенной раньше формулой, чтобы вычислить наибольшую глубину шахты, на дне которой человек может оставаться без вреда для своего здоровья. Наибольшее воздушное давление, какое еще способен переносить наш организм, — 3 атмосферы. Обозначая искомую глубину шахты через х, имеем уравнение (1,001)х/8 = 3, откуда (логарифмируя) вычисляем х. Получаем х = 8,9 км.
   Итак, человек мог бы без вреда находиться на глубине почти 9 км. Если бы Тихий океан вдруг высох, люди могли бы почти повсюду жить на его дне.
В глубокой шахте
   Кто ближе всего продвинулся к центру Земли — не в фантазии романиста, а в реальной действительности? Конечно, горнорабочие. Мы уже знаем (см. гл. IV), что глубочайшая шахта мира прорыта в Южной Африке. Она уходит в глубь более чем на 3 км. Здесь имеется в виду не глубина проникновения бурильного долота, достигающая 7,5 км, а углубление самих людей. Вот что рассказывает, например, о шахте на руднике Морро Вельхо (глубина около 2300 м) французский писатель д-р Люк Дюртен, лично посетивший ее:
   «Знаменитые золотые прииски Морро Вельхо находятся в 400 км от Рио-де-Жанейро. После 16 часов езды по железной дороге в скалистой местности вы спускаетесь в глубокую долину, окруженную джунглями. Здесь английская компания разрабатывает золотоносные жилы на такой глубине, на какую никогда раньше не спускался человек.
   Жила идет в глубь косо. Шахта следует за ней шестью уступами. Вертикальные шахты — колодцы, горизонтальные — туннели. Чрезвычайно характерно для современного общества, что глубочайшая шахта, прорытая в коре земного шара, — самая смелая попытка человека проникнуть в недра планеты — сделана в поисках золота.
   Наденьте парусиновую прозодежду и кожаную куртку. Осторожнее: малейший камешек, падающий в колодец, может ранить вас. Нас будет сопровождать один из «капитанов» шахты. Вы входите в первый туннель, хорошо освещенный. Вас охватывает дрожь от леденящего ветра в 4°: это — вентиляция для охлаждения глубин шахты.
   Проехав в узкой металлической клетке первый колодец глубиной 700 м, вы попадаете во второй туннель. Спускаетесь во второй колодец; воздух становится теплее. Вы уже находитесь ниже уровня моря.
   Начиная со следующего колодца, воздух обжигает лицо. Обливаясь потом, согнувшись под низким сводом, вы подвигаетесь по направлению к реву сверлильных машин. В густой пыли работают обнаженные люди; с них струится пот, руки безостановочно передают бутыль с водой. Не дотрагивайтесь до обломков руды, сейчас отколотых: температура их 57°.
   Каков же итог этой ужасной, отвратительной действительности? — Около 10 килограммов золота в день[48]…».
   Описывая физические условия на дне шахты и степень крайней эксплуатации рабочих, французский писатель отмечает высокую температуру, но не упоминает о повышенном давлении воздуха. Вычислим, каково оно на глубине 2300 м. Если бы температура оставалась такая же, как на поверхности Земли, то, согласно знакомой уже нам формуле, плотность воздуха возросла бы в
   раза.
   В действительности температура не остается неизменной, а повышается. Поэтому плотность воздуха растет не столь значительно, а меньше. В конечном итоге воздух на дне шахты по плотности разнится от воздуха на поверхности Земли немногим больше, чем воздух знойного летнего дня от морозного воздуха зимы. Понятно теперь, почему это обстоятельство не привлекло к себе внимания посетителя шахты.
   Зато большое значение имеет значительная влажность воздуха в таких глубоких рудниках, делающая пребывание в них невыносимым при высокой температуре. В одном из южноафриканских рудников (Иогансбург), глубиною 2553 м, влажность при 50° жары достигает 100%; здесь устраивается теперь так называемый «искусственный климат», причем охлаждающее действие установки равнозначаще 2000 тоннам льда.
Ввысь со стратостатами
   В предыдущих статьях мы мысленно путешествовали в земные недра, причем нам помогла формула зависимости давления воздуха от глубины. Отважимся теперь подняться вверх и, пользуясь той же формулой, посмотрим, как меняется давление воздуха на больших высотах. Формула для этого случая принимает такой вид:
   р = 0,999h/8,
   где р — давление в атмосферах, h — высота в метрах. Дробь 0,999 заменила здесь число 1,001, потому что при перемещении вверх на 8 м давление не возрастает на 0,001, а уменьшается на 0,001.
   Решим для начала задачу: как высоко надо подняться, чтобы давление воздуха уменьшилось вдвое?
   Для этого приравняем в нашей формуле давление p = 0,5 и станем искать высоту h. Получим уравнение 0,5 = 0,999h/8, решить которое не составит труда для читателей, умеющих обращаться с логарифмами. Ответ h = 5,6 км определяет высоту, на которой давление воздуха должно уменьшиться вдвое.
   Направимся теперь еще выше, вслед за отважными советскими воздухоплавателями, достигшими высоты 19 и 22 км. Эти высокие области атмосферы находятся уже в так называемой «стратосфере». Поэтому и шарам, на которых совершаются подобные подъемы, присвоено наименование не аэростатов, а «стратостатов». Не думаю, чтобы среди людей старшего поколения нашелся хотя бы один, который не слыхал бы названий советских стратостатов «СССР» и «ОАХ-1», поставивших в 1933 и 1934 годах мировые рекорды высоты: первый — 19 км, второй — 22 км.
   Попытаемся вычислить, каково давление атмосферы на этих высотах.
   Для высоты 19 км найдем, что давление воздуха должно составлять
   0,99919000/8 = 0,095 атм = 72 мм.
   Для высоты 22 км
   0,99922000/8 = 0,066 атм = 50 мм.
   Однако, заглянув в записи стратонавтов, находим, что на указанных высотах отмечены были другие давления: на высоте 19 км — 50 мм, на высоте 22 км — 45 мм.
   Почему же расчет не подтверждается? В чем наша ошибка?
   Закон Мариотта для газов при столь малом давлении применим вполне, но на этот раз мы сделала другое упущение: считали температуру воздуха одинаковой по всей 20-километровой толще, между тем как она заметно падает с высотой. В среднем принимают; что температура при поднятии на каждый километр падает на 6,5°; так происходит до высоты 11 км, где температура равна минус 56° и далее на значительном протяжении остается неизменной. Если принять это обстоятельство во внимание (для чего уже недостаточны средства элементарной математики), получатся результаты, гораздо более согласные с действительностью. По той же причине на итоги наших прежних вычислений, относящихся к давлению воздуха в глубинах, нужно тоже смотреть как на приближенные.

Глава седьмая
ТЕПЛОВЫЕ ЯВЛЕНИЯ.

Веер
   Когда женщины обмахиваются веерами, им, конечно, становится прохладнее. Казалось бы, что занятие это вполне безвредно для остальных присутствующих в помещении и что собравшиеся могут быть только признательны женщинам за охлаждение воздуха в зале.
   Посмотрим, так ли это. Почему при обмахивании веером мы ощущаем прохладу? Воздух, непосредственно прилегающий к нашему лицу, нагревается и эта теплая воздушная маска, невидимо облегающая наше лицо, «греет» его, т. е. замедляет дальнейшую потерю тепла. Если воздух вокруг нас неподвижен, то нагревшийся близ лица слой воздуха лишь весьма медленно вытесняется вверх более тяжелым ненагретым воздухом. Когда же мы смахиваем веером с лица теплую воздушную маску, то лицо соприкасается с все новыми порциями ненагретого воздуха и непрерывно отдает им свою теплоту; тело наше остывает, и мы ощущаем прохладу.
   Значит, при обмахивапии веером женщины непрерывно удаляют от своего лица нагретый воздух и заменяют его ненагретым; нагревшись, этот воздух удаляется в свою очередь и заменяется новой порцией ненагретого, и т. д.
   Работа веером ускоряет перемешивание воздуха и способствует быстрейшему уравниванию температуры воздуха во всем зале, т. е. доставляет облегчение обладательницам веера за счет более прохладного воздуха, окружающего остальных присутствующих. Для действия веера имеет значение еще одно обстоятельство, о котором мы сейчас расскажем.