Вышеприведенное определение равенства может быть принято только, если p/h и q/h являются сравнимыми; если (как Кейнс считает возможным) ни одно из них не больше другого и все же они не равны, то от этого определения следует отказаться. Мы могли бы преодолеть это затруднение с помощью аксиом, касающихся обстоятельств, при которых вероятности должны быть сравнимыми. Когда они сравнимы, они лежат на одной линии между 0 и 1. В правой части вышеприведенного определения "p/h = q/h" мы должны тогда добавить, что P/h и q /h являются "сравнимыми".
   Переформулируем теперь принцип индифферентности Кейнса. Он хочет установить обстоятельства, при которых p/h = q/h. Это будет иметь место, говорит он, если выполняются два условия (достаточные, но не необходимые). Пусть p будет f(a) и q будет f(b), тогда h должно быть симметричным по отношению к a и b, а f(a) и f(b) должны быть "неделимыми".
   Когда мы говорим, что h является симметричным по отношению к а и b, мы имеем в виду предварительно, что если h имеет форму f(a, b), тогда f(a, b) = f(b, а). Это будет иметь место, в частности, если f(a, b) имеет форму g(a) g(b), что является случаем, когда информация, которую h дает об a и b, состоит из отдельных предложении, одного об a и другого об b, и когда оба предложения являются значениями одной пропозициональной функции.
   Мы теперь положили p = f(a), q = f(b) и h = f(o, b). Наша аксиома должны быть о том, что, с соответствующей оговоркой, взаимозамена f(a) и f(b) и не может вызвать какую-либо разницу. Это предполагает, что
   f(a)/f(a, b) = f(b)/f(a, b),
   если только f(a) и (b) сравнимы по отношению к f(a, b). Это следует, если в качестве общего принципа
   fa/ya = fb/b,
   то есть если вероятность зависит не от частного субъекта, а от пропозициональных функций. Здесь есть, по-видимому, надежда прийти в этом направлении к такой форме принципа индифферентности, которая может быть более самоочевидной, чем форма Кейнса.
   Исследуем для этой цели его условия неделимости. Кейнс определяет "f(a) делимо", как значение, что имеются такие два аргумента b и с, что 'fa " эквивалентно "fb или fc", а fb и yc не могут быть оба истинными, тогда как fb и fc оба возможны при данном h. Я не думаю, что это есть именно то, что он на самом деле хочет сказать. Я думаю, что мы подойдем ближе к тому, чего он хочет, если предположим, что о, b и с суть классы, для которых a есть сумма b и с. В этом случае f должно быть функцией, которая берет классы в качестве аргументов. Например, пусть o будет областью на мишени, разделенной на две части, b и c. Пусть "fa" будет значить, что "некоторая точка в а поражена", а fa" будет значить, что "некоторая точка в а взята на прицел". Тогда fa является делимым в вышеуказанном смысле, и мы не получаем
   fa/ya = fb/\yb,
   так как очевидно, что fa/ya больше, чем fb/yb.
   Но остается неясным, что наше прежнее условие, именно, что h должно быть симметричным по отношению к а и b, оказывается недостаточным. Ибо теперь h содержит предложение "b есть часть а", которое не является симметричным.
   Кейнс обсуждает условия для fa/ya = fb/yb и дает как пример неудачи случай, где fx = x есть Сократ. В этом случае, каково бы ни было значение fx,
   f (Сократ) / y(Сократ) = 1,
   тогда как если b не есть Сократ, то fb/yb =0. Чтобы исключить этот случай, я сделал бы оговорку, что "fx" не должно содержать "a". Беря аналогичный случай, допустим, что fx = x значит "убивает а" и что fx = x значит "живет в Англии". Тогда fa/ya есть вероятность, что a совершает самоубийство в Англии, тогда как fx/yx вообще есть вероятность, что a будет убит каким-то англичанином по фамилии x. Ясно, что в большинстве случаев fa/ya больше, чем fb/yb, потому что вероятнее, что человек совершит самоубийство, чем убьет другого, выбранного наудачу.
   Таким образом, существенным условием, по-видимому, является то, что "fx" не должно содержать "a" или "b". Если это условие выполнено, то я не вижу, почему мы не можем получить
   fa/ya = fb/yb.
   Я заключаю, что принцип индифферентности на деле утверждает то, что вероятность есть отношение между пропозициональными функциями, а не между предложениями. Это и есть то, что имеется в виду под такой фразой, как "выбор наудачу". Эта фраза значит, что мы должны рассматривать какой-либо термин только как термин, удовлетворяющий определенной пропозициональной функции; тогда то, что сказано, в действительности относится к пропозициональной функции, а не к тому или иному ее значению.
   Тем не менее остается кое-что существенное, являющееся тем, что действительно касается нас. Если дано отношение вероятности между двумя пропозициональными функциями fx и yx, то мы можем рассматривать его как отношение между fa и ya, если только "fx" и "yx" не содержит "a". Это необходимая аксиома во всех применениях вероятности к практике, так как именно частные случаи интересуют нас.
   Я прихожу к выводу, что главный формальный недостаток теории вероятности Кейнса состоит в том, что он рассматривает вероятность скорее как отношение между предложениями, чем как отношение между пропозициональными функциями. Я сказал бы, что применение ее к предложениям относится к приложению теории, а не к самой теории.
   ГЛАВА 6.
   СТЕПЕНИ ПРАВДОПОДОБИЯ.
   А. Общие соображения.
   То, что все человеческое знание в большей или меньшей степени сомнительно, является доктриной, пришедшей к нам из древности; она провозглашалась скептиками и Академией в ее скептический период. В современном мире она подкрепляется прогрессом науки. Шекспир изображая смехотворность самого крайнего скептицизма, говорит:
   Сомневаюсь, что звезды - огонь,
   Сомневаюсь, что солнце действительно движется.
   Когда он писал это, последнее уже было поставлено под сомнение Коперником, а вслед за ним под еще более решительное сомнение Кеплером и Галилеем. Первое - ложно, если слово "огонь" употреблено в его химическом смысле. Многое, казавшееся несомненным, оказалось по всей вероятности неверным. Сами научные теории время от времени изменяются по мере того, как накапливаются новые данные; ни один разумный ученый не чувствует той уверенности в истинности какой-нибудь новой научной теории, какую чувствовали по отношению к теории Птолемея на протяжении всех средних веков.
   Но хотя любая часть того, что мы хотели бы рассматривать как "знание", может быть в некоторой степени сомнительной, ясно, что кое-что почти достоверно, в то время как кое-что иное является продуктом рискованных предположений. Для разумного человека существует шкала сомнительности от простых логических и арифметических предложений и суждений восприятия нас одном конце до таких вопросов, как вопрос о том, на каком языке говорили микенцы или "какую песню пели сирены", на другом конце. Можно ли допускать какую-либо степень сомнительности к наименее сомнительным из наших верований, является вопросом, по поводу которого сейчас нам нет нужды беспокоиться; достаточно того, что любое предложение, в отношении которого у нас есть разумные основания для какой-то степени веры или неверия, может теоретически быть помещено на шкале между достоверной истиной и достоверной ложью. Включаются ли в эту шкалу сами эти границы, является вопросом, который мы можем оставить открытым.
   Существует определенная связь между математической вероятностью и степенями правдоподобности. Связь эта следующая: когда в отношении всех доступных нам свидетельств какое-либо предложение имеет определенную математическую вероятность, тогда это определяет и степень его правдоподобия. Например, если вы собираетесь бросить кости, то предложение "выпадет двойная шестерка" имеет только одну тридцать пятую правдоподобия, приписываемого предложению "двойная шестерка не выпадет". Таким образом, разумный человек, приписывающий каждому предложению правильную степень правдоподобия, будет руководствоваться математической теорией вероятности в тех случаях, когда она применима.
   Понятие "степень правдоподобия", однако, применяется гораздо более широко, чем понятие математической вероятности; я считаю, что оно применимо к каждому предложению, за исключением тех, которые не являются ни опытными данными, ни относящимися к данным каким-либо способом, благоприятным или неблагоприятным для их признания. Я считаю, в частности, что оно применимо к предложениям, которые настолько близко, насколько это возможно, приближаются к простому выражению опытных данных. Если этот взгляд с логической точки зрения приемлем, то мы должны считать, что степень правдоподобия, приписываемая предложению, иногда сама является неким данным. Я думаю, что мы должны также считать, что степень правдоподобия, приписываемая какому-либо данному, иногда представляет собой данное и иногда (возможно, всегда) не достигает достоверности. В таком случае мы или можем считать, что есть только одно данное, именно предложение с приписываемой ему степенью правдоподобия, или же можем считать, что это данное и его степень правдоподобия являются двумя отдельными данными. Я не буду обсуждать, какой из этих двух взглядов должен быть принят.
   Предложение, которое не является чем-то данным, может получить правдоподобие из многих различных источников;
   человек, который хочет доказать свою невиновность в преступлении, может аргументировать и исходя из алиби и из своего прежнего хорошего поведения. Основания в пользу научной гипотезы практически всегда являются сложными. Если признается, что какое-то данное может не быть достоверным, степень его правдоподобия может быть повышена каким-либо аргументом или, напротив, может быть весьма снижена каким-либо контраргументом.
   Степень правдоподобия, сообщаемая доказательством не поддается простой оценке. Возьмем сначала простейший из возможных случаев, именно тот, когда посылки достоверны и рассуждение, если оно правильно, является доказательным. На каждой ступени рассуждения мы должны "видеть", что заключение этой ступени вытекает из ее посылок. Иногда это легко сделать, например, если доказательство представляет собой силлогизм модуса Barbara. В таком случае степень правдоподобия, приписываемая связи посылок и заключению, является почти достоверностью и заключение имеет почти такую же степень правдоподобия, как и посылки. Но в случае трудного математического доказательства шанс ошибки в рассуждении будет гораздо большим. Логическая связь может быть совершенно ясной для хорошего математика, тогда как для ученика она является едва заметной и то только моментами. У ученика основания для веры в правильность данной ступени рассуждения не являются чисто логическими; отчасти они являются у него аргументами от авторитета. Эти рассуждения никоим образом не являются доказательными, так как даже наилучшие математики иногда делают ошибки. При таких основаниях, как указывает Юм, заключение длинного доказательства менее достоверно, чем заключение короткого, ибо на каждой ступени имеется некоторый риска, что будет допущена ошибка.
   Посредством определенного упрощающего предположения этот источник недостоверности может быть включен в сферу математической теории вероятности. Допустим, что она установила, что в определенной ветви математики хорошие математики рассуждают правильно на какой-то ступени их доказательств в отношении x от всех случаев; тогда шанс того, что они рассуждают правильно на протяжении всего хода доказательства, состоящего из n ступеней, равен х". Отсюда следует, что длинное доказательство, не проверенное повторением, содержит заметный риск ошибки, даже если x почти равен 1. Но повторение может понизить риск до очень малой величины. Все это находится в пределах математической теории.
   В пределы этой теории, однако, не включается частное убеждение индивидуального математика, когда он строит рассуждение на каждой ступени. Это убеждение будет изменяться в зависимости от трудности и сложности ступени; но вопреки этой изменчивости оно должно быть таким же прямым и непосредственным, как и наша уверенность в объектах восприятия. Для того чтобы доказать, что определенная посылка имплицирует определенное заключение, мы должны "видеть" каждую ступень в рассуждении; мы не можем доказать правильность ступени иначе, как только посредством разложения ее на более мелкие ступени, каждая из которых тогда должна стать "видимой". Если не признать этого, все доказательство потеряется в бесконечном регрессе.
   До сих пор я говорил о доказательном выводе, но в отношении нашего настоящего вопроса недоказательный вывод не представляет никакой новой проблемы, так как, как мы видели, даже доказательный вывод, совершаемый людьми, сообщает заключению только вероятность. Нельзя сказать даже того, что рассуждение, претендующее на доказательность, всегда придает заключению более высокую степень вероятности, чем рассуждение, которое открыто является только вероятным; в традиционной метафизике имеется много примеров этого.
   Если - как я полагаю и как я буду доказывать, когда это понадобиться,данные так же, как и результата вывода, лишаются самой высокой степени правдоподобия, какая только может быть достигнута, тогда эпистемологическое отношение между данными и выводными предложениями становится до некоторой степени сложным. Я могу, например, думать; что я что-то вспоминаю, но нахожу основание верить, что то, что мне показалось воспоминанием, никогда не происходило; в этом случае доказательство может заставить меня отбросить данное. И наоборот, когда данное само по себе имеет не очень высокую степень правдоподобия, оно может быть подтверждено внешним свидетельством; например, я могу иметь лишь слабое воспоминание об обеде с г-ном имярек, который имел место когда-то в прошлом году, и могу обнаружить, что мой дневник за прошедший год содержит запись, подтверждающую мое воспоминание. Из этого следует, что каждое из моих верований может быть усилено или ослаблено приведением его в отношение с другими верованиями.
   Отношение между данными и выводами сохраняет, однако, большое значение, поскольку основание для веры непременно должно обнаруживаться после достаточного анализа в данных и только в данных. (Я здесь включаю в число данных и принципы, используемые во всяких выводах, какие могут встретиться.) Из этого следует, что данные, относящиеся к какой-либо отдельной вере, могут быть гораздо более многочисленными, чем это кажется с первого взгляда. Возьмем опять случай с воспоминанием. Тот факт, что я вспоминаю какое-либо происшествие, является свидетельством, хотя и не решающим, того, что происшествие имело место. Если я нахожу современную происшествию запись о нем, то это - подтверждающее свидетельство. Если я нахожу много таких записей, то подтверждающее свидетельство усиливается. Если происшествие является таким, которое, подобно прохождению Венеры перед солнечным диском, делается почти достоверным хорошо установленной научной теорией, то этот факт должен быть прибавлен к записям как добавочное основание уверенности. Таким образом, в то время, как имеются верования, которые являются только заключениями доказательств, отсутствуют такие, которые в рациональной разработке знания являлись бы только посылками. Говоря это, я выражаюсь в терминах эпистемологии, а не логики.
   Таким образом, эпистемологическая предпосылка может быть определена как предложение, которое имеет какую-то степень рационального правдоподобия благодаря самой себе, независимо от ее отношений к другим предложениям. Каждое такое предложение может быть использовано для сообщения некоторой степени правдоподобия предложениям, которые или следуют из него, или находятся к нему в отношении вероятности. Но на каждой стадии происходит некоторое уменьшение первоначального запаса правдоподобия; это аналогично тому, как состояние уменьшается налогами на наследство каждый раз, когда оно наследуется. Проводя аналогию несколько дальше, мы можем сказать, что внутреннее правдоподобие похоже на состояние, приобретаемое в результате собственных усилий человека, тогда как правдоподобие, получающееся в результате доказательства, подобно наследству. Эта аналогия ограничивается тем, что человек, который составил состояние, может также и наследовать состояние, тогда как каждое состояние должно быть обязанным своим происхождением не наследованию, а чему-либо другому.
   В этой главе я намереваюсь обсудить правдоподобие, во-первых, в отношении к математической вероятности, затем в отношении данных, затем в отношении субъективной уверенности и, наконец, в отношении к рациональному поведению.
   Б. Правдоподобие и частота
   Я намереваюсь сейчас обсудить вопрос: при каких обстоятельствах правдоподобие предложения o выводится из частоты fx при данном некотором fx? Другими словами, если "fa" есть предложение "a есть x", то при таких обстоятельствах правдоподобие предложения "альфа есть бета" выводится из одного или более предложений формы: члены а, являющиеся членами p, составляют отношение m/n".
   Этот вопрос, как мы увидим, не совсем такой общий; как тот, который мы должны поставить, но желательно обсудить его первым.
   Обыденному здравому смыслу, по-видимому, ясно, что в типичных случаях математической вероятности она равна степени правдоподобия. Если я вытаскиваю наудачу карту из колоды, то степень правдоподобия предложения "карта будет красная" будет в точности равна степени правдоподобия предложения "карта будет не красная", и, следовательно, степень правдоподобия каждого предложения равна 1/3, если 1 представляет собой достоверность. В отношении игральной кости степень правдоподобия предложения "выпадет 1" совершенно та же, что и предложения "выпадет 2", или 3, или 4, или 5, или 6. Отсюда все выведенные частоты математической теории могут быть интерпретированы как выведенные степени правдоподобия.
   В этом переводе математических вероятностей в степени правдоподобия мы пользуемся принципом, в котором математическая теория не нуждается. Математическая теория просто считает случаи; а при переводе мы должны знать или допускать, что каждый случай равно правдоподобен. Необходимость в этом принципе признавалась с давних пор; он был назван принципом недостаточного основания, или (Кейнсом) принципом индифферентности. Мы рассмотрели этот принцип в связи с теорией Кейнса, а теперь мы должны рассмотреть этот принцип сам по себе. Но перед обсуждением его я хочу отметить, что он не нужен в математической теории вероятности. В этой теории нам нужно знать только численность различных классов. Этот принцип требуется только тогда, когда математическая вероятность рассматривается как мера правдоподобия.
   То, в чем мы нуждаемся, есть нечто вроде следующего:
   "Если дан объект а, отношении которого мы хотим знать, какую степень правдоподобия приписать предложению "a есть p", и если дано, что единственно относящееся к делу знание, которое мы имеем, есть "а есть а", тогда степень правдоподобия предложения "a есть p" будет представлять собой математическую вероятность, измеряемую отношением числа членов, общих для альфа, и бета, к числу членов альфа.
   Иллюстрируем это еще раз примером с самым высоким человеком в Соединенных Штатах и шансом, что он живет в штате Айова. Здесь, во-первых, мы имеет описание d, приложимое к одному и только одному человеку из числа названных людей А1, А2, ... an, где n есть число жителей Соединенных Штатов. Это значит, что одно и только одно из предложений "d= Аr" (где r обозначает любого жителя от 1 до n) известно как истинное, но мы не знаем, какое именно. Если это действительно есть все наше относящееся к делу знание, то мы предполагаем, что любое из предложений "d=Ar' столь же правдоподобно, как и любое другое. В этом случае каждое имеет правдоподобие 1/n. Если в штате Айова имеется m жителей, то предложение "d живет в штате Айова" эквивалентно дизъюнкции m предложений "d= Аr" и, следовательно, имеет m раз правдоподобие любого из них, поскольку они взаимно исключают друг друга. Следовательно, оно имеет степень правдоподобия, измеряемую дробью m/n,
   Конечно, в вышеприведенной иллюстрации предложения "d = Ar" не все одного уровня. Свидетельство позволяет нам исключить детей, людей низкого роста и, возможно, женщин. Это показывает, что применение этого принципа связано с затруднениями, но это не значит, что он ложен.
   Случай с вытаскиванием карты из колоды ближе подходит к осуществлению условий, требуемых принципом. Здесь описание "d" есть "карта, которую я собираюсь вытащить". Все 52 карты имеют то, что мы можем рассматривать как названия: "двойка пик" и так далее Мы имеем, таким образом, 52 предложения "d = Аr", из которых одно и только одно истинно, но мы не имеем никаких данных, которые склоняли бы нас в пользу одного, а не какого-либо другого. Следовательно, правдоподобие каждого равно 1/52. Если мы это признаем, то это связывает правдоподобие с математической вероятностью.
   Мы можем, следовательно, сформулировать как возможную форму "принципа индифферентности" следующую аксиому:
   "Если дано описание d, относительно которого мы знаем, что оно применимо к одному и только одному из объектов а1, a2, ... an, и если дано, что мы не имеем знания относительно того, к какому из этих объектов приложимо это описание, тогда n предложений "d=ar" (1 меньше или равно r меньше или равно n) все равно правдоподобны и, следовательно, каждое имеет правдоподобие, измеряемое дробью 1/n".
   Эта аксиома является более ограниченной, чем принцип недостаточного основания, как он обычно формулируется. Мы должны исследовать, будет ли она достаточной, а также имеем ли мы основание верить ей.
   Сначала сравним вышеизложенное с принципом индифферентности Кейнса, рассмотренным нами в предшествующей главе. Вспомним, что этот принцип гласит: вероятности p и q в отношении данного свидетельства равны, если (1) свидетельство симметрично по отношению к p и q, (2) p и q "неделимы", то есть ни одно из них не является дизъюнкцией предложений той же самой формы, что и оно само. Мы решили, что это можно упростить: мы говорили, что нужно, чтобы p и q были бы значениями одной пропозициональной функции, скажем p = f(a) и q = f(b), чтобы "fx" не содержало ни a, ни b, и что, если свидетельство содержит упоминание a, скажем, в форме f(a), то оно должно также содержать y(b) и, наоборот, где yx в свою очередь не должно упоминать a или b. Этот принцип является до некоторой степени более общим, чем сформулированный в предшествующем абзаце: он имплицирует последний, но я сомневаюсь, имплицирует ли последний его. Мы, возможно, можем принять более общий принцип и переформулировать его следующим образом:
   "Если даны две пропозициональные функции fx и yx, ни одна из которых не упоминает о или b, или если и упоминает их, то упоминает симметрично, тогда, при данных ya и yb, два предложения fa и fb имеют равное правдоподобие".
   Этот принцип, если его принять, позволяет нам выводить правдоподобность из математической вероятности и делает все предложения математической теории пригодными для измерения степеней правдоподобия в случаях, к которым применима математическая теория.
   Попробуем применить вышеупомянутый принцип к случаю с числом n шаров в сумке, где известно, что каждый шар или белый, или черный; стоит вопрос: какова вероятность, что в сумке содержится х белых шаров? Лаплас допускал, что каждое значение x от 0 до A равно вероятно, так что вероятность данного х есть 1/(n + 1). С чисто математической точки зрения это правильно, если только мы начинаем с пропозициональной функции: х = число белых шаров. Но если мы начинаем с пропозициональной функции: х есть белый шар, то мы получим совсем другой результат. В этом случае имеется много способов получения х шаров. Первый шар может быть получен n способами; когда он получен, следующий может быть получен n - 1 способами и так далее Таким образом, число способов получения х шаров есть
   Это есть число способов, которыми может быть получено х белых шаров. Чтобы получить вероятность числа х белых шаров, мы должны разделить это число на сумму чисел способов получения 0 белых шаров, или 1, или 2, или 3, или ... или n. Легко показать, что сумма равна 2". Следовательно, шанс получить ровно х белых шаров достигается в результате деления вышеупомянутого числа на 2". Назовем его "p (A, r) ".
   Этот шанс имеет максимум, когда х = 1/2n, если n четное число, или когда х = 1/2n +- 1/2, если n есть нечетное число. Его значение, когда х или n-х мало, очень мало, если n - большое. С чисто математической точки зрения эти два очень различных результата одинаково правильны. Но когда мы подходим к измерению степеней правдоподобия, между ними обнаруживается большая разница Допустим, что у нас независимо от цвета есть какой-либо способ, с помощью которого мы можем различать шары; например, пусть они последовательно вынимаются из сумки и назовем первый вынутый d1, второй вынутый d2; и так далее Обозначим через "a " "белые", через "b" "черные" и поставим 'fa" вместо "белый цвет есть цвет a", "fb" вместо 'черный цвет есть цвет а1". Данные говорят, что верно или fa или fb, но не оба. Это симметрично, и, следовательно, на основании свидетельства данных fa и fb имеют одинаковое правдоподобие, то есть "d1 - белый" и "d1 - черный" имеют одинаковое правдоподобие. Это же самое рассуждение применимо к d2, d3, ..., dn. Таким образом, для каждого шара степени правдоподобия белого и черного равны. И, следовательно, как показывает простое вычисление, степень правдоподобия х белых шаров есть p (n, r), где предполагается, что х лежит между 0 и n, включая и их самих.