Страница:
Следует отметить, что в измерении степеней правдоподобия мы предполагаем, что данные не только верны, но и исчерпывающи по отношению к нашему знанию, то есть мы предполагаем, что мы не знаем ничего относящегося к делу, кроме того, что упоминается в данных. Следовательно, для данного человека в данное время существует только одно правильное значение для степени правдоподобия данного предложения, тогда как в математической теории многие значения одинаково правильны в отношении многих различных данных, которые могут быть чисто гипотетическими.
В применении результатов математического исчисления вероятности к степеням правдоподобия мы должны тщательно выполнять два условия. Во-первых, случаи, которые образуют основу математического перечисления, все должны быть равно правдоподобны по свидетельству в их пользу; во-вторых, свидетельство должно включать все наше относящееся к нему знание. Следует сказать несколько слов в отношении первого из этих условий.
Каждое математическое исчисление вероятности начинает с какого-либо основоположного класса, вроде определенного числа бросаний монеты, определенного числа бросаний игральных костей, колоды карт, совокупности шаров в сумке. Каждый член этого основоположного класса считается за единицу. Из него вывели другие логически производные классы, например класс n последовательностей 100 бросаний монеты. Из этих n последовательностей мы можем выделить подкласс бросаний, состоящий из 50 выпадений монеты лицевой стороной и 50 - упавших оборотной стороной. Или, взяв колоду карт, мы можем образовать класс возможных "игроков", то есть наборов из 13 карт, и далее исследовать, какие из них содержат 11 карт одной масти. Дело в том, что частоты исчисляются, всегда применяются к классам, имеющим какую-то структуру, определяемую логически по отношению к основоположному классу, тогда как основоположный класс в целях разрешения проблемы рассматривается как состоящий из членов, не имеющих логической структуры, то есть их логическая структура не относится к делу.
Пока мы ограничиваемся исчислением частоты выпадений, то есть математической теорией вероятностей, мы можем взять любой класс в качестве основоположного класса и исчислять частоты по отношению к нему. При этом нет необходимости делать предположение, что все члены класса равно вероятны;
все, что нам нужно сказать, это то, что для данной цели каждый член класса должен рассматриваться как единица. Но когда мы хотим определить степени правдоподобия, необходимо, чтобы наш основной класс состоял из предложений, которые все одинаково правдоподобны в отношении свидетельства в их пользу. "Неделимость" Кейнса имеет целью обеспечить это. Я предпочел бы сказать, что члены основоположного класса должны иметь "относительную простоту", то есть они не должны иметь структуры, определяемой в терминах исходных данных. Возьмем, например, белые и черные шары в сумке. Каждый шар в действительности имеет невероятно сложную структуру, поскольку он состоит из миллиардов молекул: но это не имеет никакого отношения к нашей проблеме. С другой стороны, совокупность m шаров, выбранных из основоположного класса n шаров, имеет логическую структуру по отношению к основоположному классу. Если каждый член основоположного класса имеет название, то каждый подкласс, состоящий из m членов, может быть определен. Все исчисления вероятности имеют дело с классами, которые могут быть определены в терминах основоположного класса. Но сам основоположный класс должен состоять из членов, которые не могут быть логически определены в терминах исходных данных. Я думаю, что когда это условие выполняется, то принцип индифферентности всегда удовлетворяется.
В этом пункте, однако, нужна осторожность. Имеются два пути, когда предложение "а есть а" может стать вероятным или (1) потому, что достоверно, что a принадлежит к классу, большинство членов которого суть а, или (2) потому, что вероятно, что а принадлежит к классу, все члены которого суть а. Например, мы можем сказать: "Г-н А, вероятно, смертен",если мы уверены, что большинство людей смертны, или если мы имеем основание считать вероятным, что все люди смертны. Когда мы бросаем игральные кости, мы можем сказать:
"Вероятно, не выпадет двойной шестерки",- потому что мы знаем, что большинство бросаний не дает двойной шестерки. С другой стороны, предположим, что я имею свидетельство, дающее основание для предположения, но не доказывающее, что при определенной болезни всегда бывает определенная бацилла; я могу тогда сказать, что когда имеется эта болезнь, то, вероятно, есть и эта бацилла. В каждом из двух вышеприведенных случаев мы имеем что-то вроде силлогизма. В первом случае:
Большинство А есть В
Это есть А
Следовательно, это, вероятно, есть В.
Во втором случае:
Вероятно, все А суть В
Это есть А
Следовательно, это, вероятно, есть В.
Второй случай, однако, труднее свести к частоте. Исследуем, возможно ли это.
В некоторых случаях это явно возможно. Например, большинство слов английского языка не содержит буквы z. Следовательно, если возьмем наудачу какое-либо слово, то вероятно, что ни одна из его букв не будет г. Таким образом, если А - класс букв в данном слове, а В - класс букв, кроме буквы z, то мы получим случай нашего второго псевдосиллогизма. Слово, конечно, должно быть определено каким-либо способом, который пока оставляет нас в неведении относительно того, какое это слово; например, слово должно быть определено как 8000-е слово в "Гамлете" или как третье слово на 248-й странице "Concise Oxford Dictionary. При том, что вы, допустим, в настоящее время не знаете, что представляют собой эти слова, вы поступите разумно, если будете утверждать, что они не содержат буквы z.
Во всех случаях нашего второго псевдосиллогизма ясно, что то, что я назвал "основоположным классом", дается как класс классов, и, следовательно, его логическая структура имеет большое значение. Обобщим приведенный выше пример: пусть К будет классом классов, таким, что большинство его членов полностью содержится в некотором классе бета; тогда из предложений "x есть альфа" и "альфа есть k" мы можем заключить, что "х, вероятно, есть бета". (В приведенном выше примере k есть класс слов, альфа - класс букв в определенном слове и бета - алфавит без буквы z). Странно то, что, обозначая через сумма членов k" класс членов членов k, наши посылки оказываются недостаточными для того, чтобы доказать, что какой-либо член суммы k, вероятно, есть член класса p. Например, пусть k состоит из трех слов Strength, Quail, Muck - вместе со всеми словами, не содержащими ни одной буквы, содержащейся в любом из этих трех слов. Тогда сумма k состоит из всех букв алфавита, возможно, за исключением z. Должно ли z включаться в алфавит, это зависит от того, считается ли "Zoo" (сокращенное "зоопарк") словом. Но предложение "k есть а и а есть k" делает вероятным, что х не является одной из букв, содержащихся в вышеприведенных трех словах, тогда как предложение "х есть член суммы х" не делает это вероятным. Это иллюстрирует те сложности, которые возникают, когда основоположный класс имеет относящуюся к вероятностям структуру. Но в случаях, вроде вышеприведенных, все же можно измерить правдоподобие с помощью частоты, хотя и менее простым способом.
Имеется, однако, другой и более важный класс случаев, который мы не можем адекватно обсудить иначе, как только в связи с индукцией. Это случаи, где мы имеем индуктивное свидетельство, делающее вероятным, что все А суть В, и где мы выводим, что отдельное А, вероятно, есть В; например, вероятно, все люди смертны (не смешивать с предложением "все люди, вероятно, смертны"), следовательно, Сократ, вероятно, смертен. Это псевдосиллогизм нашего второго вида. Но если слово "вероятно" в предложении "вероятно, все люди смертны" и может быть сведено к частоте, то, конечно, совсем не просто. Я поэтому оставляю обсуждение этого класса случаев до более поздней стадии исследования.
Имеются, как мы увидим, различные примеры степеней правдоподобия, не выводимые из частот. К обсуждению этих случаев я и перехожу.
В. Правдоподобие данных.
В этом разделе я намерен защищать неортодоксальное мнение, а именно то, что данное может быть недостоверным. До сего времени было два взгляда: во-первых, что при надлежащей разработке знания мы начинаем с посылок, которые достоверны сами по себе и могут быть определены как "данные"; во-вторых, что, поскольку никакое знание не является достоверным, постольку нет никаких данных, а дело обстоит таким образом, что наши рациональные верования образуют замкнутую систему, в которой каждая часть поддерживает каждую другую часть. Первый взгляд является традиционным, унаследованным от греков и сохраняющимся в геометрии Евклида и в теологии; второй является взглядом, впервые защищавшимся, если я не ошибаюсь, Гегелем, но с большим успехом защищавшимся в наши дни Джоном Дьюи. Взгляд, который я собираюсь выдвинуть, является компромиссным, но несколько больше склоняющимся к традиционной теории, чем к теории, которую защищали Гегель и Дьюи.
Я определяю "данное" как предложение, которое само по себе имеет некоторую степень разумного правдоподобия, независимо от какого-либо доказательства, полученного из других предложений. Ясно, что заключение доказательства не может получить из доказательства более высокую степень правдоподобия, чем та, которой обладают посылки; следовательно, если существует такая вещь, как рациональная вера, то должны быть рациональные верования, не полностью, основанные на доказательстве. Из этого не следует, что имеются верования, никаким своим правдоподобием не обязанные доказательству, так как предложение может обладать присущим ему правдоподобием и быть также заключением из других предложений, обладающих присущим им правдоподобием. Но из этого не следует, что каждое предложение, рационально правдоподобное в какой бы то ни было степени, должно быть таким или (а) исключительно само по себе, или (б) исключительно как заключение из посылок, рационально правдоподобных сами по себе, или (в) потому, что оно имеет некоторую степень правдоподобия само по себе, а также вытекает с помощью доказательного или вероятного вывода из посылок, которые имеют некоторую степень правдоподобия сами по себе. Если все предложения, имеющие любую степень правдоподобия, сами по себе являются достоверными, то случай (в) не имеет значения, поскольку никакое доказательство не может сделать такие предложения более достоверными. Но с той точки зрения, которую защищаю я, случай (в) имеет наибольшее значение.
Традиционный взгляд принят Кейнсом и изложен им в его "Трактате о вероятности" ("Treatise on Probability", p. 16). Он говорит:
"Для того чтобы мы могли иметь рациональную веру в p, обладающего не достоверностью, а только той или иной степенью вероятности, необходимо, чтобы мы знали ряд предложений h, а также знали какое-либо вторичное предложение q, утверждающее отношение вероятности между p и h".
"В приведенном выше разъяснении одна возможность была исключена. Предполагается, что мы не можем иметь рациональной веры в p, обладающего меньшей степенью правдоподобия по сравнению с достоверностью, не иначе как с помощью знания вторичного предложения предписанного типа. Это значит, что такая вера может возникнуть только с помощью восприятия какого-либо отношения вероятности... Всякое знание, получаемое строго непосредственным путем через созерцание объектов познания и без всякой примеси доказательства и созерцания логического влияния на него какого-либо другого знания, соответствует определенной рациональной вере, а не только вероятной степени рациональной веры".
Я намерен оспаривать этот взгляд. С этой целью я рассмотрю: 1) слабое восприятие, 2) недостоверное воспоминание, 3) смутное сознание логической связи.
1. Слабое восприятие. Рассмотрим следующие хорошо знакомые переживания, а) Вы слышите улетающий аэроплан;
сначала вы уверены в том, что слышите его, и, наконец, уверены, что не слышите его, но в промежутке между этими состояниями есть период, во время которого вы не уверены в том, слышите вы его или нет. б) Вы наблюдаете на заре планету Венера; сначала вы видите, как эта планета ярко сияет, и, наконец, вы осознаете, что дневной свет сделал ее невидимой, но между этими двумя моментами вы можете сомневаться относительно того, видите вы ее еще или нет. в) Во время путешествия вы набрались блох; вы стараетесь избавиться от них, и, наконец, вы уверены, что достигли успеха в этом, но тем не менее у вас время от времени появляются какие-то неопределенные ощущения зуда. г) По ошибке вы заварили чай в сосуде, в котором содержится уксус; результат получился ужасный. Вы ополаскиваете сосуд и завариваете чай снова, но все же ясно ощущаете неприятный запах. После второго мытья сосуда вы находитесь в сомнении относительно того, ощущаете ли вы все еще вкус уксуса; после третьей промывки сосуда вы уверены, что больше привкуса уксуса нет. д) Канализация в вашем доме не в порядке, и вы зовете водопроводчика. Сначала после его прихода вы уверены, что противный запах исчез, но постепенно, пройдя через разные стадии сомнения, вы убеждаетесь, что запах снова появился.
Такие переживания хорошо знакомы каждому и должны учитываться во всякой теории, касающейся познания, основанного на чувственном восприятии.
2. Недостоверное воспоминание. В "Буре" (1-й акт, 2-я сцена) Просперо спрашивает Миранду: "Ну, что еще ты видишь в темноте и в глубине времен, давно минувших?" Она говорит: "Мне помнится, что я всегда имела вокруг себя не менее пяти прислужниц",- и Просперо подтверждает ее неясное воспоминание. Шекспир, Буря, перев. Н. Сатина, изд. Брокгауз-Ефрон. Все мы имеем подобные воспоминания, в отношении которых не чувствуем себя уверенными. Обыкновенно, если это заслуживает внимания, мы можем узнать из другого источника, являются ли наши воспоминания правдивыми или нет, но это не относится к выдвинутому нами тезису, который утверждает, что воспоминания сами по себе имеют определенную степень правдоподобия, хотя эта степень правдоподобия и может быть очень далекой от полной достоверности. Воспоминание, которое имеет очень высокую степень правдоподобия, добавляет свою долю к нашим основаниям веры в какое-либо прошедшее событие, в пользу которого мы имеем другое свидетельство. Но здесь необходимо различать. Недостоверно вспоминаемое прошедшее событие обладает частичным правдоподобием; но когда я привожу воспоминание в качестве основания для веры, я больше не трактую прошедшее событие как данное, ибо не оно, а это настоящее воспоминание является моим данным. Мое воспоминание придает некое правдоподобие тому, что вспоминается; какое именно правдоподобие, мы более или менее можем утверждать индуктивно с помощью статистического исследования частоты ошибок памяти. Но это отличается от прошедшего события, рассматриваемого как данное.
То, что такие данные должны поставляться памятью,- это тезис, который я доказывал в другом месте.
3. Смутное сознание логической связи. Всякий человек, математические способности которого не являются почти сверхчеловеческими, должен был, если он изучал математику, испытывать ощущение, что он едва ли способен "видеть" определенную ступень в ходе доказательства. Процесс прослеживания доказательства облегчается, если мы его разбиваем на очень небольшие ступени, но какими бы небольшими мы их ни делали, некоторые из них могут оставаться трудными для прослеживания, если содержание рассуждения очень сложно. Ясно, что если мы сделаем ступени настолько небольшими, насколько это возможно, то каждая ступень должна стать данным, ибо иначе всякая попытка доказательства предполагала бы бесконечный регресс. Возьмем, скажем, силлогизм модуса Barbara. Я говорю: "Все люди смертны",- и вы с этим соглашаетесь. Я говорю далее: "Сократ человек",- и вы снова соглашаетесь. Тогда я говорю: "Следовательно, Сократ смертен",- и вы говорите: "Я не вижу, из чего это следует". Что я могу сделать в этом случае? Я могу сказать: "Разве вы не видите, что если f(x) всегда истинно, то f(a) истинно? И разве вы не видите, что, следовательно, если f(x) всегда имплицирует f(x), тогда f (Сократ) имплицирует y (Сократ)? И разве вы не видите, что я могу поставить "x есть человек" вместо 'fx: "и "x смертен" вместо yxc? И разве вы не видите, что это доказывает мое утверждение?" Ученик, который не мог бы следить за этим рассуждением и не мог бы следить за первоначальным силлогизмом, был бы психологическим монстром. И даже, если бы нашелся такой ученик, он все же должен был бы "видеть" ступени моего нового доказательства.
Из этого следует, что когда доказательство строится как можно проще, связь, утверждаемая на каждой ступени, должна быть данной. Но невозможно, чтобы связь на каждой ступени имела высшую степень правдоподобия, потому что даже наилучшие математики иногда делают ошибки. Действительно, наши восприятия логических связей между предложениями, подобно нашим чувственным восприятиям и нашим воспоминаниям, могут быть расположены по их степеням правдоподобия: в некоторых мы видим логическую связь так ясно, что нас нельзя заставить сомневаться в ней, тогда как в других наше восприятие связи настолько слабое, что мы не уверены относительно того, видим мы ее или нет.
Я буду далее исходить из допущения, что данное, в том смысле, который я определил в начале этого раздела, может быть недостоверным в большей или меньшей степени. Теоретически мы можем установить связь между этим видом недостоверности и видом, полученным из математической вероятности, если предположим, что недостоверность одного вида может быть установлена как большая, равная или меньшая недостоверность другого вида. Например, размышляя, я слышу слабый звук, но я не уверен в этом и теоретически могу сказать: наличие этого звука обладает той же степенью рационального правдоподобия, что и выпадение двойной шестерки на игральных костях. В какой-то степени такие сравнения могут быть проверены посредством сбора свидетельств об ошибках, касающихся слабых ощущений, и разработки их частоты. Все это неопределенно, и я не вижу, как можно сделать это определенным. Но во всяком случае это говорит за то, что недостоверность данных квантитативна и может быть равной или неравной недостоверности, получаемой из вывода о вероятности. Я буду исходить из допущения, что дело обстоит именно так, признавая вместе с тем, что на практике числовое измерение недостоверности какого-либо данного редко оказывается возможным. Мы можем сказать, что недостоверность равна половине, когда сомнение таково, что составляет равенство между верой и неверием. Но такое равновесие может быть установлено только посредством самонаблюдения и не может быть подтверждено каким-либо видом проверки.
Допущение недостоверности данных усложняет процесс оценки рационального правдоподобия предложения. Предположим, что определенное предложение p само по себе имеет степень правдоподобия x как данное; и предположим, что имеется также связь h между предложениями, имеющими внутренне присущее им правдоподобие у, из которого на основании доказательства, имеющего правдоподобие z, следует что p имеет степень правдоподобия w. Каково тогда общее правдоподобие p? Возможно, мы могли бы сказать, что он равно х + yzw. Но h также наверняка имеет как выводимое, так и внутренне присущее правдоподобие, и это будет повышать правдоподобие х. Действительно, усложнения скоро становятся трудно поддающимися анализу. Это ведет к некоторому сближению с теорией Гегеля и Дьюи.
Если дано некоторое число предложений, из которых каждое имеет очень высокую степень внутреннего правдоподобия, и если дана система выводов, в силу которой эти различные предложения повышают правдоподобие друг друга, то может создаться возможность прийти в конце концов к системе взаимосвязанных предложений, имеющих в целом очень высокую степень правдоподобия. Внутри этой системы некоторые предложения являются только выводными, но ни одно не является только посылкой, ибо те предложения, которые являются посылками, оказываются тоже заключениями. Здание познания можно сравнить с мостом, покоящимся на многих опорах, каждая из которых не только поддерживает мост, но и помогает другим опорам прочно стоять благодаря связывающим их фермам. Опоры являются аналогами предложений, имеющих некоторое внутренне присущее им правдоподобие, тогда как верхние части моста являются аналогами того, что только выводится. Но хотя каждая опора может быть усилена другими опорами, все сооружение в целом опирается на прочный грунт, и подобным же образом опирается все здание знания на внутренне присущее предложениям правдоподобие.
Г. Степени субъективной достоверности
Субъективная достоверность - это психологическое понятие, тогда как правдоподобие, по крайней мере отчасти, является логическим. Вопрос о том, имеется ли какая-либо связь между ними, есть лишь в другой форме поставленный вопрос о том, знаем ли мы что-нибудь. Он не может обсуждаться на основе полного скептицизма; если мы не собираемся что-то утверждать, никакое доказательство невозможно.
Прежде всего различим три вида достоверности.
1. Пропозициональная функция достоверна в отношении другой функции, когда класс членов, удовлетворяющих второй функции, есть часть класса членов удовлетворяющих первой функции. Например, "x есть животное" достоверно по отношению к "х есть разумное животное". Это значение достоверности относится к математической вероятности. Мы будет называть этот вид достоверности "логической" достоверностью.
2. Предложение достоверно, когда оно имеет наивысшую степень правдоподобия, которое или внутренне присуще этому предложению, или является результатом доказательства. Может быть, ни одно предложение не является достоверным в этом смысле, то есть, каким бы достоверным оно ни было по отношению к знанию данного лица, дальнейшее познание может повысить степень его правдоподобия. Мы будем называть этот вид достоверности "эпистемологической".
3. Человек уверен в предложении, когда он не чувствует никакого сомнения в его истинности. Это чисто психологическое понятие, и мы будем называть его "психологической" достоверностью.
Не испытывая субъективной достоверности, человек все же может быть более или менее убежденным в чем-нибудь. Мы чувствуем уверенность в том, что солнце завтра взойдет и что Наполеон существовал; мы менее уверены в истинности квантовой теории и в существовании Зороастра; еще меньше уверены в том, что Эддингтон получил точное число электронов или что при осаде Трои был царь по имени Агамемнон. В отношении этих предметов имеется почти общее согласие, но существуют другие предметы, в отношении которых несогласие является правилом. Некоторые люди не сомневаются, что Черчилль хороший человек, а Сталин - плохой, другие же думают наоборот; некоторые были вполне уверены, что Бог был на стороне союзников, а другие думали, что он был на стороне немцев. Субъективная достоверность, следовательно, не является гарантией истинности или даже высокой степени правдоподобности.
Заблуждение есть не только абсолютное заблуждение веры в то, что ложно, но также и квантитативное заблуждение веры большей или меньшей степени, чем это гарантируется степенью правдоподобия, правильно приписываемого предложению, в которое верят, по отношению к знанию того, кто верит. Человек, который вполне убежден в том, что определенная лошадь выиграет дерби, заблуждается даже в том случае, если эта лошадь действительно выигрывает.
Вообще говоря, научный метод состоит из аппарата и правил, предназначенных для того, чтобы степени веры совпадали, насколько возможно, со степенями правдоподобия. Мы, однако, не можем начинать поиски такой гармонии, если не можем начать с предложений, которые являются и эпистемологически правдоподобными и субъективно почти достоверными. Это приводит к декартовскому тщательному исследованию, но такому, которое, для того, чтобы быть плодотворным, должно иметь какой-либо нескептический руководящий принцип. Если бы совсем не было никакого отношения между правдоподобием и субъективной достоверностью, то не могло бы быть и такой вещи, как познание. Мы в практике допускаем что класс верований может рассматриваться как истинный, если (а) в них твердо верят все, кто тщательно их исследовал, (б) не существует никакого положительного доказательства против них, (в) нет никакого известного основания для предположения, что человечество верило бы в них, если бы они были неистинными. На этом основании вообще считается, что суждения восприятия, с одной стороны, и логика и математика, с другой стороны, содержат то, что является наиболее достоверным в нашем познании. Мы увидим, что уж если становиться на почву науки, то логика и математика должны быть дополнены некоторыми внелогическими принципами, из которых индукция до сего времени (по-моему, ошибочно) пользовалась наиболее общим признанием. Эти внелогические принципы поднимают проблемы, которые мы должны исследовать.
Совершенная разумность состоит не в вере в то, что истинно, а в приписывании каждому предложению той степени веры, которая соответствует его степени правдоподобия. Что касается эмпирических предложений, то степень их правдоподобия изменяется, когда появляется новое свидетельство. В математике же разумный человек, не являющийся сам математиком, будет верить в то, что ему говорят; он, следовательно, будет изменять свои верования тогда, когда математики откроют ошибки в трудах своих предшественников. Сам математик может быть вполне разумным человеком, несмотря на то, что совершает ошибку, если ошибка такого рода, что в данное время ее очень трудно обнаружить.
В применении результатов математического исчисления вероятности к степеням правдоподобия мы должны тщательно выполнять два условия. Во-первых, случаи, которые образуют основу математического перечисления, все должны быть равно правдоподобны по свидетельству в их пользу; во-вторых, свидетельство должно включать все наше относящееся к нему знание. Следует сказать несколько слов в отношении первого из этих условий.
Каждое математическое исчисление вероятности начинает с какого-либо основоположного класса, вроде определенного числа бросаний монеты, определенного числа бросаний игральных костей, колоды карт, совокупности шаров в сумке. Каждый член этого основоположного класса считается за единицу. Из него вывели другие логически производные классы, например класс n последовательностей 100 бросаний монеты. Из этих n последовательностей мы можем выделить подкласс бросаний, состоящий из 50 выпадений монеты лицевой стороной и 50 - упавших оборотной стороной. Или, взяв колоду карт, мы можем образовать класс возможных "игроков", то есть наборов из 13 карт, и далее исследовать, какие из них содержат 11 карт одной масти. Дело в том, что частоты исчисляются, всегда применяются к классам, имеющим какую-то структуру, определяемую логически по отношению к основоположному классу, тогда как основоположный класс в целях разрешения проблемы рассматривается как состоящий из членов, не имеющих логической структуры, то есть их логическая структура не относится к делу.
Пока мы ограничиваемся исчислением частоты выпадений, то есть математической теорией вероятностей, мы можем взять любой класс в качестве основоположного класса и исчислять частоты по отношению к нему. При этом нет необходимости делать предположение, что все члены класса равно вероятны;
все, что нам нужно сказать, это то, что для данной цели каждый член класса должен рассматриваться как единица. Но когда мы хотим определить степени правдоподобия, необходимо, чтобы наш основной класс состоял из предложений, которые все одинаково правдоподобны в отношении свидетельства в их пользу. "Неделимость" Кейнса имеет целью обеспечить это. Я предпочел бы сказать, что члены основоположного класса должны иметь "относительную простоту", то есть они не должны иметь структуры, определяемой в терминах исходных данных. Возьмем, например, белые и черные шары в сумке. Каждый шар в действительности имеет невероятно сложную структуру, поскольку он состоит из миллиардов молекул: но это не имеет никакого отношения к нашей проблеме. С другой стороны, совокупность m шаров, выбранных из основоположного класса n шаров, имеет логическую структуру по отношению к основоположному классу. Если каждый член основоположного класса имеет название, то каждый подкласс, состоящий из m членов, может быть определен. Все исчисления вероятности имеют дело с классами, которые могут быть определены в терминах основоположного класса. Но сам основоположный класс должен состоять из членов, которые не могут быть логически определены в терминах исходных данных. Я думаю, что когда это условие выполняется, то принцип индифферентности всегда удовлетворяется.
В этом пункте, однако, нужна осторожность. Имеются два пути, когда предложение "а есть а" может стать вероятным или (1) потому, что достоверно, что a принадлежит к классу, большинство членов которого суть а, или (2) потому, что вероятно, что а принадлежит к классу, все члены которого суть а. Например, мы можем сказать: "Г-н А, вероятно, смертен",если мы уверены, что большинство людей смертны, или если мы имеем основание считать вероятным, что все люди смертны. Когда мы бросаем игральные кости, мы можем сказать:
"Вероятно, не выпадет двойной шестерки",- потому что мы знаем, что большинство бросаний не дает двойной шестерки. С другой стороны, предположим, что я имею свидетельство, дающее основание для предположения, но не доказывающее, что при определенной болезни всегда бывает определенная бацилла; я могу тогда сказать, что когда имеется эта болезнь, то, вероятно, есть и эта бацилла. В каждом из двух вышеприведенных случаев мы имеем что-то вроде силлогизма. В первом случае:
Большинство А есть В
Это есть А
Следовательно, это, вероятно, есть В.
Во втором случае:
Вероятно, все А суть В
Это есть А
Следовательно, это, вероятно, есть В.
Второй случай, однако, труднее свести к частоте. Исследуем, возможно ли это.
В некоторых случаях это явно возможно. Например, большинство слов английского языка не содержит буквы z. Следовательно, если возьмем наудачу какое-либо слово, то вероятно, что ни одна из его букв не будет г. Таким образом, если А - класс букв в данном слове, а В - класс букв, кроме буквы z, то мы получим случай нашего второго псевдосиллогизма. Слово, конечно, должно быть определено каким-либо способом, который пока оставляет нас в неведении относительно того, какое это слово; например, слово должно быть определено как 8000-е слово в "Гамлете" или как третье слово на 248-й странице "Concise Oxford Dictionary. При том, что вы, допустим, в настоящее время не знаете, что представляют собой эти слова, вы поступите разумно, если будете утверждать, что они не содержат буквы z.
Во всех случаях нашего второго псевдосиллогизма ясно, что то, что я назвал "основоположным классом", дается как класс классов, и, следовательно, его логическая структура имеет большое значение. Обобщим приведенный выше пример: пусть К будет классом классов, таким, что большинство его членов полностью содержится в некотором классе бета; тогда из предложений "x есть альфа" и "альфа есть k" мы можем заключить, что "х, вероятно, есть бета". (В приведенном выше примере k есть класс слов, альфа - класс букв в определенном слове и бета - алфавит без буквы z). Странно то, что, обозначая через сумма членов k" класс членов членов k, наши посылки оказываются недостаточными для того, чтобы доказать, что какой-либо член суммы k, вероятно, есть член класса p. Например, пусть k состоит из трех слов Strength, Quail, Muck - вместе со всеми словами, не содержащими ни одной буквы, содержащейся в любом из этих трех слов. Тогда сумма k состоит из всех букв алфавита, возможно, за исключением z. Должно ли z включаться в алфавит, это зависит от того, считается ли "Zoo" (сокращенное "зоопарк") словом. Но предложение "k есть а и а есть k" делает вероятным, что х не является одной из букв, содержащихся в вышеприведенных трех словах, тогда как предложение "х есть член суммы х" не делает это вероятным. Это иллюстрирует те сложности, которые возникают, когда основоположный класс имеет относящуюся к вероятностям структуру. Но в случаях, вроде вышеприведенных, все же можно измерить правдоподобие с помощью частоты, хотя и менее простым способом.
Имеется, однако, другой и более важный класс случаев, который мы не можем адекватно обсудить иначе, как только в связи с индукцией. Это случаи, где мы имеем индуктивное свидетельство, делающее вероятным, что все А суть В, и где мы выводим, что отдельное А, вероятно, есть В; например, вероятно, все люди смертны (не смешивать с предложением "все люди, вероятно, смертны"), следовательно, Сократ, вероятно, смертен. Это псевдосиллогизм нашего второго вида. Но если слово "вероятно" в предложении "вероятно, все люди смертны" и может быть сведено к частоте, то, конечно, совсем не просто. Я поэтому оставляю обсуждение этого класса случаев до более поздней стадии исследования.
Имеются, как мы увидим, различные примеры степеней правдоподобия, не выводимые из частот. К обсуждению этих случаев я и перехожу.
В. Правдоподобие данных.
В этом разделе я намерен защищать неортодоксальное мнение, а именно то, что данное может быть недостоверным. До сего времени было два взгляда: во-первых, что при надлежащей разработке знания мы начинаем с посылок, которые достоверны сами по себе и могут быть определены как "данные"; во-вторых, что, поскольку никакое знание не является достоверным, постольку нет никаких данных, а дело обстоит таким образом, что наши рациональные верования образуют замкнутую систему, в которой каждая часть поддерживает каждую другую часть. Первый взгляд является традиционным, унаследованным от греков и сохраняющимся в геометрии Евклида и в теологии; второй является взглядом, впервые защищавшимся, если я не ошибаюсь, Гегелем, но с большим успехом защищавшимся в наши дни Джоном Дьюи. Взгляд, который я собираюсь выдвинуть, является компромиссным, но несколько больше склоняющимся к традиционной теории, чем к теории, которую защищали Гегель и Дьюи.
Я определяю "данное" как предложение, которое само по себе имеет некоторую степень разумного правдоподобия, независимо от какого-либо доказательства, полученного из других предложений. Ясно, что заключение доказательства не может получить из доказательства более высокую степень правдоподобия, чем та, которой обладают посылки; следовательно, если существует такая вещь, как рациональная вера, то должны быть рациональные верования, не полностью, основанные на доказательстве. Из этого не следует, что имеются верования, никаким своим правдоподобием не обязанные доказательству, так как предложение может обладать присущим ему правдоподобием и быть также заключением из других предложений, обладающих присущим им правдоподобием. Но из этого не следует, что каждое предложение, рационально правдоподобное в какой бы то ни было степени, должно быть таким или (а) исключительно само по себе, или (б) исключительно как заключение из посылок, рационально правдоподобных сами по себе, или (в) потому, что оно имеет некоторую степень правдоподобия само по себе, а также вытекает с помощью доказательного или вероятного вывода из посылок, которые имеют некоторую степень правдоподобия сами по себе. Если все предложения, имеющие любую степень правдоподобия, сами по себе являются достоверными, то случай (в) не имеет значения, поскольку никакое доказательство не может сделать такие предложения более достоверными. Но с той точки зрения, которую защищаю я, случай (в) имеет наибольшее значение.
Традиционный взгляд принят Кейнсом и изложен им в его "Трактате о вероятности" ("Treatise on Probability", p. 16). Он говорит:
"Для того чтобы мы могли иметь рациональную веру в p, обладающего не достоверностью, а только той или иной степенью вероятности, необходимо, чтобы мы знали ряд предложений h, а также знали какое-либо вторичное предложение q, утверждающее отношение вероятности между p и h".
"В приведенном выше разъяснении одна возможность была исключена. Предполагается, что мы не можем иметь рациональной веры в p, обладающего меньшей степенью правдоподобия по сравнению с достоверностью, не иначе как с помощью знания вторичного предложения предписанного типа. Это значит, что такая вера может возникнуть только с помощью восприятия какого-либо отношения вероятности... Всякое знание, получаемое строго непосредственным путем через созерцание объектов познания и без всякой примеси доказательства и созерцания логического влияния на него какого-либо другого знания, соответствует определенной рациональной вере, а не только вероятной степени рациональной веры".
Я намерен оспаривать этот взгляд. С этой целью я рассмотрю: 1) слабое восприятие, 2) недостоверное воспоминание, 3) смутное сознание логической связи.
1. Слабое восприятие. Рассмотрим следующие хорошо знакомые переживания, а) Вы слышите улетающий аэроплан;
сначала вы уверены в том, что слышите его, и, наконец, уверены, что не слышите его, но в промежутке между этими состояниями есть период, во время которого вы не уверены в том, слышите вы его или нет. б) Вы наблюдаете на заре планету Венера; сначала вы видите, как эта планета ярко сияет, и, наконец, вы осознаете, что дневной свет сделал ее невидимой, но между этими двумя моментами вы можете сомневаться относительно того, видите вы ее еще или нет. в) Во время путешествия вы набрались блох; вы стараетесь избавиться от них, и, наконец, вы уверены, что достигли успеха в этом, но тем не менее у вас время от времени появляются какие-то неопределенные ощущения зуда. г) По ошибке вы заварили чай в сосуде, в котором содержится уксус; результат получился ужасный. Вы ополаскиваете сосуд и завариваете чай снова, но все же ясно ощущаете неприятный запах. После второго мытья сосуда вы находитесь в сомнении относительно того, ощущаете ли вы все еще вкус уксуса; после третьей промывки сосуда вы уверены, что больше привкуса уксуса нет. д) Канализация в вашем доме не в порядке, и вы зовете водопроводчика. Сначала после его прихода вы уверены, что противный запах исчез, но постепенно, пройдя через разные стадии сомнения, вы убеждаетесь, что запах снова появился.
Такие переживания хорошо знакомы каждому и должны учитываться во всякой теории, касающейся познания, основанного на чувственном восприятии.
2. Недостоверное воспоминание. В "Буре" (1-й акт, 2-я сцена) Просперо спрашивает Миранду: "Ну, что еще ты видишь в темноте и в глубине времен, давно минувших?" Она говорит: "Мне помнится, что я всегда имела вокруг себя не менее пяти прислужниц",- и Просперо подтверждает ее неясное воспоминание. Шекспир, Буря, перев. Н. Сатина, изд. Брокгауз-Ефрон. Все мы имеем подобные воспоминания, в отношении которых не чувствуем себя уверенными. Обыкновенно, если это заслуживает внимания, мы можем узнать из другого источника, являются ли наши воспоминания правдивыми или нет, но это не относится к выдвинутому нами тезису, который утверждает, что воспоминания сами по себе имеют определенную степень правдоподобия, хотя эта степень правдоподобия и может быть очень далекой от полной достоверности. Воспоминание, которое имеет очень высокую степень правдоподобия, добавляет свою долю к нашим основаниям веры в какое-либо прошедшее событие, в пользу которого мы имеем другое свидетельство. Но здесь необходимо различать. Недостоверно вспоминаемое прошедшее событие обладает частичным правдоподобием; но когда я привожу воспоминание в качестве основания для веры, я больше не трактую прошедшее событие как данное, ибо не оно, а это настоящее воспоминание является моим данным. Мое воспоминание придает некое правдоподобие тому, что вспоминается; какое именно правдоподобие, мы более или менее можем утверждать индуктивно с помощью статистического исследования частоты ошибок памяти. Но это отличается от прошедшего события, рассматриваемого как данное.
То, что такие данные должны поставляться памятью,- это тезис, который я доказывал в другом месте.
3. Смутное сознание логической связи. Всякий человек, математические способности которого не являются почти сверхчеловеческими, должен был, если он изучал математику, испытывать ощущение, что он едва ли способен "видеть" определенную ступень в ходе доказательства. Процесс прослеживания доказательства облегчается, если мы его разбиваем на очень небольшие ступени, но какими бы небольшими мы их ни делали, некоторые из них могут оставаться трудными для прослеживания, если содержание рассуждения очень сложно. Ясно, что если мы сделаем ступени настолько небольшими, насколько это возможно, то каждая ступень должна стать данным, ибо иначе всякая попытка доказательства предполагала бы бесконечный регресс. Возьмем, скажем, силлогизм модуса Barbara. Я говорю: "Все люди смертны",- и вы с этим соглашаетесь. Я говорю далее: "Сократ человек",- и вы снова соглашаетесь. Тогда я говорю: "Следовательно, Сократ смертен",- и вы говорите: "Я не вижу, из чего это следует". Что я могу сделать в этом случае? Я могу сказать: "Разве вы не видите, что если f(x) всегда истинно, то f(a) истинно? И разве вы не видите, что, следовательно, если f(x) всегда имплицирует f(x), тогда f (Сократ) имплицирует y (Сократ)? И разве вы не видите, что я могу поставить "x есть человек" вместо 'fx: "и "x смертен" вместо yxc? И разве вы не видите, что это доказывает мое утверждение?" Ученик, который не мог бы следить за этим рассуждением и не мог бы следить за первоначальным силлогизмом, был бы психологическим монстром. И даже, если бы нашелся такой ученик, он все же должен был бы "видеть" ступени моего нового доказательства.
Из этого следует, что когда доказательство строится как можно проще, связь, утверждаемая на каждой ступени, должна быть данной. Но невозможно, чтобы связь на каждой ступени имела высшую степень правдоподобия, потому что даже наилучшие математики иногда делают ошибки. Действительно, наши восприятия логических связей между предложениями, подобно нашим чувственным восприятиям и нашим воспоминаниям, могут быть расположены по их степеням правдоподобия: в некоторых мы видим логическую связь так ясно, что нас нельзя заставить сомневаться в ней, тогда как в других наше восприятие связи настолько слабое, что мы не уверены относительно того, видим мы ее или нет.
Я буду далее исходить из допущения, что данное, в том смысле, который я определил в начале этого раздела, может быть недостоверным в большей или меньшей степени. Теоретически мы можем установить связь между этим видом недостоверности и видом, полученным из математической вероятности, если предположим, что недостоверность одного вида может быть установлена как большая, равная или меньшая недостоверность другого вида. Например, размышляя, я слышу слабый звук, но я не уверен в этом и теоретически могу сказать: наличие этого звука обладает той же степенью рационального правдоподобия, что и выпадение двойной шестерки на игральных костях. В какой-то степени такие сравнения могут быть проверены посредством сбора свидетельств об ошибках, касающихся слабых ощущений, и разработки их частоты. Все это неопределенно, и я не вижу, как можно сделать это определенным. Но во всяком случае это говорит за то, что недостоверность данных квантитативна и может быть равной или неравной недостоверности, получаемой из вывода о вероятности. Я буду исходить из допущения, что дело обстоит именно так, признавая вместе с тем, что на практике числовое измерение недостоверности какого-либо данного редко оказывается возможным. Мы можем сказать, что недостоверность равна половине, когда сомнение таково, что составляет равенство между верой и неверием. Но такое равновесие может быть установлено только посредством самонаблюдения и не может быть подтверждено каким-либо видом проверки.
Допущение недостоверности данных усложняет процесс оценки рационального правдоподобия предложения. Предположим, что определенное предложение p само по себе имеет степень правдоподобия x как данное; и предположим, что имеется также связь h между предложениями, имеющими внутренне присущее им правдоподобие у, из которого на основании доказательства, имеющего правдоподобие z, следует что p имеет степень правдоподобия w. Каково тогда общее правдоподобие p? Возможно, мы могли бы сказать, что он равно х + yzw. Но h также наверняка имеет как выводимое, так и внутренне присущее правдоподобие, и это будет повышать правдоподобие х. Действительно, усложнения скоро становятся трудно поддающимися анализу. Это ведет к некоторому сближению с теорией Гегеля и Дьюи.
Если дано некоторое число предложений, из которых каждое имеет очень высокую степень внутреннего правдоподобия, и если дана система выводов, в силу которой эти различные предложения повышают правдоподобие друг друга, то может создаться возможность прийти в конце концов к системе взаимосвязанных предложений, имеющих в целом очень высокую степень правдоподобия. Внутри этой системы некоторые предложения являются только выводными, но ни одно не является только посылкой, ибо те предложения, которые являются посылками, оказываются тоже заключениями. Здание познания можно сравнить с мостом, покоящимся на многих опорах, каждая из которых не только поддерживает мост, но и помогает другим опорам прочно стоять благодаря связывающим их фермам. Опоры являются аналогами предложений, имеющих некоторое внутренне присущее им правдоподобие, тогда как верхние части моста являются аналогами того, что только выводится. Но хотя каждая опора может быть усилена другими опорами, все сооружение в целом опирается на прочный грунт, и подобным же образом опирается все здание знания на внутренне присущее предложениям правдоподобие.
Г. Степени субъективной достоверности
Субъективная достоверность - это психологическое понятие, тогда как правдоподобие, по крайней мере отчасти, является логическим. Вопрос о том, имеется ли какая-либо связь между ними, есть лишь в другой форме поставленный вопрос о том, знаем ли мы что-нибудь. Он не может обсуждаться на основе полного скептицизма; если мы не собираемся что-то утверждать, никакое доказательство невозможно.
Прежде всего различим три вида достоверности.
1. Пропозициональная функция достоверна в отношении другой функции, когда класс членов, удовлетворяющих второй функции, есть часть класса членов удовлетворяющих первой функции. Например, "x есть животное" достоверно по отношению к "х есть разумное животное". Это значение достоверности относится к математической вероятности. Мы будет называть этот вид достоверности "логической" достоверностью.
2. Предложение достоверно, когда оно имеет наивысшую степень правдоподобия, которое или внутренне присуще этому предложению, или является результатом доказательства. Может быть, ни одно предложение не является достоверным в этом смысле, то есть, каким бы достоверным оно ни было по отношению к знанию данного лица, дальнейшее познание может повысить степень его правдоподобия. Мы будем называть этот вид достоверности "эпистемологической".
3. Человек уверен в предложении, когда он не чувствует никакого сомнения в его истинности. Это чисто психологическое понятие, и мы будем называть его "психологической" достоверностью.
Не испытывая субъективной достоверности, человек все же может быть более или менее убежденным в чем-нибудь. Мы чувствуем уверенность в том, что солнце завтра взойдет и что Наполеон существовал; мы менее уверены в истинности квантовой теории и в существовании Зороастра; еще меньше уверены в том, что Эддингтон получил точное число электронов или что при осаде Трои был царь по имени Агамемнон. В отношении этих предметов имеется почти общее согласие, но существуют другие предметы, в отношении которых несогласие является правилом. Некоторые люди не сомневаются, что Черчилль хороший человек, а Сталин - плохой, другие же думают наоборот; некоторые были вполне уверены, что Бог был на стороне союзников, а другие думали, что он был на стороне немцев. Субъективная достоверность, следовательно, не является гарантией истинности или даже высокой степени правдоподобности.
Заблуждение есть не только абсолютное заблуждение веры в то, что ложно, но также и квантитативное заблуждение веры большей или меньшей степени, чем это гарантируется степенью правдоподобия, правильно приписываемого предложению, в которое верят, по отношению к знанию того, кто верит. Человек, который вполне убежден в том, что определенная лошадь выиграет дерби, заблуждается даже в том случае, если эта лошадь действительно выигрывает.
Вообще говоря, научный метод состоит из аппарата и правил, предназначенных для того, чтобы степени веры совпадали, насколько возможно, со степенями правдоподобия. Мы, однако, не можем начинать поиски такой гармонии, если не можем начать с предложений, которые являются и эпистемологически правдоподобными и субъективно почти достоверными. Это приводит к декартовскому тщательному исследованию, но такому, которое, для того, чтобы быть плодотворным, должно иметь какой-либо нескептический руководящий принцип. Если бы совсем не было никакого отношения между правдоподобием и субъективной достоверностью, то не могло бы быть и такой вещи, как познание. Мы в практике допускаем что класс верований может рассматриваться как истинный, если (а) в них твердо верят все, кто тщательно их исследовал, (б) не существует никакого положительного доказательства против них, (в) нет никакого известного основания для предположения, что человечество верило бы в них, если бы они были неистинными. На этом основании вообще считается, что суждения восприятия, с одной стороны, и логика и математика, с другой стороны, содержат то, что является наиболее достоверным в нашем познании. Мы увидим, что уж если становиться на почву науки, то логика и математика должны быть дополнены некоторыми внелогическими принципами, из которых индукция до сего времени (по-моему, ошибочно) пользовалась наиболее общим признанием. Эти внелогические принципы поднимают проблемы, которые мы должны исследовать.
Совершенная разумность состоит не в вере в то, что истинно, а в приписывании каждому предложению той степени веры, которая соответствует его степени правдоподобия. Что касается эмпирических предложений, то степень их правдоподобия изменяется, когда появляется новое свидетельство. В математике же разумный человек, не являющийся сам математиком, будет верить в то, что ему говорят; он, следовательно, будет изменять свои верования тогда, когда математики откроют ошибки в трудах своих предшественников. Сам математик может быть вполне разумным человеком, несмотря на то, что совершает ошибку, если ошибка такого рода, что в данное время ее очень трудно обнаружить.