Такой подход имеет научную основу, но для большинства китайцев понимание небес (а следовательно, и Солнца) коренилось в их общем взгляде на мироздание. Китайская космология утверждает жизнь в равновесии, в добродетели, в следовании долгу, а философия происходящего в небесах отражает достижение того же равновесия в ключевых китайских терминах – ци, инь и ян. До III века до н. э. ци в самом узком смысле означало “жизненная энергия”, а после стало означать множество явлений: воздух, дыхание, дым, туман, страну мертвых, форму облаков – более или менее все воспринимаемое, но неосязаемое; космические силы и климатическое воздействие, влияющие на здоровье и на времена года (многие солнечные явления относятся к ци); вкус, цвет и музыкальный лад. Ци могло быть благодатным и защитным либо патологическим, болезнетворным и разрушительным.
   Одна из главных школ китайской мысли – даосизм – является философией дуальности и равновесия, доктриной инь и ян, которая охватывает все взаимоисключающие силы: инь олицетворяет женское начало, влажное и холодное, а ян – мужское, горячее и сухое. Среди других противоположностей – ночь и день, свет и тьма, честность и лживость[184]. Даосисты выдвигали идею того, что инь и ян прокатываются по Земле подобно волнам и вызывают периодические изменения, которые приводят к приливам и сезонным сменам температуры. Они также считали, что числа были ключом к поддержанию равновесия и особенно благоприятно число пять: каждое из пяти основных направлений (север, юг, восток, запад и центр) имело соответствие среди цветов, животных, элементов и вкусов. Девять было важным числом, хоть и не столь благоприятным, и на девятый день девятого месяца – двойной ян – жители Пекина исправно совершали подъем на два главных городских холма (называвшихся Стеной истинного превращения и Судьбой деревьев, окружающих врата Ци)[185].
   Инь и ян управляют энергией ци: они являются взаимодополняющими компонентами любой пространственно-временной конфигурации, “двумя фундаментальными силами вселенной”. Солнце имеет яркую ян-природу, Луна и Земля – инь, а воздух – пустота[186]. Небесные тела различались по тому, светили ли они собственным или отраженным светом. Кроме того, различалось пять фаз (у-син, пять стихий) всего сущего: дерево, огонь, земля, металл и вода. Ко II веку н. э. уже никто не знал, что объединяло эти материалы, но возник язык для описания космоса и земных явлений, как государственный, так и частный: существовала динамическая гармония, ведущая по одному настоящему пути. Эта система из гуманистической мысли перешла в государственную официальную космологию, а оттуда была заимствована учеными.
 
   В 221 году до н. э. восточные царства объединились, чтобы стать Китаем, великим срединным государством Цинь. Название Китая в английском (China) означает “земля дома Цинь”, но также переводится как “середина”. Большие расстояния и физические препятствия, отделяющие Китай от других цивилизаций, дарили жителям впечатление, что их страна – центр Земли и единственный источник цивилизации; идея эта держалась тысячелетия.
   Однако экспансия Китая в Центральную Азию в I веке н. э. познакомила китайских астрономов с идеями индусов и персов, что немедленно вызвало активное брожение в космологии и астрономии. Некоторые теории слишком сильно обгоняли свое время: Ван Ман (45 год до н. э. – 23 год н. э.), регент и император, утверждал (на основе западных учений), что движение небес происходит “само по себе”, а стихийные бедствия вовсе не посылаются в наказание или предупреждение, но он остался неуслышанным. Другая теория, напротив, получившая широкую поддержку, относилась к поздней династии Хань (25–220 годы н. э.) и изображала вселенную как бесконечное пустое пространство, в котором плавают Солнце, Луна, планеты и звезды; она заслуживает внимания как первое в истории предположение о бесконечной децентрализованной вселенной.
   Многие китайские математики (приблизительно с 100 года до н. э.) посвятили себя календарным расчетам и предсказаниям положений небесных тел. Китайская календарная наука породила сильную традицию арифметико-алгебраической астрономии в отличие от западного акцента на геометрии. В 132 году “великий астролог” Чжан Хэн (78–139), опираясь на подобную математику, изобрел первый сейсмоскоп для фиксации землетрясений – цилиндрическое устройство с восемью драконьими головами (каждая с шариком в пасти) сверху и восемью лягушачьими снизу. Когда ударная волна доходила до прибора, шарик выкатывался из пасти дракона в пасть лягушки. Чжан Хэн также писал о том, что лунный свет является только отражением солнечного, а фазы Луны есть следствие разного отражения ею света в разных точках ее курса. Чжан Хэн был изобретателем астролябии, у нее были проградуированные кольца и зрительная трубка[187]. В то время как китайское население встречало лунные затмения ударами гонгов, Чжан объяснял их истинную причину. Нидэм считал, что тот установил “стандарт качества в астрономии”, хотя даже Чжан не мог избежать влияния времени. Он первым сконструировал вращающийся небесный глобус, но этот глобус скорее отражал взгляды на вселенную, чем ее реальность. Как говорится в Хунь и Чу, “небо подобно куриному яйцу и кругло, как ядро для арбалета; Земля подобна желтку и находится вблизи центра. Небо велико, а Земля мала”. В не переведенном Нидэмом фрагменте Чжан добавляет: “Небо получило свою форму от ян, поэтому оно круглое и движется. Земля же – от инь, поэтому она плоская и неподвижная”[188].
   Между II и XI веками н. э. в китайском понимании Солнца мало что изменилось, хотя литература по астрономии уже превосходила в объеме написанное по ботанике, зоологии, фармацевтике и медицине, вместе взятое. К XII веку императорская библиотека насчитывал 369 книг по астрономии и смежным темам, а к XIII веку китайские астрономические приборы превосходили все созданное в Европе. К сожалению, негеометрическая природа китайской математики не позволяла им картографировать звездное небо с большой точностью и тормозила дальнейший прогресс. Это было одним из последствий изоляции: примерно до 400 года н. э. у Китая практически не было связей ни с кем, кроме непосредственных соседей. К следующему столетию христианские миссионеры уже добрались до Китая, но перекрестного опыления идей практически не произошло, на Западе случился всплеск широкого интереса к Китаю только в 1250 году, когда папа Иннокентий IV послал монахов-францисканцев в Азию на открытие удивительно развитой цивилизации.
   Несколькими десятилетиями позже отчеты францисканцев существенно дополнились сочинениями Марко Поло (1254–1324), который описывал землю “бескрайних просторов с невиданных размеров городами, широчайшими реками и величайшими равнинами, где широко распространены порох, уголь и книгопечатание”[189]. К этому списку можно добавить экономику с бумажной валютой, города-миллионники, настоящую бюрократию и такие мелочи, как шелк, чай, фарфор, травяная медицина, лак, игральные карты, ракеты, астрономические часы, домино, обои, воздушные змеи и даже складной зонтик. Марко Поло живописал Китай времен Хубилая, в царствование которого Китайская империя растянулась от Тихого океана до Восточной Европы и была открыта внешним влияниям как никогда прежде[190].
   Во времена династии Минь (1368–1644), когда страна опять закрылась от внешних воздействий более чем на сто лет, ее астрономические достижения не избегли общей спячки науки – столь стремительного ее заката, что в это сложно поверить; возможно, китайцы “считали, что по достижении хорошей жизни образование уже никогда не будет нуждаться в изменениях”[191]. Ситуация изменилась только с появлением иезуитов, которые сочли китайскую культуру полностью отрезанной от западной мысли, включая и географию с астрономией. Один из миссионеров повесил у себя в хижине карту мира и позвал китайских гостей посмотреть:
   Они считали небо круглым, а Землю – плоской и квадратной, с Китайской империей посередине. Им не нравилось, что наша география вытесняла Китай в угол Востока. Они не могли понять доказательств того, что Земля круглая и состоит из земли и воды, а шар по своей природе не имеет ни начала, ни конца. Географу пришлось перекраивать карту… оставив поля по краям карты и перемещая тем самым китайское царство в самый центр. Это было ближе к их картине мира и давало им чувство удовлетворения[192].
   Реконструкция башни Су Сонга (1020–1101) с астрономическими часами, работающими от воды, в Кайфыне в северо-восточном Китае. В часах были задействованы 133 фигуры, которые обозначали и озвучивали время (drawing by John Christiansen, from Joseph Needham, Science and Civilisation in China © Cambridge University Press. Reprinted by permission)
 
   Китайская география могла сильно отставать, но именно три китайских изобретения – магнитный компас, корабельный руль и корабли, способные плыть против ветра и имеющие сегментированный корпус, делающий их менее потопляемыми, – сделали для европейцев доступным плавание на восток. Даже с учетом этого, когда в 1551 году первый из великих миссионеров, Франсис Ксавье, отправился из соседней Японии, у него ушло девять месяцев на переговоры, чтобы обосноваться на острове в семи милях от берега, а затем еще девять недель, чтобы наконец ступить на континент. Спустя тридцать лет итальянский миссионер-иезуит, математик и астроном Маттео Риччи потратил четыре месяца на то, чтобы добраться до португальского форпоста в Макао, а затем, претерпев в дороге болезнь, кораблекрушение и заточение, доехать и до Пекина.
   Солнечное затмение 1688 года, наблюдаемое миссионерами-иезуитами в присутствии короля Сиама (Bibliothèque Nationale, Paris, France / Lauros / Giraudon / The Bridgeman Art Library)
 
   Риччи стал самым известным из всех миссионеров-иезуитов в Китае, первым иностранцем, допущенным в Китай, а затем и в Запретный город. Он крестил многих чиновников высокого ранга и знакомил их с достижениями Возрождения, хотя иезуиты импортировали много европейских научных ошибок того времени. Они высмеивали идею “небесной пустоты”, хотя, как отмечает Нидэм, “идея бесконечного пространства с небесными телами, плавающими в нем на больших расстояниях друг от друга, гораздо более продвинута… чем жесткая аристотелево-птолемеевская концепция концентрических хрустальных сфер”[193].
   Вскоре после своего прибытия в 1584 году Риччи принялся излагать принимающей стороне свои научные познания и даже предъявил карту мира, которая доказывала среди прочего, что Солнце больше Луны[194]. Китайцы держали оборону – с их точки зрения, именно они были интеллектуальными властителями мира, во всяком случае в науках, – пока Риччи не продемонстрировал часы с боем, которые, по его словам, повторяли движение звезд. Для проверки часов китайцы предсказали солнечное затмение своими методами, а Риччи с помощниками использовал собственное устройство. Предсказанный китайцами час наступил и прошел при ярком солнечном свете; предсказанное европейцами затмение случилось ровно в назначенное время.
   Когда Риччи стал известен, его пригласили в Нанкин, в самую главную обсерваторию Китая. Он ожидал увидеть там искусно нарисованные, почти волшебные карты, но обнаружил четыре удивительных инструмента, отлитых из бронзы и украшенных драконами, гораздо сложнее всего, что ему довелось видеть в Европе, – две сферы для определения затмений, проградуированные по европейской системе, но китайскими иероглифами, гномон и систему из четырех астролябий. Ответственный за приборы евнух[195]объяснил, что инструменты были отлиты астрономом-мусульманином около двухсот пятидесяти лет назад.
   Риччи осмотрел одну из сфер и указал на проградуированную шкалу: “Здесь вы отмечаете положение тени?” Евнух удивленно кивнул и попытался увести посетителя, но Риччи продолжил осмотр, отметив, что шкала была размечена системой выпуклостей, позволяющих снимать показания на ощупь, в темноте. И вдруг он сделал поразительное открытие.
   – Нанкин же находится на широте 32 градуса?
   Евнух согласился.
   – Но эти инструмены настроены на широту 36 градусов.
   Сопровождающий промолчал и вновь попытался отвлечь внимание Риччи. Но тот, заинтригованный, задал еще несколько простых вопросов про гномон – на все были даны весьма уклончивые ответы, пока наконец главный евнух не сознался:
   Императорская обсерватория в Пекине, как она была устроена в конце XVII века. Здесь были открыты солнечные пятна, здесь велся учет кометам. Можно наблюдать большие бронзовые сферы (в нижней части), квадрант (в верхнем левом углу) и секстант (в центре верхней части) (SPL / Photo Researchers, Inc)
 
   – Это красивые инструменты, но мы не знаем, как ими пользоваться. Было сделано два набора – один для Пекина, другой для Пинъяна. Этот – из Пинъяна.
   Тогда Риччи все понял. Пиньян находился на тридцатишестиградусной широте, а инструменты никто не перенастраивал. Они служили лишь магическими объектами. Постепенно Риччи понял, что часть астрономических знаний пришла в Китай от арабов, так что Китай получил свое предварительное знание о Птолемеевой системе из того же источника и примерно в то же время, что и Европа. На возрождающемся Западе эта информация была принята с энтузиазмом и активно усваивалась, а в Китае, где наука не считалась путем к лучшей жизни или к лучшему правлению (в отличие от ценности астрологии как источника предсказаний), она не входила в список поощряемых занятий[196].
   Риччи сделал очень много, чтобы рассеять подобное невежество, но его учению по-прежнему оказывалось значительное сопротивление. Только через три года после смерти Риччи, когда Китайская астрономическая коллегия серьезно ошиблась при прогнозе затмения, император выпустил указ, который требовал привести календарь в соответствие с реальностью и перевести европейские работы по астрономии на китайский язык. Однако почти в это же время Китай пал под нашествием маньчжуров, страна пришла в хаос и вновь закрылась для внешних воздействий. Но даже столь изолированная страна еще в XVIII веке восхищала многих европейцев как процветающая и изысканная цивилизация. Первое прозаическое сочинение Сэмюеля Джонсона (1733) сообщает о китайцах – они “превосходно, в полной мере подготовлены во всех науках”[197]. Но полностью китайская астрономия соединилась с общемировой не ранее чем в 1850 году.
   Сегодня Императорская обсерватория в Пекине имеет собственную станцию метро.

Глава 8
Башня Султана

 
Встань! Бросил камень в чашу тьмы восток:
В путь, караваны звезд! Мрак изнемог.
И ловит башню гордую султана
Охотник-солнце в огненный силок.
 
Омар Хайям, “Рубаи”[198]


   И когда покрыла его ночь, он увидел звезду и сказал:
   “Это – Господь мой!” <…> Когда он увидел месяц восходящим, он сказал: “Это – Господь мой!” <…>
   Когда же он увидел солнце восходящим, то сказал:
   “Это – Господь мой, Он – больший!”
Коран[199]

   Вдалеком 1959 году прозаик и культуролог Артур Кестлер выпустил книгу The Sleepwalkers (“Лунатики”) – незаурядную историю развития науки. Его вывод о вкладе исламской цивилизации в астрономию звучит довольно сурово. Арабы, пишет Кестлер, были посредниками, хранителями и переносчиками [грекоиндийского] наследия. Собственной научной оригинальности и творчества у них почти не было. За те века, что они единолично сторожили попавшее к ним сокровище, они никак его не использовали. Они усовершенствовали календарную астрономию, сделали великолепные планетные таблицы, дополнили и разработали Аристотелеву и Птолемееву космологии, импортировали в Европу индийскую систему счисления с нулем, функцию синус и алгебраические методы, но они не продвигали теоретическую науку. Большинство ученых, которые писали на арабском, были не арабы, а персы, евреи и представители несторианства (религиозное учение, близкое к христианству). А к XV веку научное наследие ислама практически полностью перешло к португальским евреям[200].
   Комментарии Кестлера справедливы, но они не принимают в расчет того факта, что в европейские Темные века любое сохранение – если обозначить этим словом исламский вклад – само по себе имеет большую ценность. Просто сохранять знание было чрезвычайно важным, в том числе и для солнечной астрономии. Крупный бельгийско-американский ученый Джордж Сартон (1884–1956) делит свою пятитомную “Историю науки” на полувековые отрезки, сопоставляя с каждой центральную фигуру. “История” начинается в 450 году до н. э. с Платона, следом идут Аристотель, Евклид и Архимед. Но с 750 года н. э. прослеживается непрерывная линия арабских и персидских ученых – Джабир, аль-Хорезми (который разрабатывал календари, определение солнечного положения, сферическую астрономию, вычисление затмений), ар-Рази, аль-Масуди, Абу-л-Вафа, аль-Бируни и Авиценна, – заканчивающаяся Омаром Хайямом (1050–1100).
   Гиясаддин Абу-ль-Фатх Омар ибн Ибрахим аль-Хайям Нишапури – человек, которого на Западе зовут Омаром Хайямом, – был там практически не известен до 1859 года, когда ученый-аристократ Эдвард Фицджералд анонимно опубликовал перевод четырех тысяч строк “Рубаи” (буквальный перевод – “Четверостишия”). Фицджералд был уже пожилым человеком, его предыдущие сочинения и переводы принимались довольно плохо, и, по-видимому, он несильно удивился, когда перевод Хайяма постигла та же судьба. Два года спустя лондонский книготорговец распродал остатки тиража по копеечной цене в магазине близ Лейстер-сквер, и поэт Данте Габриэль Россетти купил книжку. Вскоре он объявил ее шедевром, а к концу века, на волне восторженного отношения к персидской культуре в Англии XIX века, поэма оказалась на пике популярности. Вдобавок к этому “Рубаи” оказались не единственным достижением Хайяма.
   Хайям жил в Нишапуре (современный северо-восточный Иран), неподалеку от афганских и туркестанских границ. Его фамилия означает “шатровый мастер”, в одном из стихов он шутит над “Хайямом, строчившим познания шатры”, что в точности описывает его деятельность. Хайям был автором хорошо принятого сочинения “Трактат о доказательствах задач алгебры и алмука балы” и первым выдвинул общую теорию кубических уравнений, он также способствовал реформе персидского календаря, перестроив его согласно солнечному году, а не лунному – в результате, цитируя Гиббона, был достигнут “расчет времени, превосходящий юлианский календарь и приближающийся по точности к григорианскому”[201]. Он оценил длину солнечного года в 365,24219858156 дня, чрезвычайно точный подсчет: к концу XIX века это число уменьшилось до 365,242196, сейчас, по самым точным подсчетам, – 365,242190. Хайям также создал карту звездного неба и помогал в постройке главной обсерватории. Он сам и семь его последователей были выбраны Сартоном в качестве ключевых фигур данного периода, но они не состоялись бы без многих других. Учитывая пренебрежительный отзыв Кестлера, возникает вопрос, что же конкретно сделала арабская наука, особенно в математике и астрономии, за триста пятьдесят лет и какова справедливая оценка исламского вклада в солнечную астрономию. Ответы на эти два вопроса займут бо́льшую часть главы; более того, они довольно тесно взаимосвязаны, потому что ислам ценил знание не только само по себе, но и за его вклад в религиозные практики (что особенно касалось изучения Солнца). Вслед за этим мы рассмотрим, как развивалось начиная с 750 года н. э. и до Коперника изучение Солнца в других культурах (особенно в Индии) в сравнении с Европой.