Некоторые аспекты влияния звезд были очевидны. Например, солнечное положение на небосклоне было связано со сменой времен года. Если небеса могли предсказывать нам подходящее время для посева или сбора урожая, почему нельзя было ожидать от них указания наилучшего момента для женитьбы или рискованного путешествия? Вполне понятно, что астрологи принялись делать подобные заключения о воздействии небесных тел, пусть и без всякой научной базы. Однако без стимулов со стороны астрологии не вооруженная приборами астрономия никогда бы не шагнула так далеко. Сначала никакого разделения дисциплин не было – люди занимались астрономией, решая задачи астрологии, и это было вполне плодотворным сотрудничеством. Но к V веку до н. э. астрономы уже могли предсказывать на год вперед интервалы между восходом и заходом солнца, месячное движение светила и многое другое. Они разработали арифметику, необходимую для предсказания движений Луны и планет и, соответственно, разработки календаря. Еще более важной оказалась система вычисления курсов прохождения Луны и Солнца, что позволяло предсказывать затмения.
   Халдеи вели крайне тщательные и детализированные записи, но, к сожалению, у нас нет ключа к их таблицам. Они наблюдали с уступчатых пирамид, зиккуратов, которые пристраивались к храмам, обычно были размером с крепость и раскрашены в семь цветов радуги. Вавилонская башня, изображенная в Библии как честолюбивая попытка построить лестницу в небеса, известна более других, но над всем Вавилоном господствовал другой зиккурат. Его высота была больше 400 футов, он состоял из семи сверкающих эмалью уровней, а его вершину венчал храм, где стоял цельный золотой стол и украшенное ложе, где каждую ночь ждала божественных утех новая девственница.
   Хороший климат, возможно, способствовал наблюдениям – Платон превозносил безоблачную атмосферу Месопотамии, а Геродот писал, что “воздух в этих краях всегда чистый, а погода стоит теплая благодаря отсутствию холодных ветров”, но это все основано скорее на пересказах. Песчаные бури и миражи должны были серьезно мешать наблюдениям за небесными явлениями, близкими к горизонту. Даже в лучших условиях было бы нелегко отличить планету от звезды, глядя на мириады небесных светил.
   Отсюда следует, что наблюдений самих по себе было недостаточно. Халдеи начали анализировать и интерпретировать свои наблюдения, записывая комментарии в журналах, альманахах и звездных каталогах. По консервативным оценкам, они записали 373 солнечных и 832 лунных затмения в краткий период своего господства. Широкий спектр повседневной жизни – метеорологические явления, уровень рек, городские пожары, смерть царей, эпидемии, кражи, завоевания, нашествия саранчи, вспышки голода и, что особенно важно, колебания в ценах на зерно, финики, перец, кресс-салат, кунжут и шерсть (всегда именно в таком порядке), – все это скрупулезно наносилось на глиняные таблички[136]. Вычисленные расположения небесных тел халдеи также записывали на табличках, которые в 509 году греческий автор Гелиодор назвал “эфемеридами” (от др.-греч. ἐφημερίς – “ежедневный”), – по сути, в рабочих журналах, отражающих последовательное возникновение одних и тех же объектов на небе. Сохранилось около 70 табличек основных серий, а из 7 тыс. записей четверть оказалась посвящена Солнцу.
   Изображение вавилонских астрономов, наблюдающих след метеора. XIX век. (From John F. Blake, Astronomical Myths (London: Macmillan and Co., 1877), с 187)
 
   Гадания, наблюдения и вычисления: в Вавилоне каждый умеющий читать изучал математику. Средний школьник знал о небесах гораздо больше нас, нечасто поднимающих глаза вверх. В далекие от нашей газово-электрической эры времена естественное освещение не имело конкуренции, так что всадники не зажигали ночами факелов, а ехали в свете звезд. Несмотря на все свои достижения, астрономия оставалась занятием элиты. В каждом учебном заведении могло быть всего два-три человека, искренне увлеченных небесными наблюдениями, и их ограничивали (как и сегодня) только возможности технологии.
   Большей частью своей мистической силы в науке Вавилон был обязан одному, но мощному математическому инструменту – позиционной системе счисления. У вавилонян было две версии: десятеричная, использовавшаяся для повседневной коммерции и для расчета циклов Луны, и шестидесятеричная – для измерения солнечных циклов. Последняя, хотя и более громоздкая, оставалась в ходу почти два тысячелетия, вплоть до Коперника; именно от нее нам осталось в наследство деление градуса на 60 мин, а минуты – на 60 с[137]. Эта система значительно превосходила любую другую систему древнего мира и удивительным образом оказалась близка к современным компьютерам[138]. Тяга к познанию поставила числа на службу себе – решающий момент в развитии любой науки.
   Вавилонская математика – шестидесятеричная арифметика, алгебраические операции, геометрические правила – распространилась гораздо шире, чем это удавалось астрономии, и действительно опережала системную астрономию более чем на тысячелетие. Но сохранялись и значительные дефекты. Время трактовалось не как мера, а почти как качество; также вавилонян не интересовало измерение пространства – у них не было понятия абсолютного расстояния. В вавилонской астрономии не сохранилось ни малейших следов попыток создания общей схемы всех небесных явлений, изучения их природы и причин, обзорного взгляда на вселенную в целом. В Вавилоне имелся свой лунный календарь, там первыми разделили день на двенадцатичастные половины, но деление светового дня зависело от времени года, и они не могли определить точную видимую орбиту Солнца вокруг Земли. Этот недостаток в свою очередь тормозил попытки определения формы Земли: Вавилону так и не стала известна ее круглая форма. Солнечные часы были им недоступны (даже в своей простейшей форме – вертикальный столб, тень которого отмечает время) – во многом из-за отсутствия понятия сторон света: какого-то приближения к четкому концепту компаса пришлось ждать до третьей четверти IV века до н. э. Они не смогли установить порядок следования планет, впрочем, тогда о нем никто не знал. Вероятно, вавилонская астрономия заработала свою высокую репутацию благодаря тому, что многие греческие тексты до нас не дошли: глина хранится лучше папируса. Однако в общем и целом я разделяю взгляд Ноэля Свердлоу: “Тот факт, что на полноценное развитие этой науки ушли столетия, демонстрирует ее сложность, превосходящую сложность любой другой науки Древнего мира из-за величины и сложной организации ее предмета… а также потому, что это была первая эмпирическая наука”[139].
   Около 330 года до н. э. Александр Великий покорил земли Вавилона, а после ранней смерти императора его полководец Селевк получил значительную часть завоеванных территорий. Шестьдесят лет спустя наследник Селевка Антиох I принудительно переселил большинство городских жителей в новую столицу Селевкии в 60 милях к северу от Вавилона. Для звездочетов старого города это стало слишком большим унижением. Они продолжили занятие своим ремеслом в храме Бела почти до конца первого столетия христианства, но это уже было угасание. “Так завершилась двухтысячелетняя вавилонская культура наблюдений за небом”, – пишет историк Джеймс Мак-Эвой[140].
 
   Еще прежде переноса вавилонской столицы ученость Вавилона достигла Египта, Греции и Рима на западе, Индии и, возможно, даже Китая на востоке. Египтяне заимствовали у Вавилона зодиак, но отвергли общую картину мира с утрированным весом знамений, предсказаний судьбы и враждебной вселенной. Геродот именовал Египет “даром реки”: возможно, ежегодный разлив Нила, идеально соответствующий посевному циклу, способствовал привыканию к благополучию. Египетские жрецы-астрологи знали, что Нил разливается в окрестностях летнего солнцестояния, когда восходит яркая звезда Сириус, и соответственно выстраивали свои календарные предсказания[141].
   С самого начала регулярные разливы Нила стали приносить неожиданную пользу: поскольку главным источником доходов государства была земельная подать, существовала постоянная нужда в установлении межевания и улаживания споров, вызываемых наводнениями. Этот процесс с самого начала египетской истории породил ремесло землемеров, кадровый состав каковых был очень обширен и весьма профессионален[142].
   Египтяне – исключительно практичный народ (письменность они изобрели раньше, чем вавилоняне, около 3200 года до н. э., хотя только 5 % населения владели грамотой) – разработали сложную методику измерений, которая в конечном итоге в соединении со строительными умениями египтян произвела на свет пирамиды. Но это было лишь одним из множества достижений. Например, они пытались различными методами измерить диаметр Солнца, используя солнечные и водяные часы и даже лошадей. Лошадь пускали галопом по равнине в момент появления Солнца над горизонтом и останавливали, когда Солнце полностью всходило; это занимало около двух минут, за которые животное успевало покрыть десять стадий. Поскольку предполагалось, что Солнце движется с той же скоростью, что и лошадь, то диаметр Солнца оценивался в эти же десять стадий. Не самый высокий класс геометрии[143].
   У египтян была собственная математическая система еще в 2800 году до н. э., но она была довольно неразвитой, в отличие от вавилонян они так и не пошли дальше простой арифметики, хотя и владели умножением и делением. В Египте знали только дроби вида 1/n(с единственным исключением – 2/3). И хотя математические тексты 1800–1600 годов до н. э. выявляют довольно пространные вычисления (например, объем усеченной пирамиды), их геометрия не предусматривала сложных операций; методика расчетов, позволяющая перейти от наблюдения к прогнозированию, была им также недоступна[144]. Нет никаких свидетельств их знакомства с понятием географической широты или хотя бы ведения какого-то регулярного реестра затмений. Они с крайней тщательностью соблюдали все каноны, относящиеся к датам и времени, – это мы можем заключить из изощренной религиозной системы египтян и заявлений их жрецов-астрологов. И хотя они делали довольно мало предсказаний на основе наблюдений, но на карты наносились звезды, планеты и созвездия, а их движения записывались.
   Понимание египтянами задач астрономии можно передать надписью на пьедестале статуи астронома Хархеби (относящейся к началу III века до н. э.), которая мало сообщает о человеке, но много говорит о его обязанностях. Он должен был определять восходы и заходы зодиакальных созвездий, устанавливать высшие точки для каждой планеты, предсказывать из этих данных восходы прочих небесных тел. От него ожидалось и предсказание солнцестояний – “ему надлежало знать о расположении невидимых звезд, о порядке движения Солнца, Луны… о сочетании и свечении Солнца и Луны и, наконец, о восхождениях”[145]– дат отмечания божественных праздников, а также точное расположение божественных духов к фараону.
   Как и многие доиндустриальные цивилизации, египтяне постоянно стремились навести свой порядок во вселенной, полагая, что само Солнце также нуждается в защите от сил, тайно норовящих нарушить целостность бытия. В мире хаоса и природных катастроф религия объединяла усилия с наукой, жрецы упорно работали для защиты людей посредством культа и ритуалов и для предложения антропоморфного толкования устройства вселенной[146]. Небо было не просто сводом над головой, а богиней, каждую ночь зачинающей Солнце – древний вариант непорочного зачатия – и рождающей его наутро. Даже пустое пространство между Землей и небесами было божеством. В подобном космосе творение и существование являлись не результатом неких безличных сил, а, напротив, плодом индивидуальной воли и действий. Разнообразные египетские божества состояли в целой сети отношений, в центре которых гнездилось Солнце.
   Семья Эхнатона (Аменхотепа IV) приносит жертву Атуму, богу солнца. Рельеф из Амарны, Египет, 1350 год до н. э. (Erich Lessing/Art Resource, N.Y.)
 
   Со временем философия сотворения мира становилась сложнее. Атум, Создатель, “всегда бывшее существо, которому присуще само бытие и посредством самореализации которого создалось все тварное”, создал всю материю из самого себя – мир создало не что иное, как акт мастурбации Атума: для нас идея необычная и даже курьезная, но для египтян – самосозидание сущности Атума[147]. Атум часто меняется местами с Солнцем – светило служит его воплощением. В прежние времена Атум был сознательной пустотой, внутри которой впервые возникло Солнце; а “оргазм” был хорошим способом объяснения возникновения вселенной – космология, которая позволяет назвать древних египтян пионерами теории Большого взрыва.
   Подобные верования развивались параллельно с первыми шагами египтян в направлении научного познания. В эти ранние века Египет, как и Вавилон, еще не достиг третьей стадии по Локьеру: должны были пройти тысячелетия, чтобы Солнце стали изучать исключительно в целях познания. Но общество, ценившее знание, возможно, превыше прочих за всю историю человечества, безусловно, подошло вплотную к этому рубежу.

Глава 6
Выход греков

   Астрономия? Понять ее невозможно, изучать – безумие.
Софокл (496–406)

   Не путайте прогресс с совершенством. Великий поэт всегда рождается вовремя. Великий философ нужен всегда и позарез. А вот сэр Исаак Ньютон мог бы и подождать. Человечество без него было вполне счастливо. Лично я и сейчас предпочитаю Аристотелеву модель Вселенной. Пятьдесят пять хрустальных сфер – что еще человеку надо? Бог крутанет ручку – и пошло-поехало[148].
   Бернард Солоуэй, книгочей и поклонник Байрона, в пьесе Тома Стоппарда “Аркадия”
   Самые ранние упоминания об астрономии у греков появляются в поэмах Гомера и Гесиода около 800 года до н. э. К тому времени их соотечественники, подобно вавилонянам и египтянам, уже дали имена разным звездам на небосклоне и подвергли исчислению солнечные восходы и заходы[149]. Однако они не остановились на простой фиксации движения небес. Взявшись за астрономию всерьез, они стали исследовать структуру и состав неба – форму и размеры Солнца, звезд, планет и самой Земли; насколько далеко они находятся друг от друга, что вокруг чего вращается, по каким орбитам; число звезд и можно ли их обнаруживать на небе с большой точностью. К этому добавилась масса вопросов непосредственно об окружающем мире: какова точная длина года, месяца? Когда происходят равноденствия, можно ли назвать точный момент солнцестояния? По поводу одного вопроса не было почти никаких разногласий – Земля неподвижна и находится в центре космоса. Это убеждение будет мучить науку еще несколько тысяч лет.
   Прекрасная, за исключением этого ключевого заблуждения, плеяда греческих исследователей звезд растянулась на тысячу лет – со времен Гесиода и до смерти Птолемея. Общее число древних китайских философов, вероятно, превысило бы вдвое число греков, но греческий состав серьезнее. Немецкий ученый Отто Нейгебауэр приводит список из 121 заметного астронома, и даже этот перечень не включает такие фигуры, как Ферекид Сиросский (учитель Пифагора), Зенон Элейский, Платон и Эпикур, которые, будучи астрономами не в первую очередь, тем не менее сделали большой вклад в эту науку. В списке встречается много знакомых имен – Аристотель, Евклид, Архимед, Птолемей – и много гигантов мысли своего времени, но менее известных сегодня – Парменид, Анаксагор, Евдокс Книдский, Гераклит и Аристарх Самосский.
   Разумеется, греки частично пользовались фундаментом, заложенным еще в Вавилоне. Геродот (ок. 484 – ок. 425) в своей единственной книге “Исследования” (чаще называемой “Историей”) описывает, как греки не только копировали вавилонские записи и вычисления, но и заимствовали некоторые измерительные приборы, например прибор, вычисляющий движение Солнца по эклиптике. Первые представления об астрономии за пределами простого наблюдения пришли от египтян. Ранние греческие ученые не усматривали в предсказаниях небесных явлений ничего особенно ценного: Платон в диалоге “Федр” обвиняет своих земляков в недостаточном интересе к планетам. Этот образ мысли изменился лишь после того, как греки смогли познакомиться с вавилонскими табличками в эпоху становления империи Александра Македонского, который верблюдами отправлял астрономические таблички в греческие города Адриатического побережья[150]. Около 650 года до н. э. старый аристократический режим уступил место последовательной смене тиранов (тогда это слово означало только правителей с абсолютной властью, совсем не обязательно жестоких деспотов), которые поддерживали торговлю и экономические реформы. У населения греческих государств впервые в истории появилась возможность другого образа жизни – не только думать о выживании, но и размышлять о более приятных вещах. Именно с этого момента началось то, что великий исследователь той эпохи Д. Р. Дикс описал так: “Греческая страсть к рациональному постижению с математической основой… преобразовала массу сырых данных наблюдения в точную науку”[151].
   Первым великим практиком стал Фалес (ок. 625 – ок. 547) из Милета, процветающего порта, обслуживающего все Эгейское море. Фалес был государственным деятелем благородного происхождения, инженером и купцом, достаточно предусмотрительным, как гласит легенда, чтобы скупить маслодавильни Милета и близлежащего Хиоса непосредственно перед рекордным урожаем, сделав на этом изрядное состояние: доказательство того, говорил он, что и философы могут при желании делать деньги.
   Фалес ездил в Египет учиться основным принципам прикладной геометрии, и эти уроки вдохновили его на развитие астрономии как дедуктивной науки. Он первым установил, что Луна затмевает Солнце, когда оказывается на прямой между Землей и Солнцем, и он же был первым греком, отстаивающим идею того, что Луна светит отраженным светом. Фалесу же приписывают установление времени и последовательности равноденствий. Плутарх, Плиний, Цицерон и Диоген Лаэртский обширно цитируют Фалеса, что можно счесть большой удачей, поскольку его собственных работ не сохранилось: древние и современные ученые подняли его на столь высокий пьедестал на очень немногочисленных основаниях.
   По свидетельству Диогена (род. ок. 412 года до н. э.), Фалес первым измерил диаметр Солнца в отношении к его видимой орбите хотя бы с какой-то степенью точности: он оценил это отношение как 1 / 720 – пропорция, которая является чрезвычайно близкой оценкой актуальной орбиты Земли при вращении вокруг Солнца. Менее впечатляющи его утверждения о том, что вода есть первичный элемент вселенной, Земля плавает как пробка в этой воде, а Солнце состоит из горящего земного вещества. С большей уверенностью он мог утверждать, что временные отрезки между солнцестояниями никогда не одинаковы и что солнечный год длится 365 дней. Правда, мы так мало знаем о его работах, что заведомо ничего сказать о его авторстве тут нельзя. Как это ни парадоксально, сильнее всего он прославился тем, чего никогда не делал, – предсказанием[152]солнечного затмения 28 мая 585 года до н. э.