И до Галилея люди могли наблюдать объекты, пересекающие солнечный диск, но именно сообщение Галилея поразило широкую аудиторию и принесло ему славу. В 1611 году он нанес триумфальный визит в Ватикан[260], где папа Павел V даровал ему частную аудиенцию. Умение определить, будет Рим аплодировать или вынесет приговор, всегда было высшим искусством, но Галилей держался в стороне от этого, возможно, беря в расчет изречение одного кардинала о том, что Библия была “предназначена для того, чтоб научить нас, как устроиться на небе, а не тому, как устроено небо”.
Галилей, рыцарь науки, во время его триумфального визита в Ватикан в 1611 году (Louvre, Paris, France / Peter Willi / The Bridgeman Art Library)
Другие астрономы тоже заявили о том, что они наблюдали такие отметки на Солнце. Английский ученый Томас Хэрриот (1560–1621) и два немецких, Кристоф Шайнер (1573–1650) и Иоганн Голдсмид (1587–1616) – его обычно называли латинским именем Фабрициус, – выпустили памфлеты; первым был Фабрициус, который торжественно доставил свое сообщение на книжную ярмарку во Франкфурте осенью 1611 года. Хэрриот, преподаватель математики и помощник сэра Уолтера Рэли, произвел и записал сто девяносто девять наблюдений за солнечными пятнами между 3 декабря 1610-го и 18 января 1613-го, но не опубликовал их. Иезуит Шайнер вел наблюдения с 21 октября до 14 декабря 1610 года, но опубликовал свои результаты только в 1612-м. Первые зарисовки Галилея появились 3–11 мая 1612 года. По-видимому, в самом деле каждый из четырех ученых самостоятельно замечал это явление и не выдавал чужие находки за свои.
Кто бы ни заслуживал пальмы первенства, именно заявление Галилея инициировало последующие дебаты. Шайнеровские наблюдения были дезавуированы его коллегами по ордену, но он и не утверждал, что это пятна – скорее, силуэты не обнаруженных ранее небольших планет, проходящих близко от поверхности Солнца; в конце концов, говорил он, почтительно вторя Аристотелю, Солнце совершенно и на нем не может быть пятен. Через год Галилей ответил “Письмами о солнечных пятнах” – тремя публичными посланиями, в которых утверждал, что пятна действительно находились на солнечной поверхности. Доказательством служило то, что пятна показывали специфическое ускорение и замедление движения, когда пересекали солнечный диск, и удлинялись и укорачивались, когда достигали краев диска, – поведение, в точности соответствующее объектам, закрепленным на вращающемся шаре.
В последней эпистоле Галилей (возможно, ища поводов для полемики) впервые публично поддержал систему Коперника. Письмо привело Рим в ярость – в 1590 году он ясно обозначил свои позиции в деле неаполитанского философа Джордано Бруно. Когда Бруно провозгласил, что вращение Земли вокруг Солнца есть неоспоримый факт, инквизиция обвинила его в ереси и приверженности пантеизму, отрицающему сотворение мира Богом. В первый день Великого поста 1600 года философа привезли на муле на римскую площадь Кампо-де-Фиори, где его привязали вниз головой, раздели догола, а затем сожгли на костре, проткнув железной спицей язык, чтобы Бруно не мог богохульствовать. В течение многих лет католикам было запрещено читать труды Коперника, пока девять главных высказываний, утверждавших, что его идеи были не просто теорией, не были окончательно вымараны. Даже после этой цензуры Конгрегация списка запрещенных книг наложила запрет на работы Коперника (15 марта 1615 года) на основании того, что он защищал “ложное пифагорейское учение о том, что Земля движется, а Солнце неподвижно”.
Галилей оказался в безвыходном положении. Его обязали предстать перед Святейшим кабинетом, и 26 февраля 1616 года был составлен документ, подтверждающий, что астроному указано на необходимость отойти от учения Коперника и “воздерживаться от преподавания или защиты этого мнения и даже от его обсуждения”. Он избежал приговора, но был вынужден заняться другими исследованиями. Такое положение дел сохранялось в течение семи лет, пока Маффео Барберини, сам астроном, не был избран папой, став Урбаном VIII. Многолетний друг Галилея пригласил ученого в Рим, где они провели шесть встреч, прогуливаясь по ватиканским садам и обсуждая вопрос гелиоцентричности. Папа Урбан сообщил своему старому товарищу, что отозвать порицание 1616 года он не сможет, но тем не менее призывает его разработать формальное сравнение между системами Коперника и Птолемея при одном условии: никаких выводов в пользу одной или другой делаться не будет, одному только Богу известно устройство вселенной.
Галилей принялся за работу, которая заняла у него девять лет. Наконец после одобрения местного флорентийского цензора он опубликовал свой “Диалог о двух главнейших системах мира”, первое издание – на тосканском диалекте, второе – на ученой латыни[261]. “Господь был милостив даровать мне первому счастье наблюдать восхитительные вещи, скрытые от нас все эти годы”. Сила аргументов ученого была очевидна: гелиоцентрическая версия была вне обсуждений, Земля движется, потому что этого требует математика. “Широкое применение латыни, которая продолжала быть языком ученых вплоть до начала XVIII века, способствовало обмену идеями; все, что открывалось или предполагалось в одной стране, быстро получало хождение во всех других”, – писал Г. Л. Менкен[262].
Папа Урбан, уже изрядно пострадавший в борьбе с контрреформацией, воспылал “гневом преданного любовника”[263]и спустил с цепи инквизицию. Через год на формальном судебном процессе Галилею вменялось “сильное подозрении в ереси”. Сам по себе гелиоцентризм никогда не провозглашался ересью, ни ex cathedra, ни на церковном соборе; дело было просто в том, что, как выразился один комментатор, “Галилей намеревался вколотить Коперника в глотку христианскому миру”. Кеплер, например, был возмущен поведением коллеги: “Некоторые своим безрассудным поведением довели дело до того, что труды Коперника, которые были совершенно доступны в течение восьмидесяти лет, теперь запрещены”[264]. По сути, Галилей вынудил Церковь заставить его замолчать, что та и сделала, повсеместно запретив продажу “Диалога…” и конфисковав все имевшиеся экземпляры. “Мы не можем познать, – говорит у Брехта кардинал, обращаясь к Галилею, – но вправе исследовать. Наука является законной и весьма любимой дочерью церкви”.
У Брехта ученому угрожали дыбой и другими пытками, но об этом у нас нет никаких свидетельств. Во всяком случае, чиновники курии предпринимали специальные усилия, чтобы избежать конфликтов. Во время процесса семидесятилетний Галилей был поселен в пятикомнатных покоях с видом на ватиканские сады, ему был выделен камердинер и человек для прислуживания за трапезой. Счастливым для Церкви образом 22 июня 1633 года Галилей пал на колени в большом зале доминиканского храма Св. Марии над Минервой и отрекся – возможно потому, что все-таки был ревностным католиком и увидел смысл в том, чего добивался святой престол: наука не может рассматриваться в качестве источника высшего авторитета. А возможно, просто потому, что, как он и признал в отречении, у него не было неопровержимых доказательств своей правоты.
По оглашенному приговору Галилею предстояло безвыездно проживать на своей вилле Альчетри под Флоренцией, где он и провел остаток жизни в исследованиях, в особенности в изучении динамики. К 1637 году он потерял зрение (хотя и не по причине наблюдений за Солнцем), а через год его посетили среди прочих Гоббс и Мильтон. Последний спустя шесть лет в “Ареопагитике” вспоминал космологическую дискуссию с Галилеем, “проводившим свою старость в тюрьме инквизиции за то, что держался в астрономии иных взглядов, чем францисканские и доминиканские цензоры”. Мильтон вернется к этой теме и в “Потерянном рае”:
Почти столетие спустя папа Бенедикт XIV даровал имприматур (официальное разрешение Рима на публикацию) первому изданию “Полных трудов” Галилео Галилея (хотя парадоксальным образом запрет на сочинения Коперника продолжался до 1828 года). И еще двести тридцать лет пройдет, прежде чем в 1979 году папа Иоанн Павел II распорядится пересмотреть дело Галилея. Понадобилось двенадцать лет либерализации, чтобы в 1992 году Ватикан наконец признал, что Галилей и его теория оправданы. В марте 2008 года папа Бенедикт X V I объявил, что памятник великому ученому будет воздвигнут в Ватикане. Глава Папской академии наук (сам ядерный физик) сообщил: “Церковь желает закрыть дело Галилея и достичь четкого понимания не только наследия Галилея, но и отношений между наукой и верой”[267]. Даже по стандартам великой институции это было чересчур долго.
В действительности, разумеется, причины для столь долгого неприятия новых теорий были. Появление новых технологий серьезно затрагивает системы верований, и только с изобретением печатного пресса идеи смогли получить по-настоящему широкое распространение. Но даже тогда революционные повороты мышления непременно встречали серьезное сопротивление. Зигмунд Фрейд (1856–1939) распространял мнение, согласно которому Коперник вызвал особенное отторжение, потому что вывел человечество из его исключительного положения в центре вселенной. На самом деле удар, нанесенный галилеевым открытием пятен на Солнце, был гораздо сильнее. Было нечто ужасное в несовершенстве Солнца, как будто недостатки человеческого лица перенеслись на всемогущий диск в небе, многократно увеличенные. До Галилея Солнце было безупречной, идеальной сферой. И вдруг в одночасье оно стало грязным, испещренным пятнами.
С появлением телескопа человеку XVII века пришлось заново выстраивать мир, уже не путем интерпретации воображаемого – солнечных богов, небесных колесниц, пожирающих солнечный диск драконов, – а путем постоянной квалификации и фильтрации наблюдаемых данных. И вероятно, мысль о том, что великая звезда пусть и центр солнечной системы, но лишь малая часть Божьего замысла, да и та в пятнах, переворачивала все мировоззрение.
Глава 10
“Я должен умереть, – писал нелюдимый и одинокий школьник Исаак Ньютон (1643–1727) в своем учебнике латинских упражнений, – я могу только рыдать и не знаю, что мне делать”. Главный биограф описывает его как “измученного человека… крайне невротичного, вечно колеблющегося, как минимум до достижения среднего возраста, на грани нервного срыва”[269]. За всю жизнь он так и не женился; как шутил персонаж в “Аркадии” Тома Стоппарда, секс был “притяжением, которое Ньютон сбросил со счетов”. Трудно представить себе его и наслаждающимся галилеевым определением вина как “света, собранного влагой”. У него не было слуха, скульптуры он называл “каменными куклами”, а поэзию – “гениальной бессмыслицей”[270]. Но после смерти сэр Исаак Ньютон был признан крупнейшим гением своего времени. Знаменитый во всем западном мире, он тридцать лет пробыл председателем Королевского общества (величайшая научная институция мира, основанная во времена физика-любителя Карла II), дважды был членом Парламента, удивительным образом он также оказался энергичным и квалифицированным управляющим Монетного двора, когда вступил на эту должность и отвечал за чеканку монет во всей Англии. Местом его последнего упокоения стало Вестминстерское аббатство, там воздвигнут мраморный монумент 25 футов высотой, где над полулежащей статуей Ньютона висит небесный глобус. Рядом херувимы взвешивают Солнце и планеты, латинская надпись гласит: “Пусть смертные радуются, что существовало такое украшение рода человеческого”. Никто во всей истории человечества не понимал “что делать” лучше него.
Еще не достигнув двадцати четырех лет, Ньютон начал формулировать принципы тяготения – основы современной предсказательной астрономии – и доказывать, что объекты на Земле и в небе движутся согласно одним и тем же законам. К этому возрасту он уже сделал важнейшие открытия о природе оптики, о свойствах цвета и света и собирался разрабатывать законы охлаждения, формулировать принципы сохранения момента, изучать скорость звука в воздухе, строить теорию происхождения Солнца. Он первым объяснил природу приливов, изложил новые идеи о конструировании телескопов и выступил одним из создателей математического анализа – дисциплины, без которой наука в ХХ веке не сделала бы ни шагу. “Не стоит заблуждаться, – сказал Эйнштейн в 1919 году, когда его теория относительности принесла ему мировую славу, – и полагать, что сильнейшая работа Ньютона может быть упразднена той или иной новой теорией. Его великие и яркие идеи сохранят свое уникальное значение навечно”[271].
Исаак Ньютон родился на Рождество в семье фермера в деревеньке Вулсторп на восточном побережье, в графстве Линкольншир. Ранняя смерть отца и скорое повторное замужество матери оставили ребенка на попечении бабушки – не редкость в те дни, но и не слишком плодотворно в плане воспитания. Мальчиком Ньютон мастерил солнечные и обычные часы и всегда точно определял время по Солнцу. В июне 1661-го он уже учился в Тринити-колледже – тогда, как и сейчас, самом знаменитом и большом колледже Кембриджского университета.
Аристотель и прочие великие греческие философы все еще служили поддержкой царящей ортодоксии, но ростки радикальных инноваций уже возникали в лице Рене Декарта (1596–1650), который хоть и сохранял свои исследования в тайне из боязни смертоносной немилости церкви, но в 1644 году опубликовал “Начала философии”. В этом сочинении он, в частности, утверждал, что Солнце – лишь одна из множества звезд, каждая из которых находится в центре собственной “воронки”. У Ньютона такая вселенная вызывала массу вопросов. Почему любой объект всегда стремится упасть как можно ниже? Или почему он двигается в определенном направлении? Галилей рассмотрел, что лунные горы и ущелья похожи на земные, но если они сделаны из того же вещества, что и наша планета, то что удерживает Луну в небе? Почему она кружит вокруг Земли, вместо того чтобы устремиться вниз или, напротив, улететь прочь? Личный физик королевы Елизаветы Уильям Гилберт мог сделать невольную подсказку, когда в работе De Magnete (1600) предположил, что Земля обнаруживает то, что мы сегодня называем “биполярным магнитным полем”, т. е. что ее полюсы заряжены и превращают ее в “большой магнит”. Но что такое магнит?
Сэр Исаак Ньютон (1643–1727) (Science Source / Photo Researchers, Inc.)
Над этими головоломками Ньютон размышлял в своей комнате, расположенной между Главными воротами Тринити-колледжа и часовней. Но во время суровой зимы 1665 года в Англию с континента пришла чума, распространяясь от прихода к приходу, убивая тысячи людей еженедельно. Менее чем за год погиб каждый шестой лондонец. Кембридж не остался в стороне – шестнадцать колледжей были закрыты (каждый был небольшой общиной, даже к XIX веку весь университет насчитывал всего четыре сотни студентов), а Ньютону пришлось вернуться в каменный фермерский дом своей бабки. Его изоляция продлилась около девятнадцати месяцев, в течение которых он успешно создал современную математику, механику и оптику. Как вспоминал сам Ньютон, “я был в самом расцвете сил и занимался математикой и философией больше, чем когда-либо потом”[272].
Его научную проницательность можно обнаружить в ответах, которые он нашел на два солнечных вопроса – какова масса Солнца по сравнению с Землей и какова его относительная плотность. Ньютон подсчитал, что Солнце в 28 700 раз массивнее Земли (сильно заниженная оценка, но ближе не подходил никто), а его плотность составляет примерно 0,25 от земной (отличается от современной оценки на 2 %). Сила тяжести, впрочем, оказалась более крепким орешком: пройдет почти двадцать лет, прежде чем Ньютон публично выдвинет свою теорию, и к тому времени он уже частично воспользуется чужими идеями. Около 1639 года астроном Джереми Хоррокс (1617–1641), тоже учившийся в Кембридже, предположил, что на движение Луны, обусловленное Солнцем, воздействует и некоторая сила, исходящая от Земли. Вслед за этим члены Королевского общества Роберт Гук (1635–1703), Эдмунд Галлей (1656–1742) и сэр Кристофер Рен (1632–1723), а также французский священник Исмаэль Буйо (1605–1694) предположили, что эта сила стремительно уменьшается по мере удаления объекта от центра Земли. Но именно Ньютон распознал действие общего закона и первым продемонстрировал, как он работает.
Ученый заключил, что тело на поверхности Земли удерживается силой примерно в триста пятьдесят раз большей, чем центробежная сила, отталкивающая его от Земли из-за ее вращения, – эту силу он назвал “гравитацией” (лат. gravitas – тяжесть). Вопрос был не в том, существует ли эта сила – Галилей показал, что существует, – а в том, простирается ли она столь далеко от Земли, чтобы оказаться силой, которая удерживает Луну на ее орбите. По расчетам Ньютона, если взаимное притяжение было пропорционально массам тел и уменьшалось пропорционально квадрату расстояния между ними, то оно объясняло не только орбитальное вращение Луны, но и формирование орбит всех прочих планет – отсюда и его термин “всемирное тяготение”. Этой же формулой он описал расположение планет и звезд, а также причину предварения равноденствий, объяснил отливы и приливы. Даже сегодня грандиозный масштаб этого рассуждения ставит его в первые ряды среди достижений человеческого разума; но, произведя все расчеты, Ньютон отложил их в сторону.
Много лет спустя он расскажет как минимум четырем разным людям, что его вдохновило яблоко в собственном саду. Что, если сила, заставляющая плод падать с дерева, не ограничивается каким-то расстоянием, а распространяется от Земли дальше и дальше? Ньютон никогда не писал о каких-то вспышках прозрения, только “я начал думать о тяготении, простирающемся до орбиты Луны” как о силе, действие которой всегда направлено от центра Земли[273].
Через неполных два года Кембридж вновь открылся, и Ньютон, вернувшись, сразу сделал несколько важных открытий о природе света. Платон думал о зрении как о результате действия частиц, вылетающих из глаз смотрящего; но где находилась суть света, внутри или снаружи наблюдателя? Аристотель понимал, что свет был необходимым условием существования цвета, а Птолемей экспериментировал с углами преломления – но откуда брался цвет, не был ли он даром Солнца?
На этот раз вдохновение приняло форму не яблока, а орнамента. В нескольких милях от города на берегу реки Кэм располагалась деревня Стербридж Коммон, где каждый год проводилась большая ярмарка. На ярмарке у местного шлифовальщика линз Ньютон приобрел призму, простой треугольный брусок стекла, по форме напоминающий нынешнюю шоколадку “Тоблерон”. Вернувшись домой, он установил призму – когда луч Солнца падал на нее, возникали разные цвета. Меняет ли стекло свет или же солнечный свет содержит разные цвета, которые призма лишь разделяет? Ньютон знал, что телескоп производит радужный эффект вокруг любого объекта наблюдения, потому что край линзы является призмой. Но ему казалось неубедительным объяснять это тем, что белый свет по мере прохождения через линзу темнел в тонких местах и становился красным и еще больше темнел в толстых местах, становясь синим. Ньютон поставил эксперимент, в котором тонкий солнечный луч падал на призму, что делало разделение света еще более четким. Ньютон писал: “Поначалу это было очень приятным развлечением – наблюдать производимые таким образом живые и интенсивные цвета; но немного спустя, занявшись более тщательным их рассмотрением, я с удивлением обнаружил у них продолговатую форму, каковая, согласно признанному закону рефракции, должна быть круговой. Я также заметил… что свет с одного края изображения подвергается воздействию рефракции сравнительно сильнее, чем свет с другого края”[274].
Разные цвета преломлялись разным образом и в порядке радуги – призма отклоняла их по разным направлениям, что значило, что солнечный луч может разлагаться на составляющие. Ньютон идентифицировал красный, оранжевый, желтый, зеленый, синий, голубой и фиолетовый цвета. Голубой не является отдельным цветом, как и оранжевый, но Ньютон пал жертвой нумерологии и руководствовался в своих наблюдениях магической цифрой семь[275].
Галилей, рыцарь науки, во время его триумфального визита в Ватикан в 1611 году (Louvre, Paris, France / Peter Willi / The Bridgeman Art Library)
Другие астрономы тоже заявили о том, что они наблюдали такие отметки на Солнце. Английский ученый Томас Хэрриот (1560–1621) и два немецких, Кристоф Шайнер (1573–1650) и Иоганн Голдсмид (1587–1616) – его обычно называли латинским именем Фабрициус, – выпустили памфлеты; первым был Фабрициус, который торжественно доставил свое сообщение на книжную ярмарку во Франкфурте осенью 1611 года. Хэрриот, преподаватель математики и помощник сэра Уолтера Рэли, произвел и записал сто девяносто девять наблюдений за солнечными пятнами между 3 декабря 1610-го и 18 января 1613-го, но не опубликовал их. Иезуит Шайнер вел наблюдения с 21 октября до 14 декабря 1610 года, но опубликовал свои результаты только в 1612-м. Первые зарисовки Галилея появились 3–11 мая 1612 года. По-видимому, в самом деле каждый из четырех ученых самостоятельно замечал это явление и не выдавал чужие находки за свои.
Кто бы ни заслуживал пальмы первенства, именно заявление Галилея инициировало последующие дебаты. Шайнеровские наблюдения были дезавуированы его коллегами по ордену, но он и не утверждал, что это пятна – скорее, силуэты не обнаруженных ранее небольших планет, проходящих близко от поверхности Солнца; в конце концов, говорил он, почтительно вторя Аристотелю, Солнце совершенно и на нем не может быть пятен. Через год Галилей ответил “Письмами о солнечных пятнах” – тремя публичными посланиями, в которых утверждал, что пятна действительно находились на солнечной поверхности. Доказательством служило то, что пятна показывали специфическое ускорение и замедление движения, когда пересекали солнечный диск, и удлинялись и укорачивались, когда достигали краев диска, – поведение, в точности соответствующее объектам, закрепленным на вращающемся шаре.
В последней эпистоле Галилей (возможно, ища поводов для полемики) впервые публично поддержал систему Коперника. Письмо привело Рим в ярость – в 1590 году он ясно обозначил свои позиции в деле неаполитанского философа Джордано Бруно. Когда Бруно провозгласил, что вращение Земли вокруг Солнца есть неоспоримый факт, инквизиция обвинила его в ереси и приверженности пантеизму, отрицающему сотворение мира Богом. В первый день Великого поста 1600 года философа привезли на муле на римскую площадь Кампо-де-Фиори, где его привязали вниз головой, раздели догола, а затем сожгли на костре, проткнув железной спицей язык, чтобы Бруно не мог богохульствовать. В течение многих лет католикам было запрещено читать труды Коперника, пока девять главных высказываний, утверждавших, что его идеи были не просто теорией, не были окончательно вымараны. Даже после этой цензуры Конгрегация списка запрещенных книг наложила запрет на работы Коперника (15 марта 1615 года) на основании того, что он защищал “ложное пифагорейское учение о том, что Земля движется, а Солнце неподвижно”.
Галилей оказался в безвыходном положении. Его обязали предстать перед Святейшим кабинетом, и 26 февраля 1616 года был составлен документ, подтверждающий, что астроному указано на необходимость отойти от учения Коперника и “воздерживаться от преподавания или защиты этого мнения и даже от его обсуждения”. Он избежал приговора, но был вынужден заняться другими исследованиями. Такое положение дел сохранялось в течение семи лет, пока Маффео Барберини, сам астроном, не был избран папой, став Урбаном VIII. Многолетний друг Галилея пригласил ученого в Рим, где они провели шесть встреч, прогуливаясь по ватиканским садам и обсуждая вопрос гелиоцентричности. Папа Урбан сообщил своему старому товарищу, что отозвать порицание 1616 года он не сможет, но тем не менее призывает его разработать формальное сравнение между системами Коперника и Птолемея при одном условии: никаких выводов в пользу одной или другой делаться не будет, одному только Богу известно устройство вселенной.
Галилей принялся за работу, которая заняла у него девять лет. Наконец после одобрения местного флорентийского цензора он опубликовал свой “Диалог о двух главнейших системах мира”, первое издание – на тосканском диалекте, второе – на ученой латыни[261]. “Господь был милостив даровать мне первому счастье наблюдать восхитительные вещи, скрытые от нас все эти годы”. Сила аргументов ученого была очевидна: гелиоцентрическая версия была вне обсуждений, Земля движется, потому что этого требует математика. “Широкое применение латыни, которая продолжала быть языком ученых вплоть до начала XVIII века, способствовало обмену идеями; все, что открывалось или предполагалось в одной стране, быстро получало хождение во всех других”, – писал Г. Л. Менкен[262].
Папа Урбан, уже изрядно пострадавший в борьбе с контрреформацией, воспылал “гневом преданного любовника”[263]и спустил с цепи инквизицию. Через год на формальном судебном процессе Галилею вменялось “сильное подозрении в ереси”. Сам по себе гелиоцентризм никогда не провозглашался ересью, ни ex cathedra, ни на церковном соборе; дело было просто в том, что, как выразился один комментатор, “Галилей намеревался вколотить Коперника в глотку христианскому миру”. Кеплер, например, был возмущен поведением коллеги: “Некоторые своим безрассудным поведением довели дело до того, что труды Коперника, которые были совершенно доступны в течение восьмидесяти лет, теперь запрещены”[264]. По сути, Галилей вынудил Церковь заставить его замолчать, что та и сделала, повсеместно запретив продажу “Диалога…” и конфисковав все имевшиеся экземпляры. “Мы не можем познать, – говорит у Брехта кардинал, обращаясь к Галилею, – но вправе исследовать. Наука является законной и весьма любимой дочерью церкви”.
У Брехта ученому угрожали дыбой и другими пытками, но об этом у нас нет никаких свидетельств. Во всяком случае, чиновники курии предпринимали специальные усилия, чтобы избежать конфликтов. Во время процесса семидесятилетний Галилей был поселен в пятикомнатных покоях с видом на ватиканские сады, ему был выделен камердинер и человек для прислуживания за трапезой. Счастливым для Церкви образом 22 июня 1633 года Галилей пал на колени в большом зале доминиканского храма Св. Марии над Минервой и отрекся – возможно потому, что все-таки был ревностным католиком и увидел смысл в том, чего добивался святой престол: наука не может рассматриваться в качестве источника высшего авторитета. А возможно, просто потому, что, как он и признал в отречении, у него не было неопровержимых доказательств своей правоты.
По оглашенному приговору Галилею предстояло безвыездно проживать на своей вилле Альчетри под Флоренцией, где он и провел остаток жизни в исследованиях, в особенности в изучении динамики. К 1637 году он потерял зрение (хотя и не по причине наблюдений за Солнцем), а через год его посетили среди прочих Гоббс и Мильтон. Последний спустя шесть лет в “Ареопагитике” вспоминал космологическую дискуссию с Галилеем, “проводившим свою старость в тюрьме инквизиции за то, что держался в астрономии иных взглядов, чем францисканские и доминиканские цензоры”. Мильтон вернется к этой теме и в “Потерянном рае”:
В той же поэме Мильтон описывает спуск Сатаны на Солнце, при котором образуется пятно, подобное тем, что видны в телескоп. Жест поддержки? В любом случае запоздалый. По крайней мере Галилей, вопреки легендам, не провел в тюремной камере и одного дня. Он написал две комедии, читал лекции о Данте и продолжал свои академические занятия до самой смерти в 1642 году в возрасте семидесяти восьми лет. “В поколении, заставшем Тридцатилетнюю войну, самое большое несчастье, которое случилось с ученым, – история Галилея, мягкое порицание и почетное домашнее содержание вплоть до мирной смерти в своей постели”, – писал Альфред Норт Уайтхед[266].
…не томись
В разгадыванье сокровенных тайн,
Их Богу предоставь; Ему служи
Благоговейно…
…Слишком далеки
Просторы неба, дабы ведал ты,
Что там свершается. Итак, пребудь
Смиренномудрым…[265]
Почти столетие спустя папа Бенедикт XIV даровал имприматур (официальное разрешение Рима на публикацию) первому изданию “Полных трудов” Галилео Галилея (хотя парадоксальным образом запрет на сочинения Коперника продолжался до 1828 года). И еще двести тридцать лет пройдет, прежде чем в 1979 году папа Иоанн Павел II распорядится пересмотреть дело Галилея. Понадобилось двенадцать лет либерализации, чтобы в 1992 году Ватикан наконец признал, что Галилей и его теория оправданы. В марте 2008 года папа Бенедикт X V I объявил, что памятник великому ученому будет воздвигнут в Ватикане. Глава Папской академии наук (сам ядерный физик) сообщил: “Церковь желает закрыть дело Галилея и достичь четкого понимания не только наследия Галилея, но и отношений между наукой и верой”[267]. Даже по стандартам великой институции это было чересчур долго.
В действительности, разумеется, причины для столь долгого неприятия новых теорий были. Появление новых технологий серьезно затрагивает системы верований, и только с изобретением печатного пресса идеи смогли получить по-настоящему широкое распространение. Но даже тогда революционные повороты мышления непременно встречали серьезное сопротивление. Зигмунд Фрейд (1856–1939) распространял мнение, согласно которому Коперник вызвал особенное отторжение, потому что вывел человечество из его исключительного положения в центре вселенной. На самом деле удар, нанесенный галилеевым открытием пятен на Солнце, был гораздо сильнее. Было нечто ужасное в несовершенстве Солнца, как будто недостатки человеческого лица перенеслись на всемогущий диск в небе, многократно увеличенные. До Галилея Солнце было безупречной, идеальной сферой. И вдруг в одночасье оно стало грязным, испещренным пятнами.
С появлением телескопа человеку XVII века пришлось заново выстраивать мир, уже не путем интерпретации воображаемого – солнечных богов, небесных колесниц, пожирающих солнечный диск драконов, – а путем постоянной квалификации и фильтрации наблюдаемых данных. И вероятно, мысль о том, что великая звезда пусть и центр солнечной системы, но лишь малая часть Божьего замысла, да и та в пятнах, переворачивала все мировоззрение.
Глава 10
Диковинные моря мыслей
Не знаю, чем я могу казаться миру, но сам себе я кажусь только мальчиком, играющим на морском берегу, развлекающимся тем, что до поры до времени отыскиваю камешек, более цветистый, чем обыкновенно, или красивую раковину, в то время как великий океан истины расстилается передо мной неисследованный[268].
Исаак Ньютон
Когда созрело яблоко и падает – отчего оно падает? Оттого ли, что тяготеет к земле, оттого ли, что засыхает стержень, оттого ли, что сушится солнцем, что тяжелеет, что ветер трясет его, оттого ли, что стоящему внизу мальчику хочется съесть его?
Лев Толстой, “Война и мир”
“Я должен умереть, – писал нелюдимый и одинокий школьник Исаак Ньютон (1643–1727) в своем учебнике латинских упражнений, – я могу только рыдать и не знаю, что мне делать”. Главный биограф описывает его как “измученного человека… крайне невротичного, вечно колеблющегося, как минимум до достижения среднего возраста, на грани нервного срыва”[269]. За всю жизнь он так и не женился; как шутил персонаж в “Аркадии” Тома Стоппарда, секс был “притяжением, которое Ньютон сбросил со счетов”. Трудно представить себе его и наслаждающимся галилеевым определением вина как “света, собранного влагой”. У него не было слуха, скульптуры он называл “каменными куклами”, а поэзию – “гениальной бессмыслицей”[270]. Но после смерти сэр Исаак Ньютон был признан крупнейшим гением своего времени. Знаменитый во всем западном мире, он тридцать лет пробыл председателем Королевского общества (величайшая научная институция мира, основанная во времена физика-любителя Карла II), дважды был членом Парламента, удивительным образом он также оказался энергичным и квалифицированным управляющим Монетного двора, когда вступил на эту должность и отвечал за чеканку монет во всей Англии. Местом его последнего упокоения стало Вестминстерское аббатство, там воздвигнут мраморный монумент 25 футов высотой, где над полулежащей статуей Ньютона висит небесный глобус. Рядом херувимы взвешивают Солнце и планеты, латинская надпись гласит: “Пусть смертные радуются, что существовало такое украшение рода человеческого”. Никто во всей истории человечества не понимал “что делать” лучше него.
Еще не достигнув двадцати четырех лет, Ньютон начал формулировать принципы тяготения – основы современной предсказательной астрономии – и доказывать, что объекты на Земле и в небе движутся согласно одним и тем же законам. К этому возрасту он уже сделал важнейшие открытия о природе оптики, о свойствах цвета и света и собирался разрабатывать законы охлаждения, формулировать принципы сохранения момента, изучать скорость звука в воздухе, строить теорию происхождения Солнца. Он первым объяснил природу приливов, изложил новые идеи о конструировании телескопов и выступил одним из создателей математического анализа – дисциплины, без которой наука в ХХ веке не сделала бы ни шагу. “Не стоит заблуждаться, – сказал Эйнштейн в 1919 году, когда его теория относительности принесла ему мировую славу, – и полагать, что сильнейшая работа Ньютона может быть упразднена той или иной новой теорией. Его великие и яркие идеи сохранят свое уникальное значение навечно”[271].
Исаак Ньютон родился на Рождество в семье фермера в деревеньке Вулсторп на восточном побережье, в графстве Линкольншир. Ранняя смерть отца и скорое повторное замужество матери оставили ребенка на попечении бабушки – не редкость в те дни, но и не слишком плодотворно в плане воспитания. Мальчиком Ньютон мастерил солнечные и обычные часы и всегда точно определял время по Солнцу. В июне 1661-го он уже учился в Тринити-колледже – тогда, как и сейчас, самом знаменитом и большом колледже Кембриджского университета.
Аристотель и прочие великие греческие философы все еще служили поддержкой царящей ортодоксии, но ростки радикальных инноваций уже возникали в лице Рене Декарта (1596–1650), который хоть и сохранял свои исследования в тайне из боязни смертоносной немилости церкви, но в 1644 году опубликовал “Начала философии”. В этом сочинении он, в частности, утверждал, что Солнце – лишь одна из множества звезд, каждая из которых находится в центре собственной “воронки”. У Ньютона такая вселенная вызывала массу вопросов. Почему любой объект всегда стремится упасть как можно ниже? Или почему он двигается в определенном направлении? Галилей рассмотрел, что лунные горы и ущелья похожи на земные, но если они сделаны из того же вещества, что и наша планета, то что удерживает Луну в небе? Почему она кружит вокруг Земли, вместо того чтобы устремиться вниз или, напротив, улететь прочь? Личный физик королевы Елизаветы Уильям Гилберт мог сделать невольную подсказку, когда в работе De Magnete (1600) предположил, что Земля обнаруживает то, что мы сегодня называем “биполярным магнитным полем”, т. е. что ее полюсы заряжены и превращают ее в “большой магнит”. Но что такое магнит?
Сэр Исаак Ньютон (1643–1727) (Science Source / Photo Researchers, Inc.)
Над этими головоломками Ньютон размышлял в своей комнате, расположенной между Главными воротами Тринити-колледжа и часовней. Но во время суровой зимы 1665 года в Англию с континента пришла чума, распространяясь от прихода к приходу, убивая тысячи людей еженедельно. Менее чем за год погиб каждый шестой лондонец. Кембридж не остался в стороне – шестнадцать колледжей были закрыты (каждый был небольшой общиной, даже к XIX веку весь университет насчитывал всего четыре сотни студентов), а Ньютону пришлось вернуться в каменный фермерский дом своей бабки. Его изоляция продлилась около девятнадцати месяцев, в течение которых он успешно создал современную математику, механику и оптику. Как вспоминал сам Ньютон, “я был в самом расцвете сил и занимался математикой и философией больше, чем когда-либо потом”[272].
Его научную проницательность можно обнаружить в ответах, которые он нашел на два солнечных вопроса – какова масса Солнца по сравнению с Землей и какова его относительная плотность. Ньютон подсчитал, что Солнце в 28 700 раз массивнее Земли (сильно заниженная оценка, но ближе не подходил никто), а его плотность составляет примерно 0,25 от земной (отличается от современной оценки на 2 %). Сила тяжести, впрочем, оказалась более крепким орешком: пройдет почти двадцать лет, прежде чем Ньютон публично выдвинет свою теорию, и к тому времени он уже частично воспользуется чужими идеями. Около 1639 года астроном Джереми Хоррокс (1617–1641), тоже учившийся в Кембридже, предположил, что на движение Луны, обусловленное Солнцем, воздействует и некоторая сила, исходящая от Земли. Вслед за этим члены Королевского общества Роберт Гук (1635–1703), Эдмунд Галлей (1656–1742) и сэр Кристофер Рен (1632–1723), а также французский священник Исмаэль Буйо (1605–1694) предположили, что эта сила стремительно уменьшается по мере удаления объекта от центра Земли. Но именно Ньютон распознал действие общего закона и первым продемонстрировал, как он работает.
Ученый заключил, что тело на поверхности Земли удерживается силой примерно в триста пятьдесят раз большей, чем центробежная сила, отталкивающая его от Земли из-за ее вращения, – эту силу он назвал “гравитацией” (лат. gravitas – тяжесть). Вопрос был не в том, существует ли эта сила – Галилей показал, что существует, – а в том, простирается ли она столь далеко от Земли, чтобы оказаться силой, которая удерживает Луну на ее орбите. По расчетам Ньютона, если взаимное притяжение было пропорционально массам тел и уменьшалось пропорционально квадрату расстояния между ними, то оно объясняло не только орбитальное вращение Луны, но и формирование орбит всех прочих планет – отсюда и его термин “всемирное тяготение”. Этой же формулой он описал расположение планет и звезд, а также причину предварения равноденствий, объяснил отливы и приливы. Даже сегодня грандиозный масштаб этого рассуждения ставит его в первые ряды среди достижений человеческого разума; но, произведя все расчеты, Ньютон отложил их в сторону.
Много лет спустя он расскажет как минимум четырем разным людям, что его вдохновило яблоко в собственном саду. Что, если сила, заставляющая плод падать с дерева, не ограничивается каким-то расстоянием, а распространяется от Земли дальше и дальше? Ньютон никогда не писал о каких-то вспышках прозрения, только “я начал думать о тяготении, простирающемся до орбиты Луны” как о силе, действие которой всегда направлено от центра Земли[273].
Через неполных два года Кембридж вновь открылся, и Ньютон, вернувшись, сразу сделал несколько важных открытий о природе света. Платон думал о зрении как о результате действия частиц, вылетающих из глаз смотрящего; но где находилась суть света, внутри или снаружи наблюдателя? Аристотель понимал, что свет был необходимым условием существования цвета, а Птолемей экспериментировал с углами преломления – но откуда брался цвет, не был ли он даром Солнца?
На этот раз вдохновение приняло форму не яблока, а орнамента. В нескольких милях от города на берегу реки Кэм располагалась деревня Стербридж Коммон, где каждый год проводилась большая ярмарка. На ярмарке у местного шлифовальщика линз Ньютон приобрел призму, простой треугольный брусок стекла, по форме напоминающий нынешнюю шоколадку “Тоблерон”. Вернувшись домой, он установил призму – когда луч Солнца падал на нее, возникали разные цвета. Меняет ли стекло свет или же солнечный свет содержит разные цвета, которые призма лишь разделяет? Ньютон знал, что телескоп производит радужный эффект вокруг любого объекта наблюдения, потому что край линзы является призмой. Но ему казалось неубедительным объяснять это тем, что белый свет по мере прохождения через линзу темнел в тонких местах и становился красным и еще больше темнел в толстых местах, становясь синим. Ньютон поставил эксперимент, в котором тонкий солнечный луч падал на призму, что делало разделение света еще более четким. Ньютон писал: “Поначалу это было очень приятным развлечением – наблюдать производимые таким образом живые и интенсивные цвета; но немного спустя, занявшись более тщательным их рассмотрением, я с удивлением обнаружил у них продолговатую форму, каковая, согласно признанному закону рефракции, должна быть круговой. Я также заметил… что свет с одного края изображения подвергается воздействию рефракции сравнительно сильнее, чем свет с другого края”[274].
Разные цвета преломлялись разным образом и в порядке радуги – призма отклоняла их по разным направлениям, что значило, что солнечный луч может разлагаться на составляющие. Ньютон идентифицировал красный, оранжевый, желтый, зеленый, синий, голубой и фиолетовый цвета. Голубой не является отдельным цветом, как и оранжевый, но Ньютон пал жертвой нумерологии и руководствовался в своих наблюдениях магической цифрой семь[275].