Доменикино

Доменики'но(Domenichino; собственно Доменико Цампьери, Domenico Zampieri) (21.10.1581, Болонья, - 6.4.1641, Неаполь), итальянский живописец-академист, представитель болонской школы . Учился в Болонье у Л. Карраччи. С 1602 работал главным образом в Риме, где сотрудничал с Аннибале Карраччи. Работам Д. (фрески в церквах Сан-Луиджи деи Франчези, 1616-17, и Сант-Андреа делла Валле, 1624-28, в Риме; картины - «Последнее причастие св. Иеронима», 1614, Ватиканская пинакотека; «Охота Дианы», 1617-18) свойственны упорядоченная композиция, чёткий идеализированный рисунок, пёстрый локальный колорит.

Доменикино. «Охота Дианы». 1617-18. Галерея Боргезе. Рим.

Доменико Венециано

Доме'нико Венециа'но(Domenico Veneziano) (р. до 1410, Венеция, - похоронен 15.5.1461, Флоренция), итальянский живописец. Примерно с 1439 работал во Флоренции. Вначале испытал влияние позднеготической живописи, позже стал представителем флорентийского искусства Раннего Возрождения. В «Алтаре св. Лучии» (около 1445-48, Галерея Уффици, Флоренция) показал себя мастером перспективы и пластичного построения фигур. В отличие от др. художников Флоренции, Д. В. питал активный интерес к колористическим задачам, используя цвет для выражения эмоциональных оттенков; серебристый тон в картинах Д. В. («Благовещение», Музей Фицуильяма, Кембридж) объединяет цветовую гамму, создаёт ощущение света и воздуха. Достижения Д. В. были развиты его учеником Пьеро делла Франческа .

  Лит.:Вodmer Н., Domenico Veneziano, Z., 1950.

Доменико Венециано. «Мученичество св. Лучии». Фрагмент пределлы «Алтаря св. Лучии». Около 1445-48. Картинная галерея. Берлин-Далем.

Доменная печь

До'менная печь,см. в ст. Доменное производство .

Доменное производство

До'менное произво'дство,производство чугуна восстановительной плавкой железных руд или окускованных железорудных концентратов в доменных печах. Д. п. - отрасль чёрной металлургии .

  Историческая справка.Чугун был известен за 4-6 вв. до н. э. Д. п. возникло в результате развития сыродутного процесса - «прямого» получения железа в твёрдом состоянии непосредственно из железной руды путём восстановления её в низких горнах или шахтных печах (домницах) с помощью древесного угля. Первые доменные печи в Европе появились в середине 14 в., а в России - около 1630, вблизи Тулы и Каширы. На Урале первый чугун получен в 1701, а в середине 18 в. благодаря развитию уральской металлургии Россия вышла на 1-е место в мире, которое удерживала до начала 19 в. До середины 18 в. единственное топливо в Д. п. - древесный уголь. В 1735 А. Дерби применил в доменной плавке каменно-угольный кокс.

  Основные этапы развития Д. п.: применение паровой воздуходувной машины (И. И. Ползунов , 1766), нагрев дутья (Дж. Нилсон , 1829), изобретение кирпичного воздухонагревателя регенеративного типа (Э. Каупер , 1857). В 1913 в России было выплавлено 4,2 млн. тчугуна и она занимала 5-е место в мире. В 1940 в СССР было выплавлено 15 млн. тчугуна (3-е место в мире), а с 1947 Советский Союз уступал только США. В 1970 СССР вышел на 1-е место в мире. Выплавка чугуна в СССР в 1971 составила 89,3 млн. т. Большую роль в развитии Д. п. в СССР сыграли М. А. Павлов , М. К. Курако , И. П. Бардин . Д. п. в СССР характеризуется применением высокомеханизированных и автоматизированных агрегатов и передовой технологии.

  Исходными материалами(шихтой) в Д. п. являются: железная руда , марганцевая руда , агломерат , окатыши , а также горючее и флюсы . Широкое применение в шихте доменных печей СССР получил офлюсованный агломерат (свыше 90%), который содержит 50-60% Fe при основности 1,1-1,3; расширяется применение офлюсованных окатышей. Важнейшие свойства железосодержащих шихтовых материалов, определяющие технико-экономические показатели доменной плавки: содержание железа, состав пустой породы, количество вредных примесей, а также гранулометрический состав, прочность и восстановимость. Основным горючим в Д. п. служит каменноугольный кокс . Получает распространение плавка с заменой части кокса газообразным, жидким или твёрдым топливом, вдуваемым в горн доменной печи. В качестве флюсов используется известняк, иногда доломит.

  Основные виды чугуна,выплавляемого в доменных печах: передельный чугун, используемый для производства стали в сталеплавильных агрегатах; литейный, идущий для чугунных отливок; специальные чугуны. Побочные продукты Д. п.: доменный газ [теплота сгорания 3,6-4,6 Мдж/м 3(850-1100 ккал/м 3)] после очистки от пыли используется для нагрева дутья в воздухонагревателях, а также в заводских котельных установках, коксохимических, агломерационных и некоторых др. цехах; доменный шлак находит применение главным образом в промышленности строительных материалов; колошниковая пыль, выносимая из печи и улавливаемая системой газоочистки, содержащая 30-50% Fe, возвращается в шихту доменных печей после её предварительного окускования (главным образом путём агломерации ).

  Доменный цех( рис. 1 ) завода с полным металлургическим циклом имеет, как правило, не менее 3 доменных печей с воздухонагревателями и системой газоочистки. Запас шихты (кокса на 6-12 ч, агломерата или руды, а также флюсов на 1-2 суток работы печей) хранится в бункерах эстакады (общей для всех доменных печей). На многих металлургических заводах в состав доменного цеха входит так называемый рудный двор, где хранится основной запас железных руд, укладываемых в штабеля рудными перегружателями. Формирование штабеля и забор из него материалов производятся с учётом усреднения руд. В доменном цехе имеются также машины для разливки чугуна.

  Доменная печь ( рис. 2 ) представляет собой шахтную печь круглого сечения; футерована огнеупорной кладкой (верхняя часть шамотным кирпичом, нижняя - преимущественно углеродистыми блоками). Для предотвращения разгара кладки и защиты кожуха печи от высоких температур используют холодильники, в которых циркулирует вода. Кожух печи и колошниковое устройство поддерживаются колоннами, установленными на фундаменте.

  Шихта подаётся на колошник печи скипами, реже ленточными конвейерами. Скипы разгружаются в печь через приёмную воронку и засыпной аппарат , установленный на колошнике. Воздух (дутьё) от воздуходувных машин подаётся в печь через воздухонагреватели (в которых нагревается до 1000-1200°С) и фурменные приборы, установленные по окружности горна . Через фурмы вводится также дополнительное топливо (природный газ, мазут или угольная пыль).

  Продукты плавки выпускаются в чугуновозные и шлаковые ковши через лётки, расположенные в нижней части горна. Образующийся в печи колошниковый газ отводится через газоотводы, расположенные в куполе печи ( рис. 3 ).

  Расстояние между осью чугунной лётки и нижней кромкой большого загрузочного конуса в опущенном состоянии называется полезной высотой доменной печи, а соответствующий объём - полезным объёмом доменной печи. Мощные доменные печи в СССР имеют полезный объём 2000-3000 м 3и являются одними из крупнейших в мире. Директивы по 9-му пятилетнему плану предусматривают строительство доменных печей объёмом 5000 м 3.

  Основные химические процессыв доменной печи - горение топлива и восстановление Fe, Si, Mn и др. элементов. Часть кокса расходуется на процессы восстановления, но основное количество опускается в горн и сгорает вместе с вдуваемым топливом у фурм. Газы с t1600-2300°С, содержащие 35-45% CO, 1-12% H 2и 45-65% N 2, поднимаясь по печи, нагревают опускающуюся шихту, при этом CO и H 2частично окисляются до CO 2и H 2O. Газы, выходящие из печи, имеют t150-300°С.

  Горение у фурм. У фурм доменной печи возникают очаги горения, называемые окислительными зонами, в которых вихревое движение газов приводит к циркуляции кусков кокса. Горение кокса развивается на поверхности контакта твёрдой и газообразной фаз. При этом кислород соединяется с углеродом в сложные комплексы С хО у, которые затем распадаются. В упрощённом виде суммарный процесс горения углерода твёрдого топлива у фурм сводится к экзотермической реакции 2C + O 2= 2CO. При вдувании природного газа или мазута, в которых главной составляющей являются углеводороды (например, метан), протекает реакция с выделением CO и H 2; при этом поглощается значительная часть тепла, выделяемого при сжигании С, а следовательно, понижается температура горения у фурм. Во избежание этого необходимо повышать температуру дутья и обогащать его кислородом. Положительное влияние вдувания углеводородных топлив - в повышении концентрации водорода в газе и улучшении благодаря этому его восстановительной способности.

  Восстановление железа и др. элементов. В доменной печи Cu, As, Р, подобно Fe, восстанавливаясь, почти полностью переходят в чугун. Полностью восстанавливается и Zn, который затем возгоняется, переходит в газы и отлагается в порах кладки, вызывая её разрушение. Те элементы, которые образуют более прочные соединения с кислородом, чем Fe, восстанавливаются частично или совсем не восстанавливаются: V восстанавливается на 75-90%, Mn на 40-75%, Si и Ti в небольших количествах, Al, Mg и Ca не восстанавливаются.

  Восстановление поступающих в доменную печь окислов Fe 2O 3и Fe 3O 4происходит путём последовательного отщепления кислорода по реакциям:

  3Fe 2O 3+ CO (H 2) = 2Fe 3O 4+ CO 2(H 2O),

  Fe 3O 4+ CO (H 2) = 3FeO + CO 2(H 2O).

  Закись железа FeO восстанавливается до Fe газами (косвенное восстановление) и углеродом (прямое восстановление).

  FeO + CO (H 2) = Fe + CO 2(H 2O),

  FeO + C = Fe + CO.

  Высшие окислы марганца MnO 2, Mn 2O 3и Mn 3O 4восстанавливаются газами с выделением тепла. В дальнейшем MnO восстанавливается до Mn только углеродом с затратой тепла примерно в 2 раза большей, чем при восстановлении Fe. Si также восстанавливается только С при высоких температурах по эндотермической реакции:

  SiO 2+ 2C + Fe = FeSi + 2CO.

  Степень восстановления Si и Mn зависит в основном от расхода кокса; на каждый процент повышения содержания Si в чугуне расход кокса увеличивается на 5-7%, что увеличивает количество горячих газов в печи, вызывая перегрев шахты. Обогащение дутья кислородом, обеспечивая высокий нагрев горна, уменьшает количество образующихся газов, а следовательно, и температуру в шахте печи.

  Сера в доменном процессе. S вносится в доменную печь в основном коксом и переходит в газы в виде паров (SO 2, H 2S и др.), но большая часть остаётся в шихте (в виде FeS и CaS); при этом FeS растворяется в чугуне. Для удаления S из чугуна необходимо перевести её в соединения, нерастворимые в чугуне, например в CaS:

  FeS + CaO = CaS + FeO.

Это достигается образованием в доменной печи жидкоподвижных шлаков с повышенным содержанием СаО. Восстановительная среда благоприятно влияет на этот процесс, т.к. снижает содержание FeO в шлаке. Степень обессеривания достаточно высока, и только в некоторых случаях чугун дополнительно обессеривается вне доменной печи различными реагентами.

  Образование чугуна и шлака. Восстановленное в доменной печи Fe частично науглероживается в твёрдом, а затем в жидком состояниях. Содержание C в чугуне зависит от температуры чугуна и его состава. Шлак состоит из невосстановившихся окислов SiO 2, AI 2O 3и СаО (90-95%), MgO (2-10%), FeO (0,1-0,4%), MnO (0,3-3%), а также 1,5-2,5% S (главным образом в виде CaS). Для характеристики шлаков пользуются обычно показателем основности CaO/SiO 2или (СаО + MgO)/SiO 2. Основность CaO/SiO 2для разных условий плавки колеблется в пределах 0,95-1,35%. При выплавке чугуна на коксе с повышенным содержанием S (донецкий кокс) работают на шлаках с верхним пределом основности и стремятся обеспечить содержание MgO в шлаке 6-8% и более, улучшая его жидкоподвижность.

  Работа доменной печиначинается с её задувки. При этом горн и заплечики загружаются коксом, а шахта - так называемой задувочной шихтой. В полностью загруженную печь подаётся нагретое дутьё (уменьшенное количество), кокс воспламеняется, и начинается опускание материалов. Первый выпуск чугуна и шлака производится через 12-24 ч, после чего количество дутья и рудная нагрузка (отношение массы руды к массе кокса в подаче) постепенно увеличиваются, и через несколько дней после задувки доменная печь достигает нормальной производительности.

  Непрерывная работа (кампания) доменной печи от задувки до выдувки (остановки на капитальный ремонт) продолжается 5-6, а в некоторых случаях 8-10 лет и более, в течение которых печь 1-2 раза останавливается на так называемый средний ремонт для замены изношенной кладки шахты. Выплавка чугуна на мощных печах за одну кампанию достигает 5-8 млн. тчугуна и более.

  Управление работой (ходом) доменной печи заключается в регулировании (в соответствии с качеством сырых материалов и видом выплавляемого чугуна) состава шихты, количества, температуры и влажности дутья, а также величины подачи или последовательности загрузки отдельных компонентов шихты и уровня засыпи. Ход доменной печи контролируется измерительными приборами, регистрирующими основные параметры загрузки, дутья, колошникового газа, температуру кладки печи на разных горизонтах.

  Получили распространение плавка с вдуванием дополнительных видов топлива, обогащением дутья кислородом и работа с повышенным давлением колошниковых газов. При повышении давления на колошнике уменьшается перепад давлений между низом и верхом доменной печи; это обусловливает более ровный сход шихты, улучшает восстановительную работу газов, уменьшает вынос пыли.

  Д. п. характеризуется высокой степенью автоматизации. На современной доменной печи автоматически осуществляются все операции шихтоподачи: набор компонентов шихты с отсевом мелочи, взвешивание, транспортировка на колошник и загрузка в печь по заданной программе. Автоматически поддерживаются оптимальный уровень засыпи и распределение шихтовых материалов на колошнике, давление колошникового газа, расход воды на охлаждение, температура и влажность дутья, а также содержание в нём кислорода и расход природного газа. Автоматизировано переключение воздухонагревателей и управление режимом их нагрева. Автоматические анализаторы обеспечивают непрерывную регистрацию состава колошникового газа и дутья. Внедряются системы автоматического регулирования подачи дутья и природного газа как по общему расходу, так и по отдельным фурмам.

  Новые доменные печи оснащаются системами централизованного контроля и управления, которые обеспечивают усреднение показателей приборов и подсчёт комплексных показателей работы печи. Ведутся работы по комплексной автоматизации Д. п., в том числе управления тепловым режимом доменной печи с помощью ЭВМ.

  Показатели работы доменной печи зависят главным образом от качества сырых материалов и степени подготовки их к плавке. Основные показатели: суточная производительность доменной печи в ти расход кокса на 1 тчугуна. В СССР производительность доменных печей иногда характеризуется коэффициентом использования полезного объёма (кипо), т. е. отношением полезного объёма в м 3к суточной выплавке передельного чугуна в т. Производительность доменной печи объёмом 3000 м 3- 7000 тчугуна в сутки. В 1970 средний кипо составил 0,597 (в некоторых случаях 0,43-0,45). Расход кокса на единицу выплавляемого чугуна имеет большое экономическое значение вследствие высокой стоимости кокса. Применение дополнительного топлива позволяет уменьшить расход кокса на 8-20% и снизить благодаря этому себестоимость чугуна. В СССР при выплавке передельного чугуна из хорошо подготовленной богатой железом шихты расход кокса 550-600 кг/т, а на некоторых заводах - не более 450-500 кг/т.

  Совершенствование Д. п. направлено на улучшение подготовки сырых материалов к плавке, увеличение мощности (объёма) доменных печей, внедрение прогрессивной технологии, автоматического управления ходом доменной печи.

  Лит.:Сборник трудов по теории доменной плавки, сост. М. А. Павлов, т. 1, М., 1957; Леонидов Н. К., Усовершенствование конструкций доменных печей, М., 1961; Доменный процесс по новейшим исследованиям. [Сб. ст.]. К 100-летию со дня рождения акад. М. А. Павлова, М., 1963; Доменное производство. Справочник, под ред. И. П. Бардина, т. 1-2, М., 1963; Готлиб А. Д., Доменный процесс, 2 изд., М., 1966.

  В. Г. Воскобойников, А. Г. Михалевич.

Рис. 2. Доменная печь: 1 - защитные сегменты колошника; 2 - большой конус; 3 - приёмная воронка; 4 - малый конус; 5 - распределитель шихты; 6 - воронка большого конуса; 7 - наклонный мост; 8 - скип; 9 - воздушная фурма; 10 - чугунная лётка; 11 - шлаковая лётка.

Рис. 1. Современный доменный цех: 1 - доменная печь; 2 - чугунная лётка; 3 - чугуновозы; 4 - газоотводы; 5 - литейные дворы; 6 - воздухонагреватели; 7 - дымовая труба; 8 - воздухопроводы холодного и горячего дутья; 9 - пункт управления; 10 - пылеуловитель; 11 - аппараты тонкой газоочистки; 12 - скиповой подъёмник; 13 - бункерная эстакада; 14 - газопроводы грязного и чистого газа; 15 - лифт; 16 - агломерационная фабрика.

Рис. 3. Работа доменной печи.

Доменный газ

До'менный газ,колошниковый газ, отходящий газ доменных печей, представляющий собой продукт главным образом неполного сгорания углерода. Химический состав (при выплавке чугуна на каменноугольном коксе): 12-20% углекислого газа, 20-30% окиси углерода, до 0,5% метана, 1-4% водорода, 55-58% азота. Используется на металлургических заводах как топливо. Теплота сгорания Д. г. примерно 3,6-4,6 Мдж/м 3(850-1100 ккал/м 3). При обогащении дутья кислородом содержание азота в газе снижается и соответственно этому возрастает количество др. газов (в том числе окиси углерода и водорода), а также теплота сгорания.

Домены

Доме'ны,1) ферромагнитные Д. (области самопроизвольной намагниченности) - намагниченные до насыщения части объёма ферромагнетика (обычно имеющие линейные размеры ~10 -3-10 -2 см), на которые он разбивается ниже температуры Кюри (см. Кюри точка ). Векторы намагниченности Д. в отсутствие внешнего магнитного поля ориентированы т. о., что результирующая намагниченность ферромагнитного образца в целом, как правило, равна нулю. Д. доступны непосредственному наблюдению (с помощью микроскопа): при покрытии поверхности ферромагнетика слоем суспензии , содержащей ферромагнитный порошок, частицы порошка оседают в основном на границах Д. и обрисовывают их контуры. Широко применяют и др. методы исследования доме'нной структуры, в частности магнитооптический, обладающий большей разрешающей способностью (см. Керра эффект , Фарадея эффект ). Разбиение ферромагнетика на Д. объясняется следующими причинами. Если бы весь ферромагнетик был намагничен до насыщения в одном направлении, то на его поверхности возникли бы магнитные полюсы и в окружающем пространстве было бы создано магнитное поле. Для этого требуется больше энергии, чем при разбиении ферромагнетика на Д., при котором магнитное поле вне образца отсутствует ( магнитный поток замыкается внутри образца). При неизменном объёме и постоянной температуре в ферромагнетике реализуются лишь такие доменные структуры, для которых свободная энергия минимальна.

  Направление векторов намагниченности Д. обычно совпадает с направлением осей лёгкого намагничивания . В этом случае для ферромагнетика выполняется условие минимума энергии магнитной анизотропии . При уменьшении размеров ферромагнетика до некоторой критической величины разбиение на Д. может стать энергетически невыгодным, образуется так называемая однодоме'нная структура: каждая ферромагнитная частица представляет собой один Д. На практике это реализуется в ферромагнитных порошковых материалах и ряде гетерогенных сплавов (см. Магнитные материалы ).

  А. В. Ведяев, В. Е. Роде.

  2) Сегнетоэлектрические Д. - области однородной спонтанной (самопроизвольной) поляризации в сегнетоэлектриках. Наличие поляризации в отсутствие внешнего электрического поля (спонтанной поляризации) является отличительной особенностью сегнетоэлектриков. Однако обычно сегнетоэлектрические кристаллы не бывают однородно поляризованными. Они почти всегда разбиваются на Д., т.к. многодоме'нное состояние по сравнению с однодоме'нным характеризуется меньшей энергией (см. Сегнетоэлектрики ).

  В соседних Д. направление вектора спонтанной поляризации различно, а величина - одинакова ( рис. 1 ). Поперечные размеры Д. обычно порядка 10 -5-10 -3 см. Переходная область между Д. (доме'нная граница, или стенка) имеет ширину ~10 -7 см(иногда до 10 -5 см). Доме'нная конфигурация зависит от размеров и формы образца, наличия неоднородностей и дефектов в кристалле и т.п., а также от симметрии кристалла , которая определяет число возможных направлений спонтанной поляризации. Например, у сегнетовой соли - 2 возможных антипараллельных направления, у титаната бария BaTiO 3(тетрагональной модификации) - 6 направлений ( рис. 2 ).

  Наличие Д. существенно влияет на все свойства сегнетоэлектриков, прежде всего на их электрические свойства. Под действием электрического поля увеличиваются размеры Д. с поляризацией, направленной по полю, и уменьшаются Д. с противоположной поляризацией (за счёт движения доме'нных стенок). Могут также зарождаться и расти новые Д. Изменение и образование новых Д. определяют высокую диэлектрическую проницаемость, а также вид и размеры петли гистерезиса в сегнетоэлектриках. Движение доме'нных границ обусловливает основную часть диэлектрических потерь .

  Д. наблюдаются и исследуются различными методами. Наиболее важные сведения о строении Д. были получены оптическими методами с помощью поляризационного микроскопа . В поляризованном свете одни Д. выглядят светлее, другие - темнее ( рис. 3 ). Д. на поверхности кристалла можно наблюдать методом травления и методом порошков. В первом случае используется различная скорость травления, а во втором - разная интенсивность осаждения частиц порошка в местах выхода на поверхность кристалла Д. с различной поляризацией ( рис. 4 ).

  3) Д. называются также области полупроводника с разным удельным сопротивлением и разной напряжённостью электрического поля. На такие Д. расслаивается полупроводник с N-образной вольтамперной характеристикой в достаточно сильном внешнем электрическом поле (см. Ганна эффект ).

  А. П. Леванюк, Д. Г. Санников.

  Лит.:Вонсовский С. В., Магнетизм, М., 1971; Киренский Л. В., Магнетизм, 2 изд., М., 1967; Иона Ф., Ширане Д., Сегнетоэлектрические кристаллы, пер. с англ., М., 1965; Желудев И. С., Физика кристаллических диэлектриков, М., 1968; его же, Электрические кристаллы, М., 1969.

Рис. 5. Доме'нная структура кристалла триглицинсульфата (ТГС), выявленная методом травления. Домены имеют форму стержней.

Рис. 2. Изменение поляризации при переходе через доме'нную границу.

Рис. 4. Домены в сегнетовой соли в поляризованном свете.

Рис. 3. Схематическое изображение доменов и их поляризации в тетрагональной модификации BaTiO 3; знаки A и  показывают, что поляризация перпендикулярна плоскости, на которой знак изображен, и направлена так, как показывают стрелки на плоскостях.

Домерский ярус

Доме'рский я'рус[по названию горы Домеро (Domero) в Ломбардских Альпах], 5-й снизу ярус юрской системы, относящийся к нижнему её отделу (лейасу). Выделен итальянским геологом Г. Бонарелли в 1894. В типовом местонахождении сложен известняками с кремнями и чёрными сланцами с многочисленными аммонитами. В Западной Европе подразделяется на зоны Amalthens margaritatus и Pleuroceras spinatum. Часто рассматривается как верхний подъярус плинсбахского яруса .

Доместикация

Доместика'ция(от лат. domesticus - домашний), все виды приручения, одомашнивания животных, сопровождающиеся возникновением и развитием у них новых признаков.

Доминанта (в архитектуре)

Домина'нтав архитектуре, господствующий элемент в композиции ансамбля . Д. обычно бывает высокое здание (например, главный корпус МГУ на Ленинских горах в Москве) или вертикальная часть одного из зданий (например, башня и шпиль Адмиралтейства в Ленинграде). Возвышаясь над окружающей застройкой, Д. отмечает важный узел пространственного построения ансамбля.