повиликой . Почти все В. б. р. легко передаются потомству при вегетативном размножении, прививках.

  Вирусы зимуют в растениях, в их отмерших остатках, в переносчиках, в посевном и посадочном материале. На скорость размножения вирусов в растительных тканях и на проявление симптомов болезни большое влияние оказывают возраст растений (наиболее восприимчивы молодые растения), условия их питания и другие факторы внешней среды.

  Меры борьбы: использование иммунных сортов; регулирование сроков сева и уборки [например, в южных областях ранние сорта картофеля при ранней посадке и ранней (в июле) уборке наименее поражаются вирусами]; прочистка семенных участков от больных растений; борьба с переносчиками и сорняками, прогревание окулировочного материала, другие специальные мероприятия.

  Лит.:Рыжков В. Л., Фитопатогенные вирусы, М. - Л., 1946; Боуден Ф., Вирусы и вирусные болезни растений, пер. с англ., М., 1952: Сухов К. С., Развязкина Г. М., Биология вируса и вирусные болезни растений, М., 1955; Смит К., Вирусные болезни растений, пер. с англ., М., 1960: Сухов К. С., Общая вирусология, М., 1965; Беленькая М. В., Баскина И. А., Дьякова И. В., Вирусные болезни растений. Библиография отечественной литературы за 1924-1966 гг., М., 1967; Рыжков В. Л., Проценко А. Е., Атлас вирусных болезней растений, М., 1968.

  К. С. Сухов.

Мозаика пшеницы: слева - здоровый лист, справа - больной лист.

Закукливание овса.

Желтуха свёклы.

Махровость чёрной смородины: а - здоровое соцветие и цветок, б - соцветие и цветок, поражённые махровостью.

Лист свёклы, поражённый мозаикой.

Скручивание листьев картофеля.

Закукливание кукурузы.

Морщинистая мозаика картофеля: слева - здоровый лист, справа - больной лист.

Скручивание листьев хлопчатника: слева - здоровый лист, справа - больной лист.

Вирусологическая техника

Вирусологи'ческая те'хника,совокупность методов исследования, аппаратуры и реактивов, обеспечивающая выращивание вирусов и изучение их свойств. До начала 1950-х гг. основным методом культивирования вирусов было заражение восприимчивых к ним животных, включая куриные эмбрионы. Введение метода однослойных культур клеток (тканей), а в последующем культур органов привело к открытию многих сотен ранее неизвестных вирусов, значительно облегчило получение их в чистом виде и изучение их физических, химических и биологических свойств. Для изучения структуры вирусов, их составных частей и внутриклеточного развития вирусов пользуются электронной микроскопией. Очистка вирусов обеспечивается разными методами - ультрацентрифугированием, адсорбцией на ионных обменниках, фильтрацией через молекулярные сита; эти же методы используются для получения нуклеиновых и белковых компонентов вирусов. С помощью физико-химических и химических методов определяют состав нуклеиновых кислот и белков вирусов. Вирусные белки также идентифицируют с помощью специфических к ним иммунных тел. Метка радиоактивными изотопами предшественников нуклеиновых кислот (нуклеотидов) и белков (аминокислот) используется для изучения биосинтеза составных частей вирусов и т.п.

  Лит.:Жданов В. М. и Гайдамович С. Я., Вирусология, М., 1966; Молекулярные основы биологии вирусов, М., 1966.

  В. М. Жданов.

Вирусологические исследования

Вирусологи'ческие иссле'дованияимеют целью обнаружение вирусов, их отождествление (идентификацию) и изучение биологических свойств. Для выделения вирусов от человека, животных и растений исследуемый материал вводят в организм чувствительных к вирусам экспериментальных животных и растений или заражают культуры клеток (тканей) и культуры органов. Наличие вируса доказывается характерным поражением экспериментальных животных (или растений), а в культурах тканей - поражением клеток, так называемым цитопатическим действием, которое распознаётся при микроскопическом или цитохимическом исследовании. При В. и. применяется «метод бляшек» - наблюдение дефектов клеточного слоя, вызванных разрушением или поражением клеток в очагах накопления вируса. Вирионы , имеющие характерное строение у разных вирусов, могут быть идентифицированы при электронной микроскопии. Дальнейшая идентификация вирусов основана на комплексном применении физических, химических и иммунологических методов. Так, вирусы различаются по чувствительности к эфиру, что связано с наличием или отсутствием в их оболочках липидов. Тип нуклеиновой кислоты вируса (РНК и ДНК) может быть определён химическими или цитохимическими методами. Для идентификации вирусных белков используются серологические реакции (см. Серология ) с сыворотками, полученными путём иммунизации животных соответственными вирусами. Эти реакции дают возможность распознавать не только виды вирусов, но и их разновидности. Серологические методы исследования позволяют по наличию антител в крови диагностировать вирусную инфекцию у человека и высших животных и изучать циркуляцию среди них вирусов. Для выявления латентных (скрытых) вирусов человека, животных, растений и бактерий применяют специальные методы исследования.

  Лит.:Шубладзе А. К. и Гайдамович С. Я., Краткий курс практической вирусологии, М., 1949; Жданов В. М. и Гайдамович С. Я., Вирусология, М., 1966.

  В. М. Жданов.

Вирусология

Вирусоло'гия(от вирусы и ...логия ), вирология, инфрамикробиология, наука о вирусах - субмикроскопических внутриклеточных паразитах; только в середины 20 в. выделилась в самостоятельную дисциплину. Первоначально В. человека, животных и бактерий развивалась в рамках микробиологии , а В. высших растений - как раздел фитопатологии . В. занимает важное место среди медико-биологических наук, так как вирусные болезни широко распространены у человека, животных и растений; кроме того, вирусы служат моделями, на которых изучаются основные проблемы генетики и молекулярной биологии. Первые монографии по вирусным болезням животных опубликованы М. Риверсом (Лондон, 1928), Н. Ф. Гамалеей (Москва, 1930), по вирусным болезням растений - В. Л. Рыжковым (Москва, 1933), К. Смитом (Лондон, 1933). Первая лаборатория (по вирусным болезням растений) организована в 1930 при Украинском институте защиты растений; в 1932 лаборатории по вирусным болезням человека появились в ряде институтов медицинской микробиологии. Институт вирусологии им. Д. И. Ивановского существует в Москве с 1946. Первая конференция по вирусным болезням растений состоялась в марте 1935 в Харькове, первая конференция по ультрамикробам, фильтрующимся вирусам и бактериофагу - в декабре того же года в Москве. В 1966 на 9-м Международном конгрессе по микробиологии впервые избран Международный комитет по номенклатуре вирусов; в 1968 состоялся 1-й Международный конгресс по В. в Хельсинки.

  В методическом отношении В. существенно отличается от микробиологии, так как вирусы не удаётся культивировать на искусственных питательных средах. Для опытов с вирусами приходится использовать чувствительных к ним животных и растения, куриные эмбрионы (1932) и изолированные ткани (с 1913 и особенно с 1925). Успехи В. зависели, прежде всего, от разработки удобного метода культивирования вирусов. Так, изучение вируса гриппа продвинулось вперёд, когда определили, что к этому вирусу чувствительны хорьки (1933) и белые мыши (1934). В изучении вирусов полиомиелита и кори, а также в создании предохранительных вакцин против этих болезней решающее значение имело культивирование вирусов в изолированных тканях обезьян и человека. Для количественного учёта вируса и динамики его размножения применяют различные методы титрования. Важнейшие из них основаны на том, что вирус, размножаясь в клетках, вызывает видимые простым глазом поражения. Бактериальные вирусы (бактериофаги) титруют по числу стерильных пятен (Ф. Д'Эрелль , 1917), вирусы растений - по числу некрозов на зараженном вирусом листе (Ф. Холмс, 1929), вирусы животных и человека - на однослойных культурах тканей (Р. Дульбекко, 1952). Впервые химическим путём был очищен У. Стэнли (1935) вирус мозаичной болезни табака. Создание ультрацентрифуг облегчило концентрацию вирусов и определение массы вирусных частиц. Так называемое градиентное, или фракционированное, центрифугирование в растворах сахарозы или солей металлов дало возможность «рассортировать» вирусные частицы, так как даже при незначительном различии их веса они распределяются слоями на разных уровнях раствора. Этот метод сыграл большую роль в изучении стадий размножения вирусов. Для изучения физиологических условий размножения вирусов предложен (В. Л. Рыжков, 1938) метод метаболитов и антиметаболитов, которым стали определять, как влияют на размножение вируса вещества, стимулирующие или подавляющие отдельные биохимические процессы. Применение изотопов (преимущественно радиоактивных) позволило проследить, из каких источников черпает вирус вещества для построения своего тела. Отдельные этапы размножения вируса изучают в бесклеточных препаратах, содержащих, кроме вируса, рибосомы , ферменты клетки и вещества, нужные для построения белков и нуклеиновых кислот. Электронная микроскопия (с 1938) позволила увидеть вирусные частицы, а возможность приготовлять ультратонкие срезы - изучать развитие вируса в тканях (1945).

  В. тесно связана с морфологией и физиологией клеток, так как для вирусов клетки являются средой обитания; с другой стороны, размеры вирусных частиц близки к размерам крупных молекул, и это даёт возможность изучать их методами, применяемыми к молекулам (рентгеноструктурный анализ и т.п.). Основные проблемы современной В. - это систематика вирусов и химиотерапия вирусных заболеваний, а также вопросы, связанные с генетикой и молекулярной биологией.

  Журналы по В.: «Вопросы вирусологии» (М., 1956-); «Archiv fьr die gesamte Virusforschung» (W., 1939-), «Virus» (Kyoto, 1951-); «Virology» (N. Y., 1955-); «Acta virologica» (Praha, 1957-); «Journal of General Virology» (L., 1967-); «Journal of Virology» (Baltimore, 1967-).

  Лит.:Рыжков В. Л., Краткий очерк истории изучения вирусов, «Тр. института истории естествознания и техники АН СССР», 1961, т. 36, в. 8; Актуальные вопросы вирусологии, М., 1965; Молекулярные основы биологии вирусов, М., 1966; Жданов В. М., Гайдамович С. Я., Вирусология, М., 1966: Рыжков В. Л., Вирусология, в сб.: Развитие биологии в СССР, М., 1967; Вирусные болезни растений. Библиография отечественной литературы за 1924-1966 гг., М., 1967.

  В. Л. Рыжков.

Вирусоскопия

Вирусоскопи'я(от вирусы и ...скопия ), метод микроскопического изучения строения вирусов. Частицы крупных вирусов (не менее 150 нм) и их скопления могут после соответственной обработки быть выявлены и в световом микроскопе, но В. проводится главным образом с помощью электронного микроскопа.

Вирусы

Ви'русы(от лат. Virus - яд), фильтрующиеся вирусы, ультравирусы, возбудители инфекционных болезней растений, животных и человека, размножающиеся только в живых клетках. В. мельче большинства известных микробов; почти все В. проходят через бактериальные фильтры . В отличие от бактерий, В. не удаётся культивировать на обычных питательных средах. Для экспериментальных и медицинских целей (получения вакцин и др.) В. культивируют в животных и растительных организмах, куриных эмбрионах и в культурах тканей и клеток. В. вызывают многие заболевания: оспу, корь, грипп, полиомиелит, чуму рогатого скота и птиц, бешенство, ряд заболеваний рыб и земноводных, желтуху шелкопряда, мозаичную болезнь табака, закукливание овса, многие заболевания грибов и сине-зелёных водорослей и др. (см. Вирусные болезни , Вирусные болезни растений ). Обширный отряд В., поражающих бактерии, составляют бактериофаги .

  Существование проходящих через бактериальные фильтры возбудителей инфекционных болезней было впервые показано в 1892 Д. И. Ивановским , открывшим фильтруемость возбудителя мозаичной болезни табака. Вскоре была доказана фильтруемость возбудителей ящура (1897), чумы рогатого скота (1899), оспы птиц (1902), бешенства (1903) и др. В современном смысле слово «В.» впервые применил М. Бейеринк (1899); раньше В. иногда называли и болезнетворных микробов, например возбудителя туберкулёза. По мере изучения В. всё более уточняется и суживается понятие о них. Возбудители ряда болезней, относимые ранее к В., например риккетсии и возбудители пситтакоза, исключены из этой группы организмов. Зрелые частицы В. - вирионы , или вироспоры, приспособлены к перенесению неблагоприятных условий вне организма и не обнаруживают на этой стадии никаких признаков жизни. Попав в организм, в чувствительные к В. клетки, вироспоры переходят в стадию развития и размножения, которая завершается образованием дочерних зрелых частиц В.

  Строение и состав частиц В. Форма вирионов очень разнообразна. У многих бактериофагов они состоят из головки и отростка, у В. оспы они прямоугольные, у В. герпеса и гриппа - шарообразные, у В. мозаичной болезни табака - палочкообразные, у В. мозаичной болезни картофеля - нитевидные, у В. полиомиелита и жёлтой мозаики турнепса - многогранные шарики, у В. бешенства, а также мозаики пшеницы и люцерны - очертаниями похожи на палочки бактерий или напоминают пулю. По размерам В. делят на крупные (300-400 нмв диаметре), средние (80-125 нм) и мелкие (20-30 нм). Крупные В. можно видеть в световой микроскоп (обычный, фазово-контрастный, люминесцентный); остальные изучают только с помощью электронного микроскопа. Данные о размерах частиц В. получены методами ультрафильтрации, фракционного и аналитического ультрацентрифугирования, электрофореза в гелях и электронной микроскопии (табл.).

Размеры некоторых вирусов

(для сравнения даны размеры эритроцита, бактерии и некоторых молекул)*

Объект исследо- вания Масса (10 6-ат. м. во- дорода) Диаметр или- длина, умно- женная на- ширину ( нм)
Эритроцит  . . . . . . . . 173000000 7500
Кишечная палоч- ка  . . . . . . . . . . . . . . . 180000 (1000-3000) 5000
Вирус вакцины  . . . . 2300 262209
    «    герпеса  . . . . . . 1400 213175
    «    грииппа  . . . . . . 700 10390
    «    бактерии Т 2  . . . . 120 8060
(головка)
10020
(хвост)
    «   мозаичной  . . .
          болезни та-           бака  . . . . . . . . 39,2 30015
    «     Х картофе-            ля  . . . . . . . . . . 39,0 (500-580)10
    «     полиомие-            лита  . . . . . . . . 6,7 28
    «     жёлтой мо-            заики тур-            непса  . . . . . . . 5,1 28
    «     ящура  . . . . . . 5,1 28
Белок гемоцианин  . . 6,7 5913,2
    «     гемоглобина            лошади  . . . . . 0,069 2,80,6
    «     куриного            яйца  . . . . . . . . 0,040 1,80,6

*  Разные авторы в зависимости от применяемых ими методов и др. условий получали величины, отклоняющиеся от приводимых, однако порядок величин во всех случаях сохраняется.

  В строении разных вирионов есть много общего. Все они имеют белковую оболочку - капсид и внутреннее содержимое - нуклеокапсид, состоящее главным образом из нуклеиновой кислоты (НК) - ДНК или РНК. Многие В. имеют поверхностную оболочку, покрывающую белковую. Отдельные элементы белковой оболочки называются капсомерами. У некоторых В. (например, мозаичной болезни табака) НК в виде спирали включена в белковую оболочку, без разрушения которой не может быть освобождена. У других В. (например, жёлтой мозаики турнепса) спирально закрученная нить НК лежит в капсиде, как в коробочке, и может выйти оттуда без разрушения оболочки. НК - носители наследственной информации о строении и свойствах В.; белки В. защищают НК, а также обусловливают ферментативные и антигенные свойства В. (см. Антигены , Ферменты ). Строение вирусных частиц, приспособленных к перенесению неблагоприятных условий, может быть и более сложным; таковы, например, полиэдры, образуемые некоторыми В. насекомых (они состоят из оболочки, кристаллической белковой массы и включенных в неё частиц В.).

  Химический состав разных В. неодинаков. Одни В. содержат липиды; среди них есть В. с ДНК (оспы, герпеса и др.), с РНК (гриппа, птичьей чумы, саркомы Рауса, бронзовости помидора, жёлтой карликовости картофеля и др.). У других. В. липиды отсутствуют. В этой группе также есть В. с ДНК (аденовирусы, большинство бактериофагов, В. желтухи шелкопряда) и с РНК (полиомиелита, ящура; большинство В., вызывающих болезни растений; некоторые бактериофаги). Кроме липидов, белка и нуклеиновой кислоты, в В. встречаются в небольшом количестве полиамины (путресцин, спермидин и др.), иногда витамины (витамин B 2, фолиевая кислота), а также ряд металлов; в некоторых В. содержатся соединения белка с полисахаридами.

  Размножение В. происходит в клетках. Бактериофаги растворяют оболочку бактерии и вводят в бактерию нить НК, причём капсид фага остаётся вне клетки. Многие В. поглощаются клеткой путём пиноцитоза . Попав в клетку, они освобождаются от оболочки. Первые этапы развития В. в клетке в общих чертах состоят в том, что строятся так называемые ранние белки, т. е. белки-ферменты, необходимые В. для репликации (удвоения) их НК. Так называемые поздние белки участвуют в образовании белковых оболочек дочерних вироспор. Из ферментов у В., содержащих ДНК, одним из первых синтезируется полимераза РНК, которая строит на нити ДНК информационную РНК (и-РНК). Эта РНК попадает на рибосомы клетки, где и происходит синтез других белков вирусной частицы (см. Белки , раздел Биосинтез). В., содержащие РНК, синтезируют полимеразу, катализирующую синтез новых частиц вирусной РНК; эта РНК переходит на рибосомы и контролирует синтез белка капсида. Таким образом, В., содержащие РНК, не нуждаются в ДНК для размножения и передачи генетической информации потомству (см. схему ).

  От этой общей схемы размножения В. имеются различные отклонения. Так, некоторые В. содержат белки-ферменты; В. осповакцины синтезирует в клетке хозяина двойные нити РНК и т.д. Многие особенности размножения В. ещё не выяснены. Существуют, например, особые очаги размножения нитей НК, и при созревании частиц В. синтезируется белок, охватывающий отдельные отрезки НК. Иногда этот процесс идет несовершенно, образуются неполноценные частицы В., в которых нет или мало содержимого, это - так называемые неинфекционные В. Во многих случаях очаги размножения В. хорошо видны в клетке под микроскопом. Эти очаги называются внутриклеточными включениями, или Х-телами. Когда Х-тело заканчивает свое развитие, в нём образуется вироспора. У многих В. вироспоры образуют в Х-телах кристаллические агрегаты, у других В. они неизвестны. Некоторые В. размножаются в ядре клетки другие - в ее цитоплазме, третьи - и в ядре, и в цитоплазме. НК находится в вироспоре в специально закрученном состоянии. Длина нити НК у разных В. различна. Так, у В. оспы она достигает 83 мкм, у крупных бактериофагов, например Т 4, - 70 мкм. У мельчайших бактериофагов нить НК имеет длину около 2 мкм. В зависимости от длины нити НК (что определяет объем наследственной информации, которой располагает тот или иной В.), т. е. от способности В. синтезировать более или менее разнообразные молекулы белков, различна степень участия составных частей клетки-хозяина в размножении В. и их построении. В., имеющие нить НК значительной длины, могут синтезировать многие вещества. Так, некоторые бактериофаги синтезируют в клетке несколько десятков разных белков. Все В., содержащие ДНК, синтезируют собственную РНК. Даже если клетка-хозяин имеет необходимые для В. ферменты, В. очень часто синтезируют собственные ферменты, обладающие подобным действием. Мельчайшие фаги обладают информацией для синтеза только трёх собственных белков; например, фаг МЗ-2 синтезирует зависящую от РНК полимеразу и два белка, необходимые для построения зрелых частиц В. Таким образом, степень зависимости В. от различных ферментов клетки-хозяина различна. Некоторые В. так бедны наследственной (генетической) информацией, что могут размножаться в клетке только в присутствии др. В. Зависимость В. не только от клетки, но и от других В. существует, например, между В. некроза табака и его спутником, вироспоры которого мельче вироспор некроза табака. Ещё более тесные взаимоотношения существуют между некоторыми В., поражающими животных и человека. Среди В., способных вызывать злокачественные опухоли (см. Опухолеродные вирусы ), известны В. с дефектной частицей, которая не может образовывать собственную белковую оболочку. Эти В. достигают зрелого состояния, только если они размножаются в присутствии других В. (таковы отношения, например, между опухолеродным обезьяньим вирусом S-40 и некоторыми аденовирусами ). НК опухолеродного В. в этом случае включается в капсид аденовируса и вместе с ним попадает в чувствительную клетку. Выход В. из клетки в одних случаях совершается только при разрушении клетки (многие фаги, В. оспы), в других - частицы В. покидают клетку, не убивая её при этом ( миксовирусы , некоторые мелкие фаги).

  Если в клетку попадают В., различающиеся по тем же или другим генам (различие может быть результатом мутации ), то в потомстве можно наблюдать В., соединяющие свойства двух и больше исходных форм. Это указывает на наличие обмена (перекомбинации) признаков таких форм при размножении В. в одной клетке. Закономерности этих процессов изучает генетика В. (см. Генетика микроорганизмов ).

  Устойчивость вироспор к внешним воздействиям различна, но по большей части велика. Некоторые В. инактивируются только при нагревании до 90°С (В. мозаичной болезни табака), легко переносят очень низкие температуры (-70°С и ниже), а также высушивание.

  Способы распространения В. в природе различны: многие из них могут непосредственно заражать чувствительный организм (В. гриппа, оспы, мозаичной болезни табака, бактериофаги), иные циркулируют в природе более сложным образом и переносятся при помощи других организмов. Так, В. некроза табака передаётся при помощи обитающего в почве грибка (Olpidium): последний, проникая в корни растения, вносит и В. Многие В. передаются паразитирующими у растений нематодами . В. животных, человека и растений переносят также клещи и насекомые. Передача одних В. сосущими членистоногими носит механический характер; в других случаях В. проделывают часть своего развития в переносчике и даже могут передаваться с яйцами переносчика из поколения в поколение. Многие В., поражающие человека и домашних животных, обитают и в диких животных; поражающие культурные растения - в диких растениях и сорняках.

  Попытки обнаружить жизнедеятельность вироспор вне клетки, естественно, не увенчались успехом: известно, что покоящиеся формы жизни вообще не обнаруживают жизнедеятельности (см. Анабиоз ). В бесклеточных системах можно воспроизвести отдельные этапы размножения В., получить саморепродукцию вирусной НК, а также под контролем этой НК - синтез белков, характерных для В. Но эти процессы идут только в присутствии извлечённых из клетки рибосом; следовательно, эти системы, хотя и являются бесклеточными, не могут рассматриваться как вполне искусственно синтезируемые.

  О происхождении В. имеются различные предположения. Некоторые считают, что В. могут спонтанно зарождаться в организме хозяина под влиянием неблагоприятных условий. Но это мнение опровергается следами длительной эволюции В. (их приспособление к циркуляции в природе), а также отсутствием переходных форм между В. и органоидами клетки. Другие исследователи думают, что В. - потомки простейших форм жизни, однако и это предположение маловероятно, так как выраженный паразитический характер В. предполагает существование более высокоорганизованных существ, в которых В. могли бы жить и размножаться. Поэтому наиболее вероятно, что В. возникли от свободно живущих более сложно организованных форм, и простота В. вторична, она - результат приспособления к паразитическому образу жизни. Такая вторичная простота, связанная с утратой приспособленности к самостоятельному питанию и усилением способности к размножению, вообще очень характерна для паразитов. В пользу древности В. и длительной их эволюции говорит также то, что они вступают в сложные взаимоотношения с другими видами животных и растений (трансмиссивные В., передаваемые различными животными).

  Систематика В. Общепринятой классификации и обозначения В. ещё нет. Им дают, как и другим животным и растениям, родовые и видовые названия, пользуются народными обозначениями, различными сокращениями или ставят родовое название организма, поражаемого В., и номер (например, Nicotiana virus I - В. мозаичной болезни табака). Поэтому каждый В. может иметь несколько названий. Первую попытку систематики В. сделал чешский учёный Г. Провачек (1907); он отнёс В. к животным, к группе Chamydozoa. К середине 20 в. сложилось 3 главных направления в систематике В. Сторонники одного в основу системы В. кладут свойства вирионов; при этом учитывают присутствие в них РНК или ДНК, симметрию нуклеокапсида, наличие или отсутствие пеплоса (особой оболочки капсида), диаметр нуклеокапсида (у спиральных вирионов), число граней и капсомеров (у кубических вирионов). Представители второго направления (нумерическая система), учитывая по возможности все признаки, объединяют те В., у которых больше общих признаков. Сторонники третьего направления, сохраняя принципы классической систематики, объединяют В. в группы на основе существенных признаков, характеризующих их родство (химическая близости, сходства морфологических стадий развития и способов циркуляции в природе). Международный комитет по номенклатуре В. предлагает пользоваться бинарной номенклатурой, добавляя к родовому названию слово «В.» (например, род В. оспы - Poxvirus). Многие общепринятые названия сохраняют, хотя они и не соответствуют бинарной номенклатуре. Сторонники нумерической системы предлагают пользоваться криптограммами, которые в условных обозначениях расшифровывают важнейшие свойства В. Так, В. табачной мозаики обозначают так: