Страница:
Я не силен в истории, но если нужно назвать математиков из этого рода, сами собой на ум приходят имена Галуа, Римана (из предыдущего столетия), Гильберта (начало нашего века). Если искать их среди тех старших математиков, которые приняли меня с моих первых научных шагов в математическое сообщество
{14}
, то прежде всех других передо мной встает имя Жана Лерэ, несмотря на то, что наши встречи с ним были редкими и не более чем эпизодическими
{15}
.
Я набросал здесь в общих чертах два портрета: математика-домоседа, который довольствуется тем, чтобы содержать в порядке и украшать наследное имущество, и строителя-первопроходца {16} , который не может отказать себе в том, чтобы беспрестанно преодолевать границы «кругов невидимых, но властных» - тех, что ограничивают Вселенную {17} . Их также можно называть «консерваторами» и «новаторами» - немного броско, но наводит на размышления. Существование тех и других по-своему оправдано, каждому предназначена своя роль в том самом общем предприятии, что длится вот уж которое поколение, веками, тысячелетиями. В период расцвета науки или искусства
Образ Лерэ, впрочем, кажется, расходится с портретом «строителя», мною набросанным - в том месте, где говорится о работе над домом от самого фундамента до крыши. Он, скорее, не мог удержаться и закладывал обширные фундаменты в таких местах, где никому это и в голову не могло прийти, предоставляя другим позаботиться о дальнейшем строительстве и, когда дом уже готов, обживать эти места (не более чем временное пристанище)…
между этими характерами не бывает ни противопоставления, ни антагонизма {18} . Будучи различны между собой, они взаимно дополняют друг друга, как дрожжи и тесто.
Между этими двумя крайними (но отнюдь не противоположными по природе) типами размещен, само собой, весь диапазон характеров промежуточных. «Домосед», который и в мыслях не держит покинуть привычное обиталище, не говоря уже о том, чтобы взвалить на себя труд пойти и построить новое Бог весть где, не замедлит, однако, когда уж и впрямь становится тесно, взять в руку мастерок, чтобы привести в порядок погреб или чердак, надстроить этаж, и даже при необходимости пристроить к стенам какое-нибудь подсобное помещение скромных размеров {19} . Не будучи строителем в душе, он зачастую все же смотрит с сочувствием во взоре, во всяком случае, без тайного беспокойства или осуждения, на того, кто, бывало, делил с ним кров, а теперь горбит, собирая балки и камни в какой-то непостижимой глухомани с таким видом, будто узрел там дворец…
6. Вернемся, однако же, к моей персоне и моему труду. Если я отличился в математическом искусстве, то не столько за счет умения и настойчивости в разрешении проблем, завещанных моими предшественниками, сколько благодаря природной склонности, позволявшей мне видеть вопросы, заведомо узловые, которых не замечал никто, извлекать на свет полезные понятия, в которых была нужда (зачастую никто об этом не задумывался, пока не появлялось новое понятие), а также удачные формулировки, никому до тех пор не приходившие в голову. Весьма нередко понятия и формулировки собирались в картину настолько стройную и безукоризненную, что про себя я уже нимало не сомневался в их правильности (разве что с точностью до небольших поправок) - и тогда, если речь не шла о работе над отдельными статьями, предназначенными для публикации, я часто позволял себе остановиться и не тратить время на доказательства: ведь многие из них в ясной уже перспективе утверждения и соответствующего ему контекста, не требуя более «мастерства», становились едва ли не простой рутиной. Объектам, завораживающим взгляд, несть числа; возможно ли ответить до конца на каждый призыв! При всем том предложения и теоремы, доказанные честно, как полагается, исчисляются тысячами в моих работах, написанных и опубликованных - и думаю, можно сказать, что за небольшим исключением все они вошли в общую наследную копилку вещей, обыкновенно принимаемых как «известные», и так или иначе широко используемых повсюду в математике.
Но еще сильнее, чем об обнаружении новых вопросов, открытии понятий и утверждений, - о плодотворных точках зрения, неизменно ведущих меня к тому, чтобы представлять и в той или иной мере развивать совершенно новые темы, - вот о чем печется мой дух, и вот к чему в особенности устремлены усилия моего таланта. Похоже, что это и есть самая существенная часть моего вклада в современную математику. По правде говоря, бесчисленные вопросы, понятия, утверждения, о которых я толкую, приобретают для меня смысл лишь в свете такой вот «точки зрения» - или, лучше сказать, они рождаются вдруг, с силой очевидности; точь-в-точь как в черной ночи возникший свет, пускай рассеянный, словно бы рождает из ничего те самые очертания, расплывчатые или отчетливые, которые посреди темноты неожиданно открываются нам. Без такого света, который соединял бы их в общую картину, десять ли, сто ли, тысяча вопросов, понятий, утверждений нагромождаются бессвязной и бесформенной грудой «умственных приспособлений», отделенных друг от друга - совсем не так, как части единого Целого, которые если и прячутся, желая остаться невидимыми, в складках ночной завесы, то ощущаются тем самым не менее ясно, и в предчувствии дают о себе знать.
Когда точка зрения плодотворна? Тогда, когда она раскрывает нам живые, действующие части объединяющего и придающего им смысл Целого. Это, во-первых, жгучие вопросы, никем еще не услышанные, и (как если бы в ответ на эти вопросы) понятия до того уже естественные, которые, однако, никому и в голову не приходило извлечь на свет. В тот же список входят утверждения, на первый взгляд само собой разумеющиеся, которые, однако, до сих пор никто не рискнул сформулировать. Во-вторых, когда она проливает свет на породившие
их проблемы, вместе с понятиями, ранее неизвестными, позволившими их выразить математическим языком. В еще большей степени, чем так называемые ключевые теоремы в математике, плодотворные точки зрения в нашем искусстве суть {20} самые мощные инструменты. Или, еще точнее, они - глаза искателя, страстно желающего познать природу объектов, составляющих математику.
Итак, плодотворная точка зрения есть не что иное как пресловутый глаз, благодаря которому мы одновременно открываем и прозреваем единство во множественности открывшегося нам. И это единство - воистину сама жизнь, дуновение, которое, складывая бесчисленные осколки в целое, вдыхает в них душу.
Но, как это заложено в самом названии, «точка зрения» сама по себе остается частичной. Она предлагает нам один из видов пейзажа или панорамы среди множества других столь же ценных, столь же «настоящих». Именно в той мере, в какой точки зрения, сочетаясь, дополняют друг друга до самой реальности, читай - множится число наших «глаз», наш взгляд проникает глубже в суть вещей. Чем сложней и богаче реальность, которую мы стремимся познать, тем важнее иметь в распоряжении несколько «глаз» {21} , дабы постичь всю широту ее - и всю изысканность.
И случается иногда, что связка точек зрения, сходящаяся над одним и тем же обширным пейзажем, при посредстве которой нам удается ловить Единое во множестве, дает начало вещи совершенно новой, превосходящей каждую из отдельных перспектив, точь-в-точь как живое существо больше любой своей конечности, любого органа. Эту новую вещь можно назвать видением. Видение объединяет уже известные точки зрения, которые его воплощают, и открывает нам иные, до сих пор неведомые, совершенно так же, как плодотворная точка зрения позволяет нам обнаружить и воспринять как часть единого Целого множество новых вопросов, понятий и утверждений.
Иначе говоря, по отношению к точкам зрения видение, которое кажется из них вытекающим и которое их объединяет, является тем же, что есть яркий и теплый дневной свет для различных составляющих солнечного спектра. Видение широкое и глубокое - как неисчерпаемый источник, созданный, чтобы наделять ясностью и вдохновением труд смотрящего - не только первого задетого этим светом (который новообращенные его служители хранят в себе неизбывно), но и многих других, целых поколений, быть может… Дальние пределы, смутно различимые в этом свете - очарование многих глаз, многих взглядов.
7. «Продуктивный» период моей математической деятельности, то есть подкрепленный статьями, написанными как полагается - это время с 1950 по 1969 г., всего двадцать лет. И в течение двадцати пяти лет, с 1945 (когда мне стукнуло семнадцать) по 1969 (когда мне перевалило за сорок два), свою энергию я вкладывал практически полностью в математические исследования. Вклад и впрямь чрезмерный. Я за него заплатил долговременным духовным застоем, постепенным «очерствением», о котором не раз говорится на страницах «РС». И все же, внутри ограниченного поля чисто умственной деятельности, в том, что касается зарождения и возмужания видения, обращенного в один только мир математики, это были годы интенсивного творчества.
В течение этого долгого периода моей жизни как время мое, так и энергия почти целиком были посвящены работе над отдельными статьями: тщательному труду по изготовлению, складыванию вместе и притиранию частей, как того требовала постройка домов, снабженных всем необходимым сверху донизу; меня к ней звал внутренний голос (или демон?) - господин управляющий работ, идеи которых он же мне и подсказывал по мере того, как двигалось дело. Занятый встававшими передо мной одна за другой задачами камнетеса, каменщика, плотника, даже водопроводчика, столяра и краснодеревщика, редко когда я имел досуг изложить черным по белому, хоть бы и в общих чертах, генеральный план, никем, кроме меня (как это выяснилось позже), не видимый, который на протяжении дней, месяцев и лет водил моей рукою с уверенностью сомнамбулы {22} . Надо сказать, что работа над статьями,
Судя по тому, что я мог наблюдать вокруг себя, в математике эти головокружительные повороты на пути к открытию случались и с искателями большого масштаба, но никак не со всеми. Это могло быть связано с тем, что два или три столетия тому назад исследования в естественных науках, и особенно в математике, оказались свободными от догм, религиозных или метафизических, присущих данной эпохе, которые всегда служили мощными тормозами развития (будь оно на пользу или во вред) «научного» понимания Вселенной. Верно, впрочем, и то, что для того, чтобы некоторые идеи и понятия в математике, наиболее фундаментальные и очевидные (как, например, понятие перемещения, группы, числа нуль, действия с буквенными выражениями, понятие координат точки в пространстве, множества или топологической «формы», не говоря уже об отрицательных и комплексных числах), появились на свет, потребовались тысячелетия. Это столь же убедительные признаки наличия давнего «блока», глубоко укоренившегося в психике препятствием к восприятию новых идей, даже когда они по-детски просты и просятся в мир настойчиво, с силой очевидности - на протяжении поколений, даже тысячелетий…
Возвращаясь к моему собственному труду, должен сказать, что, как мне кажется, «срывы» (они у меня случались, пожалуй, чаще, чем у большинства моих коллег) в нем ограничивались исключительно отдельными деталями, и обычно я сам же вскорости их исправлял. То были попросту «пустячные происшествия» чисто локальной природы, без серьезных последствий для справедливости основных догадок по поводу исследуемой ситуации. Напротив, на уровне идей и глобальных руководящих предчувствий мой труд, представляется мне, свободен от всяческого рода «промахов», как бы невероятно это ни звучало. Эта уверенность, неизменно и безошибочно открывавшая мне всякий раз если не конечные результаты предприятия (они как раз чаще всего оставались скрытыми от взгляда), то по меньшей мере направления наиболее плодотворные, а те уже вызывались вести меня непосредственно к вещам основным - эта самая уверенность и пробудила в моей памяти образ Кестлеровской «сомнамбулы», которую я вел с любовным тщанием, сама по себе мне отнюдь не неприятна. К тому же при том способе выражения мыслей в математике, который исповедовался и применялся моими старшими коллегами, предпочтение отдавалось (чтоб не сказать больше) технической стороне работы, и «отступления» нимало не поощрялись. Последние, как правило, подробно останавливаются на «мотивировках»; но даже те из них, что претендуют на роль проводника в тумане, в действительности просто толкуют о прячущемся там образе не то призраке. Картина, которую они рисуют, может быть, и вдохновляющая, но она далека от воплощения в осязаемую конструкцию из дерева, или камня с цементом, чистую и прочную - так что все это похоже, скорее, на обрывки мечты, чем на труд мастера, усердный и добросовестный.
На количественном уровне моя работа в эти годы интенсивного творчества имела конкретные результаты прежде всего в виде нескольких десятков тысяч страниц публикаций, в форме статей, монографий и записок семинаров {23} , и сотен, если не тысяч, новых понятий, вошедших в общую копилку под теми самыми названиями, которые они получали от меня по выходе в свет {24} . Очень вероятно, что во всей истории математики я - человек, введший в нашу науку самое большое число новых понятий, и тем самым одновременно тот, кто изобрел больше всех новых названий, стараясь, как мог, чтобы они выражали суть этих понятий не без тонкости и так, чтобы наводить на размышления.
Эти показатели, целиком «количественные», дают лишь грубое представление о моем труде, проходя мимо того, что действительно составляет душу, жизнь и силу. Как я только что говорил, лучшее из того вклада, что я внес в математику, суть новые точки зрения, которые мне удалось сначала угадать в темноте, а затем терпеливо извлечь на свет и развить в какой-то мере. Как и те понятия, о которых здесь шла речь, новые точки зрения, представленные в великом множестве весьма разнообразных ситуаций, числом своим приближаются к бесконечности.
Существуют, однако, более широкие точки зрения, которые сами по себе порождают и объединяют множество более частных, в огромном числе ситуаций совершенно различных. Такую точку зрения можно также назвать концепцией с полным на то основанием. В силу своей плодовитости она дает жизнь обильному потомству идей, которые наследуют ее плодовитость, но в большинстве своем (если не все до одной) менее обширны по значимости, чем материнская идея.
Что же до того, чтобы выразить идею, «высказать» то есть, то это часто почти такая же тонкая штука, как и само ее зачатие и медленное вынашивание в том, кого она осенила. Или, лучше сказать, этот тяжкий труд вынашивания и формирования есть не что иное, как процесс «выражения» идеи: труд, состоящий в том, чтобы терпеливо, день за днем, высвобождать ее из пелены тумана, что окружала ее с самого рождения, добиваясь понемногу придания ей осязаемой формы. Картина становится богаче красками, крепнет, ее рисунок делается резче и тоньше на протяжении недель, месяцев и лет. Просто назвать идею какой-нибудь выразительной формулировкой или ключевыми фразами, более или менее техническими, может быть делом нескольких строчек, даже страниц - но из тех, кто не знаком уже с ней достаточно хорошо, немногие смогут, услышав такое «имя», восстановить по нему лицо. И когда идея достигает полной зрелости, сотни страниц может оказаться достаточно, чтобы ее выразить, к полному удовлетворению работника, в чьей душе она зародилась - и точно так же может не хватить десяти тысяч страниц, тщательно взвешенных и обработанных {25} .
И в том, и в другом случае среди тех, кто берется ознакомиться с трудом, представляющим идею, которая встала наконец во весь свой рост, как большой строевой лес, вдруг возросший на пустынной земле - многие, можно поручиться, отчетливо увидят все деревья, стройные и могучие, и найдут им применение (кто захочет на них взобраться, кто станет выделывать из них балки и доски, а кто-то еще, нарубив дров, разожжет огонь у себя в камине…). И все же редки те, что сумеют увидеть лес.
8. Пожалуй, можно сказать, что «концепция» есть не просто новая точка зрения, показавшая себя плодотворной, но еще и такая, за которой, ее воплощением, входит в науку новая и широкая тема. И всякая наука, если понимать ее не как инструмент власти и могущества, но как путешествие-приключение человеческого сознания, предпринятое века тому назад - есть не что иное, как гармония богатая или бедная тонами, смотря по эпохе, которая разворачивается перед нами, пока мы размениваем столетья и поколения, изысканным контрапунктом всех этих тем, вступающих поочередно - словно бы призванных из небытия, чтобы, переплетясь друг с другом, слиться в ней воедино.
Среди многочисленных новых точек зрения, введенных мной в математику, есть, как видно в перспективе лет, двенадцать таких, которые я бы назвал концепциями {26} . Представить себе мой математический труд, его «почувствовать», значит увидеть и почувствовать мало-мальски хотя бы некоторые из идей и соответствующих им главных тем, составивших основу его и душу.
Силою обстоятельств некоторые из этих идей «главнее», чем другие (которые, в свою очередь, тем самым менее значительны). Иными словами, среди новых тем, о которых шла речь, попадаются те, что шире остальных, и те, что глубже проникают в сердце математических тайн {27} . Есть три (и не последние по масштабу, на мой взгляд),
1. Топологические тензорные произведения и ядерные пространства.
2. «Непрерывная» и «дискретная» двойственность (производные категории, «шесть операций»).
3. «Йога» Римана-Роха-Гротендика (К-теория, связь с теорией пересечений).
4. Схемы.
5. Топосы.
6. Этальные и /-адические когомологии.
7. Мотивы и мотивная группа Галуа ((^-категории Гротендика).
8. Кристаллы и кристальные когомологии, йога «коэффициентов де Рама», «коэффициентов Ходжа».
9. «Топологическая алгебра»: оо-стэки, derivateurs; когомологический формализм топосов как основа для новой гомотопической алгебры.
10. Ручная топология.
11. Нога анабелевой алгебраической геометрии, теория Галуа-Тейхмюллера.
12. «Теоретико-схемная», или «арифметическая» точка зрения на правильные многогранники и правильные конфигурации произвольного рода.
Если не считать первой из этих тем, важная часть которой вошла в мою диссертацию (1953), и которая получила развитие в период, когда я занимался функциональным анализом (с 1950 по 1955 г.), все одиннадцать остальных явились на свет в период моих занятий геометрией, начиная с 1955 г. которые, появившись только после моего ухода с математической сцены, находятся пока в зачаточном состоянии. «Официально» их даже не существует: ведь до сих пор не было не было ни одной выполненной по всем правилам публикации, которая стала бы для них свидетельством о рождении {28} {29} . Среди девяти тем, возникших до моего ухода, три последние, покинутые мною в разгаре роста, остаются еще и по сей день на младенческой стадии - за недостатком любящих рук, какие обеспечили бы всем необходимым этих «сироток», брошенных сводить счеты с враждебным миром {30} . Что же касается других шести, достигших полной зрелости за два десятилетия, предшествовавшие моему уходу -
сятой) и в то же время предоставила ключевое понятие для полнейшего обновления алгебраической геометрии и ее языка.
Напротив, первая и последняя из двенадцати тем кажутся мне по своему масштабу скромнее прочих. И все же, если говорить о последней, представившей новый взгляд на весьма древнюю проблему правильных многогранников и конфигураций - сомневаюсь, что математику, который ей одной посвятил бы себя душой и телом, хватило бы жизни на то, чтобы ее исчерпать. Что касается первой из всех этих тем, топологических тензорных произведений и ядерных пространств, то она скорее играет роль нового инструмента, готового к использованию, чем основы для последующей разработки. При всем том, однако, до меня еще долетают - вплоть до этих последних лет - отрывочные отклики более или менее недавних работ, отвечающих (двадцать или тридцать лет спустя) на некоторые из вопросов, которые я тогда оставил неразрешенными.
Наиболее глубокая (на мой взгляд) среди этих двенадцати - тема мотивов, то есть та, что теснейшим образом связала анабелеву алгебраическую геометрию с йогой Галуа-Тейхмюллера.
С точки зрения технических возможностей инструментов, совершенно готовых и отшлифованных моими стараниями, и повседневного применения на различных «передовых участках» исследования в течение двух последних десятилетий, схемы и этальные и l-адические когомологии представляются мне среди прочих наиболее значительными. Я думаю, что уже сейчас у достаточно осведомленного математика не может быть никаких сомнений в том, что инструмент теоретико-схемный, как и вышедший из него /-адический, вошли в число серьезных достижений века, исполнивших свежими силами и обновивших нашу науку в ходе последних поколений.
можно сказать, что (с точностью до одной-двух оговорок {30} ) они уже сейчас вошли в общую копилку, в чашу, полную опытом привычных знаний. Особенно в среде геометров «все-все-все» пьют из нее в наши дни, не замечая глотков (как это выходило у господина Журдена с прозой), ежедневно и ежечасно. Они стали как воздух, для тех, кто занимается геометрией - или арифметикой, алгеброй и анализом, хоть немного «геометрическими».
Эти двенадцать главных тем моего труда совсем не отделены друг от друга. Для меня они составляют вместе единство духа и цели, проходящее всегдашним настойчивым лейтмотивом музыкального фона через весь мой труд, как «записанный» черным по белому, так и не переложенный на слова. Сейчас, когда я пишу эти строки, мне словно бы слышится вновь - как призыв - нота, ведшая тему сквозь те три года бескорыстного («низачем»), страстного, уединенного труда, пора, когда меня еще не тревожил вопрос, есть ли где в мире математики, кроме меня: так сильны были чары, меня захватившие…
Это единство - не просто знак самого работника, отметивший все труды, что вышли из-под его руки. Темы связаны между собой бессчетным множеством нитей, тончайших и вместе с тем легко заметных. Они соединены и тесно перевиты друг с другом, но каждая из них распознается без труда, раскрываясь вдруг составной частью сложного контрапункта - в гармонии, которая собирает их всех в одно и придает любой из них смысл, живость движения и полноту, увлекая ее вперед в общем потоке. Каждая отдельная тема словно бы вышла из этой гармонии, и в ней же - ежесекундно - рождается вновь. Но ведь гармония сама, кажется, не более чем «сумма», «итог» составивших ее тем: в самом деле, они появились раньше. А я, сказать по правде, не могу побороть в себе чувства (без сомнения, нелепого), что каким-то образом именно эта гармония, еще не возникнув во плоти, но уже наверное ожидая своего часа внутри неведомого нам лона, среди других идей, готовых родиться - что она-то и побуждала выйти на свет одну за другой все эти темы, предназначенные обрести свой настоящий смысл лишь с ее появлением. И еще чудится мне, что именно ее голос, властный и настойчивый, взывал ко мне уже в те годы пылкого, зачарованного одиночества - на самом пороге моей юности…
Как бы то ни было, двенадцать ключевых тем моего труда все вместе, словно повинуясь тайному велению рока, сложились в одну симфонию - или, если взять другой образ, каждая из них оказалась воплощением одной из точек зрения, в совокупности составивших единое широкое видение.
Видение это начало выступать из тумана, а очертания его - становиться узнаваемыми, не раньше, чем к 1957-1958 гг., годам напряженного вынашивания идей {31} . Кажется странным, но это видение было настолько мне близко, до того ясно и несомненно, что раньше, чем год назад {32} , я и не задумывался о том, чтобы дать ему имя. (А ведь как раз одно из моих пристрастий - называть вещи, мной обнаруженные: это первейший способ в них разобраться…) Правда, что я не смог бы конкретно указать момент, пережитый мною как внезапное рождение
321957 г. - тот самый, когда мне удалось настичь по горячему следу тему «Римана-Роха» (версия Гротендика), которая сразу же принесла мне «всеобщую известность». Это также год смерти моей матери, то есть резко выделенный в моей жизни - и один из наиболее интенсивно творческих, причем не на одной только математической ниве. Двенадцать лет уже шло тому, как все мои силы были вложены в математику. И я вдруг ясно почувствовал, что мои занятия сделали почти «полный оборот» по кругу, так что на часах, пожалуй, время их оставить и взяться за что-то другое. Очевидно, то была потребность духовного обновления, впервые тогда ко мне подступившая. Я собрался было стать писателем, и на многие месяцы прекратил всякую деятельность, связанную с математикой. Под конец я решил, что запишу черным по белому хотя бы те математические работы, какие у меня уже были начаты; без сомнения, дело нескольких месяцев, года самое большее…
Я набросал здесь в общих чертах два портрета: математика-домоседа, который довольствуется тем, чтобы содержать в порядке и украшать наследное имущество, и строителя-первопроходца {16} , который не может отказать себе в том, чтобы беспрестанно преодолевать границы «кругов невидимых, но властных» - тех, что ограничивают Вселенную {17} . Их также можно называть «консерваторами» и «новаторами» - немного броско, но наводит на размышления. Существование тех и других по-своему оправдано, каждому предназначена своя роль в том самом общем предприятии, что длится вот уж которое поколение, веками, тысячелетиями. В период расцвета науки или искусства
Образ Лерэ, впрочем, кажется, расходится с портретом «строителя», мною набросанным - в том месте, где говорится о работе над домом от самого фундамента до крыши. Он, скорее, не мог удержаться и закладывал обширные фундаменты в таких местах, где никому это и в голову не могло прийти, предоставляя другим позаботиться о дальнейшем строительстве и, когда дом уже готов, обживать эти места (не более чем временное пристанище)…
между этими характерами не бывает ни противопоставления, ни антагонизма {18} . Будучи различны между собой, они взаимно дополняют друг друга, как дрожжи и тесто.
Между этими двумя крайними (но отнюдь не противоположными по природе) типами размещен, само собой, весь диапазон характеров промежуточных. «Домосед», который и в мыслях не держит покинуть привычное обиталище, не говоря уже о том, чтобы взвалить на себя труд пойти и построить новое Бог весть где, не замедлит, однако, когда уж и впрямь становится тесно, взять в руку мастерок, чтобы привести в порядок погреб или чердак, надстроить этаж, и даже при необходимости пристроить к стенам какое-нибудь подсобное помещение скромных размеров {19} . Не будучи строителем в душе, он зачастую все же смотрит с сочувствием во взоре, во всяком случае, без тайного беспокойства или осуждения, на того, кто, бывало, делил с ним кров, а теперь горбит, собирая балки и камни в какой-то непостижимой глухомани с таким видом, будто узрел там дворец…
6. Вернемся, однако же, к моей персоне и моему труду. Если я отличился в математическом искусстве, то не столько за счет умения и настойчивости в разрешении проблем, завещанных моими предшественниками, сколько благодаря природной склонности, позволявшей мне видеть вопросы, заведомо узловые, которых не замечал никто, извлекать на свет полезные понятия, в которых была нужда (зачастую никто об этом не задумывался, пока не появлялось новое понятие), а также удачные формулировки, никому до тех пор не приходившие в голову. Весьма нередко понятия и формулировки собирались в картину настолько стройную и безукоризненную, что про себя я уже нимало не сомневался в их правильности (разве что с точностью до небольших поправок) - и тогда, если речь не шла о работе над отдельными статьями, предназначенными для публикации, я часто позволял себе остановиться и не тратить время на доказательства: ведь многие из них в ясной уже перспективе утверждения и соответствующего ему контекста, не требуя более «мастерства», становились едва ли не простой рутиной. Объектам, завораживающим взгляд, несть числа; возможно ли ответить до конца на каждый призыв! При всем том предложения и теоремы, доказанные честно, как полагается, исчисляются тысячами в моих работах, написанных и опубликованных - и думаю, можно сказать, что за небольшим исключением все они вошли в общую наследную копилку вещей, обыкновенно принимаемых как «известные», и так или иначе широко используемых повсюду в математике.
Но еще сильнее, чем об обнаружении новых вопросов, открытии понятий и утверждений, - о плодотворных точках зрения, неизменно ведущих меня к тому, чтобы представлять и в той или иной мере развивать совершенно новые темы, - вот о чем печется мой дух, и вот к чему в особенности устремлены усилия моего таланта. Похоже, что это и есть самая существенная часть моего вклада в современную математику. По правде говоря, бесчисленные вопросы, понятия, утверждения, о которых я толкую, приобретают для меня смысл лишь в свете такой вот «точки зрения» - или, лучше сказать, они рождаются вдруг, с силой очевидности; точь-в-точь как в черной ночи возникший свет, пускай рассеянный, словно бы рождает из ничего те самые очертания, расплывчатые или отчетливые, которые посреди темноты неожиданно открываются нам. Без такого света, который соединял бы их в общую картину, десять ли, сто ли, тысяча вопросов, понятий, утверждений нагромождаются бессвязной и бесформенной грудой «умственных приспособлений», отделенных друг от друга - совсем не так, как части единого Целого, которые если и прячутся, желая остаться невидимыми, в складках ночной завесы, то ощущаются тем самым не менее ясно, и в предчувствии дают о себе знать.
Когда точка зрения плодотворна? Тогда, когда она раскрывает нам живые, действующие части объединяющего и придающего им смысл Целого. Это, во-первых, жгучие вопросы, никем еще не услышанные, и (как если бы в ответ на эти вопросы) понятия до того уже естественные, которые, однако, никому и в голову не приходило извлечь на свет. В тот же список входят утверждения, на первый взгляд само собой разумеющиеся, которые, однако, до сих пор никто не рискнул сформулировать. Во-вторых, когда она проливает свет на породившие
их проблемы, вместе с понятиями, ранее неизвестными, позволившими их выразить математическим языком. В еще большей степени, чем так называемые ключевые теоремы в математике, плодотворные точки зрения в нашем искусстве суть {20} самые мощные инструменты. Или, еще точнее, они - глаза искателя, страстно желающего познать природу объектов, составляющих математику.
Итак, плодотворная точка зрения есть не что иное как пресловутый глаз, благодаря которому мы одновременно открываем и прозреваем единство во множественности открывшегося нам. И это единство - воистину сама жизнь, дуновение, которое, складывая бесчисленные осколки в целое, вдыхает в них душу.
Но, как это заложено в самом названии, «точка зрения» сама по себе остается частичной. Она предлагает нам один из видов пейзажа или панорамы среди множества других столь же ценных, столь же «настоящих». Именно в той мере, в какой точки зрения, сочетаясь, дополняют друг друга до самой реальности, читай - множится число наших «глаз», наш взгляд проникает глубже в суть вещей. Чем сложней и богаче реальность, которую мы стремимся познать, тем важнее иметь в распоряжении несколько «глаз» {21} , дабы постичь всю широту ее - и всю изысканность.
И случается иногда, что связка точек зрения, сходящаяся над одним и тем же обширным пейзажем, при посредстве которой нам удается ловить Единое во множестве, дает начало вещи совершенно новой, превосходящей каждую из отдельных перспектив, точь-в-точь как живое существо больше любой своей конечности, любого органа. Эту новую вещь можно назвать видением. Видение объединяет уже известные точки зрения, которые его воплощают, и открывает нам иные, до сих пор неведомые, совершенно так же, как плодотворная точка зрения позволяет нам обнаружить и воспринять как часть единого Целого множество новых вопросов, понятий и утверждений.
Иначе говоря, по отношению к точкам зрения видение, которое кажется из них вытекающим и которое их объединяет, является тем же, что есть яркий и теплый дневной свет для различных составляющих солнечного спектра. Видение широкое и глубокое - как неисчерпаемый источник, созданный, чтобы наделять ясностью и вдохновением труд смотрящего - не только первого задетого этим светом (который новообращенные его служители хранят в себе неизбывно), но и многих других, целых поколений, быть может… Дальние пределы, смутно различимые в этом свете - очарование многих глаз, многих взглядов.
7. «Продуктивный» период моей математической деятельности, то есть подкрепленный статьями, написанными как полагается - это время с 1950 по 1969 г., всего двадцать лет. И в течение двадцати пяти лет, с 1945 (когда мне стукнуло семнадцать) по 1969 (когда мне перевалило за сорок два), свою энергию я вкладывал практически полностью в математические исследования. Вклад и впрямь чрезмерный. Я за него заплатил долговременным духовным застоем, постепенным «очерствением», о котором не раз говорится на страницах «РС». И все же, внутри ограниченного поля чисто умственной деятельности, в том, что касается зарождения и возмужания видения, обращенного в один только мир математики, это были годы интенсивного творчества.
В течение этого долгого периода моей жизни как время мое, так и энергия почти целиком были посвящены работе над отдельными статьями: тщательному труду по изготовлению, складыванию вместе и притиранию частей, как того требовала постройка домов, снабженных всем необходимым сверху донизу; меня к ней звал внутренний голос (или демон?) - господин управляющий работ, идеи которых он же мне и подсказывал по мере того, как двигалось дело. Занятый встававшими передо мной одна за другой задачами камнетеса, каменщика, плотника, даже водопроводчика, столяра и краснодеревщика, редко когда я имел досуг изложить черным по белому, хоть бы и в общих чертах, генеральный план, никем, кроме меня (как это выяснилось позже), не видимый, который на протяжении дней, месяцев и лет водил моей рукою с уверенностью сомнамбулы {22} . Надо сказать, что работа над статьями,
Судя по тому, что я мог наблюдать вокруг себя, в математике эти головокружительные повороты на пути к открытию случались и с искателями большого масштаба, но никак не со всеми. Это могло быть связано с тем, что два или три столетия тому назад исследования в естественных науках, и особенно в математике, оказались свободными от догм, религиозных или метафизических, присущих данной эпохе, которые всегда служили мощными тормозами развития (будь оно на пользу или во вред) «научного» понимания Вселенной. Верно, впрочем, и то, что для того, чтобы некоторые идеи и понятия в математике, наиболее фундаментальные и очевидные (как, например, понятие перемещения, группы, числа нуль, действия с буквенными выражениями, понятие координат точки в пространстве, множества или топологической «формы», не говоря уже об отрицательных и комплексных числах), появились на свет, потребовались тысячелетия. Это столь же убедительные признаки наличия давнего «блока», глубоко укоренившегося в психике препятствием к восприятию новых идей, даже когда они по-детски просты и просятся в мир настойчиво, с силой очевидности - на протяжении поколений, даже тысячелетий…
Возвращаясь к моему собственному труду, должен сказать, что, как мне кажется, «срывы» (они у меня случались, пожалуй, чаще, чем у большинства моих коллег) в нем ограничивались исключительно отдельными деталями, и обычно я сам же вскорости их исправлял. То были попросту «пустячные происшествия» чисто локальной природы, без серьезных последствий для справедливости основных догадок по поводу исследуемой ситуации. Напротив, на уровне идей и глобальных руководящих предчувствий мой труд, представляется мне, свободен от всяческого рода «промахов», как бы невероятно это ни звучало. Эта уверенность, неизменно и безошибочно открывавшая мне всякий раз если не конечные результаты предприятия (они как раз чаще всего оставались скрытыми от взгляда), то по меньшей мере направления наиболее плодотворные, а те уже вызывались вести меня непосредственно к вещам основным - эта самая уверенность и пробудила в моей памяти образ Кестлеровской «сомнамбулы», которую я вел с любовным тщанием, сама по себе мне отнюдь не неприятна. К тому же при том способе выражения мыслей в математике, который исповедовался и применялся моими старшими коллегами, предпочтение отдавалось (чтоб не сказать больше) технической стороне работы, и «отступления» нимало не поощрялись. Последние, как правило, подробно останавливаются на «мотивировках»; но даже те из них, что претендуют на роль проводника в тумане, в действительности просто толкуют о прячущемся там образе не то призраке. Картина, которую они рисуют, может быть, и вдохновляющая, но она далека от воплощения в осязаемую конструкцию из дерева, или камня с цементом, чистую и прочную - так что все это похоже, скорее, на обрывки мечты, чем на труд мастера, усердный и добросовестный.
На количественном уровне моя работа в эти годы интенсивного творчества имела конкретные результаты прежде всего в виде нескольких десятков тысяч страниц публикаций, в форме статей, монографий и записок семинаров {23} , и сотен, если не тысяч, новых понятий, вошедших в общую копилку под теми самыми названиями, которые они получали от меня по выходе в свет {24} . Очень вероятно, что во всей истории математики я - человек, введший в нашу науку самое большое число новых понятий, и тем самым одновременно тот, кто изобрел больше всех новых названий, стараясь, как мог, чтобы они выражали суть этих понятий не без тонкости и так, чтобы наводить на размышления.
Эти показатели, целиком «количественные», дают лишь грубое представление о моем труде, проходя мимо того, что действительно составляет душу, жизнь и силу. Как я только что говорил, лучшее из того вклада, что я внес в математику, суть новые точки зрения, которые мне удалось сначала угадать в темноте, а затем терпеливо извлечь на свет и развить в какой-то мере. Как и те понятия, о которых здесь шла речь, новые точки зрения, представленные в великом множестве весьма разнообразных ситуаций, числом своим приближаются к бесконечности.
Существуют, однако, более широкие точки зрения, которые сами по себе порождают и объединяют множество более частных, в огромном числе ситуаций совершенно различных. Такую точку зрения можно также назвать концепцией с полным на то основанием. В силу своей плодовитости она дает жизнь обильному потомству идей, которые наследуют ее плодовитость, но в большинстве своем (если не все до одной) менее обширны по значимости, чем материнская идея.
Что же до того, чтобы выразить идею, «высказать» то есть, то это часто почти такая же тонкая штука, как и само ее зачатие и медленное вынашивание в том, кого она осенила. Или, лучше сказать, этот тяжкий труд вынашивания и формирования есть не что иное, как процесс «выражения» идеи: труд, состоящий в том, чтобы терпеливо, день за днем, высвобождать ее из пелены тумана, что окружала ее с самого рождения, добиваясь понемногу придания ей осязаемой формы. Картина становится богаче красками, крепнет, ее рисунок делается резче и тоньше на протяжении недель, месяцев и лет. Просто назвать идею какой-нибудь выразительной формулировкой или ключевыми фразами, более или менее техническими, может быть делом нескольких строчек, даже страниц - но из тех, кто не знаком уже с ней достаточно хорошо, немногие смогут, услышав такое «имя», восстановить по нему лицо. И когда идея достигает полной зрелости, сотни страниц может оказаться достаточно, чтобы ее выразить, к полному удовлетворению работника, в чьей душе она зародилась - и точно так же может не хватить десяти тысяч страниц, тщательно взвешенных и обработанных {25} .
И в том, и в другом случае среди тех, кто берется ознакомиться с трудом, представляющим идею, которая встала наконец во весь свой рост, как большой строевой лес, вдруг возросший на пустынной земле - многие, можно поручиться, отчетливо увидят все деревья, стройные и могучие, и найдут им применение (кто захочет на них взобраться, кто станет выделывать из них балки и доски, а кто-то еще, нарубив дров, разожжет огонь у себя в камине…). И все же редки те, что сумеют увидеть лес.
8. Пожалуй, можно сказать, что «концепция» есть не просто новая точка зрения, показавшая себя плодотворной, но еще и такая, за которой, ее воплощением, входит в науку новая и широкая тема. И всякая наука, если понимать ее не как инструмент власти и могущества, но как путешествие-приключение человеческого сознания, предпринятое века тому назад - есть не что иное, как гармония богатая или бедная тонами, смотря по эпохе, которая разворачивается перед нами, пока мы размениваем столетья и поколения, изысканным контрапунктом всех этих тем, вступающих поочередно - словно бы призванных из небытия, чтобы, переплетясь друг с другом, слиться в ней воедино.
Среди многочисленных новых точек зрения, введенных мной в математику, есть, как видно в перспективе лет, двенадцать таких, которые я бы назвал концепциями {26} . Представить себе мой математический труд, его «почувствовать», значит увидеть и почувствовать мало-мальски хотя бы некоторые из идей и соответствующих им главных тем, составивших основу его и душу.
Силою обстоятельств некоторые из этих идей «главнее», чем другие (которые, в свою очередь, тем самым менее значительны). Иными словами, среди новых тем, о которых шла речь, попадаются те, что шире остальных, и те, что глубже проникают в сердце математических тайн {27} . Есть три (и не последние по масштабу, на мой взгляд),
1. Топологические тензорные произведения и ядерные пространства.
2. «Непрерывная» и «дискретная» двойственность (производные категории, «шесть операций»).
3. «Йога» Римана-Роха-Гротендика (К-теория, связь с теорией пересечений).
4. Схемы.
5. Топосы.
6. Этальные и /-адические когомологии.
7. Мотивы и мотивная группа Галуа ((^-категории Гротендика).
8. Кристаллы и кристальные когомологии, йога «коэффициентов де Рама», «коэффициентов Ходжа».
9. «Топологическая алгебра»: оо-стэки, derivateurs; когомологический формализм топосов как основа для новой гомотопической алгебры.
10. Ручная топология.
11. Нога анабелевой алгебраической геометрии, теория Галуа-Тейхмюллера.
12. «Теоретико-схемная», или «арифметическая» точка зрения на правильные многогранники и правильные конфигурации произвольного рода.
Если не считать первой из этих тем, важная часть которой вошла в мою диссертацию (1953), и которая получила развитие в период, когда я занимался функциональным анализом (с 1950 по 1955 г.), все одиннадцать остальных явились на свет в период моих занятий геометрией, начиная с 1955 г. которые, появившись только после моего ухода с математической сцены, находятся пока в зачаточном состоянии. «Официально» их даже не существует: ведь до сих пор не было не было ни одной выполненной по всем правилам публикации, которая стала бы для них свидетельством о рождении {28} {29} . Среди девяти тем, возникших до моего ухода, три последние, покинутые мною в разгаре роста, остаются еще и по сей день на младенческой стадии - за недостатком любящих рук, какие обеспечили бы всем необходимым этих «сироток», брошенных сводить счеты с враждебным миром {30} . Что же касается других шести, достигших полной зрелости за два десятилетия, предшествовавшие моему уходу -
сятой) и в то же время предоставила ключевое понятие для полнейшего обновления алгебраической геометрии и ее языка.
Напротив, первая и последняя из двенадцати тем кажутся мне по своему масштабу скромнее прочих. И все же, если говорить о последней, представившей новый взгляд на весьма древнюю проблему правильных многогранников и конфигураций - сомневаюсь, что математику, который ей одной посвятил бы себя душой и телом, хватило бы жизни на то, чтобы ее исчерпать. Что касается первой из всех этих тем, топологических тензорных произведений и ядерных пространств, то она скорее играет роль нового инструмента, готового к использованию, чем основы для последующей разработки. При всем том, однако, до меня еще долетают - вплоть до этих последних лет - отрывочные отклики более или менее недавних работ, отвечающих (двадцать или тридцать лет спустя) на некоторые из вопросов, которые я тогда оставил неразрешенными.
Наиболее глубокая (на мой взгляд) среди этих двенадцати - тема мотивов, то есть та, что теснейшим образом связала анабелеву алгебраическую геометрию с йогой Галуа-Тейхмюллера.
С точки зрения технических возможностей инструментов, совершенно готовых и отшлифованных моими стараниями, и повседневного применения на различных «передовых участках» исследования в течение двух последних десятилетий, схемы и этальные и l-адические когомологии представляются мне среди прочих наиболее значительными. Я думаю, что уже сейчас у достаточно осведомленного математика не может быть никаких сомнений в том, что инструмент теоретико-схемный, как и вышедший из него /-адический, вошли в число серьезных достижений века, исполнивших свежими силами и обновивших нашу науку в ходе последних поколений.
можно сказать, что (с точностью до одной-двух оговорок {30} ) они уже сейчас вошли в общую копилку, в чашу, полную опытом привычных знаний. Особенно в среде геометров «все-все-все» пьют из нее в наши дни, не замечая глотков (как это выходило у господина Журдена с прозой), ежедневно и ежечасно. Они стали как воздух, для тех, кто занимается геометрией - или арифметикой, алгеброй и анализом, хоть немного «геометрическими».
Эти двенадцать главных тем моего труда совсем не отделены друг от друга. Для меня они составляют вместе единство духа и цели, проходящее всегдашним настойчивым лейтмотивом музыкального фона через весь мой труд, как «записанный» черным по белому, так и не переложенный на слова. Сейчас, когда я пишу эти строки, мне словно бы слышится вновь - как призыв - нота, ведшая тему сквозь те три года бескорыстного («низачем»), страстного, уединенного труда, пора, когда меня еще не тревожил вопрос, есть ли где в мире математики, кроме меня: так сильны были чары, меня захватившие…
Это единство - не просто знак самого работника, отметивший все труды, что вышли из-под его руки. Темы связаны между собой бессчетным множеством нитей, тончайших и вместе с тем легко заметных. Они соединены и тесно перевиты друг с другом, но каждая из них распознается без труда, раскрываясь вдруг составной частью сложного контрапункта - в гармонии, которая собирает их всех в одно и придает любой из них смысл, живость движения и полноту, увлекая ее вперед в общем потоке. Каждая отдельная тема словно бы вышла из этой гармонии, и в ней же - ежесекундно - рождается вновь. Но ведь гармония сама, кажется, не более чем «сумма», «итог» составивших ее тем: в самом деле, они появились раньше. А я, сказать по правде, не могу побороть в себе чувства (без сомнения, нелепого), что каким-то образом именно эта гармония, еще не возникнув во плоти, но уже наверное ожидая своего часа внутри неведомого нам лона, среди других идей, готовых родиться - что она-то и побуждала выйти на свет одну за другой все эти темы, предназначенные обрести свой настоящий смысл лишь с ее появлением. И еще чудится мне, что именно ее голос, властный и настойчивый, взывал ко мне уже в те годы пылкого, зачарованного одиночества - на самом пороге моей юности…
Как бы то ни было, двенадцать ключевых тем моего труда все вместе, словно повинуясь тайному велению рока, сложились в одну симфонию - или, если взять другой образ, каждая из них оказалась воплощением одной из точек зрения, в совокупности составивших единое широкое видение.
Видение это начало выступать из тумана, а очертания его - становиться узнаваемыми, не раньше, чем к 1957-1958 гг., годам напряженного вынашивания идей {31} . Кажется странным, но это видение было настолько мне близко, до того ясно и несомненно, что раньше, чем год назад {32} , я и не задумывался о том, чтобы дать ему имя. (А ведь как раз одно из моих пристрастий - называть вещи, мной обнаруженные: это первейший способ в них разобраться…) Правда, что я не смог бы конкретно указать момент, пережитый мною как внезапное рождение
321957 г. - тот самый, когда мне удалось настичь по горячему следу тему «Римана-Роха» (версия Гротендика), которая сразу же принесла мне «всеобщую известность». Это также год смерти моей матери, то есть резко выделенный в моей жизни - и один из наиболее интенсивно творческих, причем не на одной только математической ниве. Двенадцать лет уже шло тому, как все мои силы были вложены в математику. И я вдруг ясно почувствовал, что мои занятия сделали почти «полный оборот» по кругу, так что на часах, пожалуй, время их оставить и взяться за что-то другое. Очевидно, то была потребность духовного обновления, впервые тогда ко мне подступившая. Я собрался было стать писателем, и на многие месяцы прекратил всякую деятельность, связанную с математикой. Под конец я решил, что запишу черным по белому хотя бы те математические работы, какие у меня уже были начаты; без сомнения, дело нескольких месяцев, года самое большее…