Страница:
Что же обнаружилось? Когда микробы стали размножаться в искусственной кислоте, направление поляризации проходящего света все более и более поворачивалось. Естественная кислота поворачивала плоскость поляризации направо, а синтезированная после размножения микробов стала поворачивать налево! Каковы же были волнение и радость Пастера, когда его догадка подтвердилась таким неожиданным способом! Пожалуй, зто единственный случай в истории физики, когда открытие было сделано с помощью микробов.
Так Пастер блестяще доказал свою гипотезу и показал, что уже низшие организмы имеют приспособления, различающие две зеркальные формы. Тот факт, что при любом способе искусственного получения вещества обе зеркальные формы появляются в одинаковом количестве, лишний раз подтверждает, что процессы симметричны относительно зеркального отражения.
Зеркальная асимметрия в живой природе объясняется, по-видимому, не нарушением зеркальной симметрии, а историческими причинами. Возможно, в той части Земли, где впервые возникла жизнь, случайно оказалось, скажем, больше «правого» строительного материала, и поэтому возникла одна из живых зеркальных форм, которая потом наследовалась.
Различие распространенности правых и левых минералов можно объяснить, предположив, что во время их образования в окружающем веществе были сильные скручивающие напряжения, или, если это была жидкость, сильные вихревые движения. Одна из возможных причин асимметрии - вращение Земли - дает пренебрежимо малое преимущество одной из зеркальных форм по сравнению с другой. Нарушение зеркальной симметрии, вызванное слабыми взаимодействиями, как мы видели, очень мало и вряд ли способно объяснить большое различие в распространенности правых и левых минералов.
Итак, до недавнего времени физики были убеждены, что все законы природы в нашем мире и в зеркальном будут одинаковы. От этого убеждения пришлось отказаться.
Нарушение зеркальной симметрии в слабых взаимодействиях
Примерно тридцать лет назад возникли первые противоречия. Была обнаружена частица - заряженный К-мезон, - которая может распадаться либо на две, либо на три другие частицы - пи-мезоны. Анализ опытов привел физиков к заключению, что здесь нарушается зеркальная симметрия. Закон зеркальной симметрии запрещает К-мезону распадаться обоими способами.
Дело в том, что зеркальная симметрия, как и рассмотренные ранее симметрии относительно сдвигов и поворотов в пространстве-времени, приводит к закону сохранения. Сохраняется величина, которая называется «четностью». Согласно квантовой механике поведение частицы описывается так называемой «волновой функцией». Физические величины выражаются через эту функцию квадратично. По закону зеркальной симметрии свойства частиц не должны изменяться при зеркальном отражении, но это не относится к волновой функции. Например, она может изменить знак. Когда волновая функция не изменяет знака при зеркальном отражении, состояние называется «четным», а когда изменяется - «нечетным». Таким образом, если есть зеркальная симметрия, каждая частица имеет определенную четность. Теперь можно пояснить затруднение, возникшее с К-частицей. Пи-мезон - нечетная частица, то есть в состоянии покоя его волновая функция изменяет знак при отражении. Если К-мезон четный, он может распадаться только на две нечетные частицы, а если нечетный - то только на три. Мы немного упростили рассуждение, но недалеко ушли от истины, надо было бы еще убедиться, что четность вылетающих частиц не изменяется от их движения.
Самый решительный удар по закону зеркальной симметрии был нанесен в 1956 году блестящим опытом по изучению р-распада кобальта, поставленным группой американских физиков (Цзинь-сян By и др.). Кобальт
при низкой температуре был помещен в сильное магнитное поле. При этом ядра поляризуются - их спины (о спине мы еще поговорим) ориентируются вдоль магнитного поля. При \beta-распаде из ядер кобальта вылетают электроны и антинейтрино. Обнаружилось, что электроны вылетают преимущественно под тупыми углами к направлению магнитного поля. Между тем, по закону зеркальной симметрии острые и тупые углы должны были бы встречаться одинаково часто.
Действительно, посмотрим на отражение этой установки в зеркале. Магнитное поле изменит свое направление по отношению к отраженным предметам на обратное, как винт, который при отражении из правого превращается в левый. Ведь направление магнитного поля определяется из направления тока в катушке, создающей поле, как раз по правилу винта. Поэтому тупые углы к направлению магнитного поля в зеркале превратятся в острые, следовательно, зеркальное изображение опыта выглядит не так, как сам опыт, в прямом противоречии с законом зеркальной симметрии.
Наступил период смятения. Физики стали сомневаться и в других свойствах симметрии нашего пространства. Как казалось в то время, выход из тупика нашли в 1957 году советский физик Л. Д. Ландау и американские Цзун-дао Ли и Чжень-нин Янг. Они предположили, что частицы (электроны, нейтрино, нуклоны), участвующие в р-распаде, зеркально асимметричны; симметрия восстанавливается, только если перейти от частиц к античастицам. Теперь при отражении в зеркале вся картина изменится - не только тупые углы перейдут в острые, но и частицы не перейдут семи в себя. Таким образом, зеркальная симметрия пространства не нарушается, а асимметрия слабого взаимодействия определяется асимметрией участвующих частиц. Существование в нашем мире асимметричных частиц не противоречит симметрии пространства, так же как ей не противоречит асимметрия живых объектов.
Зарядово-зеркальная симметрия. Антимиры
ВНУТРЕННЯЯ СИММЕТРИЯ
Изотопическая симметрия
ИСТОРИЯ ОДНОЙ СИММЕТРИИ
Так Пастер блестяще доказал свою гипотезу и показал, что уже низшие организмы имеют приспособления, различающие две зеркальные формы. Тот факт, что при любом способе искусственного получения вещества обе зеркальные формы появляются в одинаковом количестве, лишний раз подтверждает, что процессы симметричны относительно зеркального отражения.
Зеркальная асимметрия в живой природе объясняется, по-видимому, не нарушением зеркальной симметрии, а историческими причинами. Возможно, в той части Земли, где впервые возникла жизнь, случайно оказалось, скажем, больше «правого» строительного материала, и поэтому возникла одна из живых зеркальных форм, которая потом наследовалась.
Различие распространенности правых и левых минералов можно объяснить, предположив, что во время их образования в окружающем веществе были сильные скручивающие напряжения, или, если это была жидкость, сильные вихревые движения. Одна из возможных причин асимметрии - вращение Земли - дает пренебрежимо малое преимущество одной из зеркальных форм по сравнению с другой. Нарушение зеркальной симметрии, вызванное слабыми взаимодействиями, как мы видели, очень мало и вряд ли способно объяснить большое различие в распространенности правых и левых минералов.
Итак, до недавнего времени физики были убеждены, что все законы природы в нашем мире и в зеркальном будут одинаковы. От этого убеждения пришлось отказаться.
Нарушение зеркальной симметрии в слабых взаимодействиях
Примерно тридцать лет назад возникли первые противоречия. Была обнаружена частица - заряженный К-мезон, - которая может распадаться либо на две, либо на три другие частицы - пи-мезоны. Анализ опытов привел физиков к заключению, что здесь нарушается зеркальная симметрия. Закон зеркальной симметрии запрещает К-мезону распадаться обоими способами.
Дело в том, что зеркальная симметрия, как и рассмотренные ранее симметрии относительно сдвигов и поворотов в пространстве-времени, приводит к закону сохранения. Сохраняется величина, которая называется «четностью». Согласно квантовой механике поведение частицы описывается так называемой «волновой функцией». Физические величины выражаются через эту функцию квадратично. По закону зеркальной симметрии свойства частиц не должны изменяться при зеркальном отражении, но это не относится к волновой функции. Например, она может изменить знак. Когда волновая функция не изменяет знака при зеркальном отражении, состояние называется «четным», а когда изменяется - «нечетным». Таким образом, если есть зеркальная симметрия, каждая частица имеет определенную четность. Теперь можно пояснить затруднение, возникшее с К-частицей. Пи-мезон - нечетная частица, то есть в состоянии покоя его волновая функция изменяет знак при отражении. Если К-мезон четный, он может распадаться только на две нечетные частицы, а если нечетный - то только на три. Мы немного упростили рассуждение, но недалеко ушли от истины, надо было бы еще убедиться, что четность вылетающих частиц не изменяется от их движения.
Самый решительный удар по закону зеркальной симметрии был нанесен в 1956 году блестящим опытом по изучению р-распада кобальта, поставленным группой американских физиков (Цзинь-сян By и др.). Кобальт
при низкой температуре был помещен в сильное магнитное поле. При этом ядра поляризуются - их спины (о спине мы еще поговорим) ориентируются вдоль магнитного поля. При \beta-распаде из ядер кобальта вылетают электроны и антинейтрино. Обнаружилось, что электроны вылетают преимущественно под тупыми углами к направлению магнитного поля. Между тем, по закону зеркальной симметрии острые и тупые углы должны были бы встречаться одинаково часто.
Действительно, посмотрим на отражение этой установки в зеркале. Магнитное поле изменит свое направление по отношению к отраженным предметам на обратное, как винт, который при отражении из правого превращается в левый. Ведь направление магнитного поля определяется из направления тока в катушке, создающей поле, как раз по правилу винта. Поэтому тупые углы к направлению магнитного поля в зеркале превратятся в острые, следовательно, зеркальное изображение опыта выглядит не так, как сам опыт, в прямом противоречии с законом зеркальной симметрии.
Наступил период смятения. Физики стали сомневаться и в других свойствах симметрии нашего пространства. Как казалось в то время, выход из тупика нашли в 1957 году советский физик Л. Д. Ландау и американские Цзун-дао Ли и Чжень-нин Янг. Они предположили, что частицы (электроны, нейтрино, нуклоны), участвующие в р-распаде, зеркально асимметричны; симметрия восстанавливается, только если перейти от частиц к античастицам. Теперь при отражении в зеркале вся картина изменится - не только тупые углы перейдут в острые, но и частицы не перейдут семи в себя. Таким образом, зеркальная симметрия пространства не нарушается, а асимметрия слабого взаимодействия определяется асимметрией участвующих частиц. Существование в нашем мире асимметричных частиц не противоречит симметрии пространства, так же как ей не противоречит асимметрия живых объектов.
Зарядово-зеркальная симметрия. Антимиры
До этих опытов физики считали, что законы природы не изменяются, если все заряды заменить на обратные. Это свойство законов природы называется зарядовой симметрией.
Все уравнения физики наряду с частицами допускают существование античастиц. И такие античастицы (позитрон, антипротон, антинейтрон и т. д.) действительно были обнаружены. Подобно ядру любого химического элемента, состоящему из протонов и нейтронов, можно составить ядро соответствующего антиэлемента из антипротонов и антинейтронов. Если к такому антиядру, заряженному отрицательно, добавить позитроны, то получится антиатом, а из антиатомов можно образовать антивещество. Силы между античастицами равны силам между частицами, поэтому антивещество будет обладать теми же свойствами, что и вещество.
Теперь, для того чтобы учесть свойства слабого взаимодействия, закон зарядовой симметрии пришлось уточнить - природа обладает не зарядовой, а зарядово-зер-калыюй симметрией. Никакие законы природы не изменятся, если все заряды в мире изменить на обратные и одновременно произвести зеркальное отражение.
Антимир отличается от нашего мира не только знаком зарядов. В таком мире изменяется понятие правого и левого: антимир - зеркальное отражение нашего мира. Люди этого мира, если бы они проходили ту же историческую эволюцию, что и мы, имели бы сердце с правой стороны. Более сильная рука у них была бы левая. Замечательный американский физик Ричард Фейнман в своих лекциях говорит: «Если в космическом пространстве вы встретите корабль, идущий из далекого мира, н космонавт протянет вам левую руку, - берегитесь, возможно, он состоит из антивещества!»
Существуют ли в нашей Вселенной антимиры, то есть
области антивещества? Этот вопрос пока остается без окончательного ответа, хотя большинство астрофизиков полагает, что антимиров нет. Если бы они существовали, то на границах вещества и антивещества происходила бы аннигиляция электронов и позитронов, то есть превращение электрона и позитрона в два кванта; энергия каждого из квантов должна равняться энергии покоя электрона (0,5 МэВ). Во Вселенной должны были бы присутствовать в большом количестве кванты с энергией 0,5 МэВ. Между тем таких квантов нет.
Итак, Ландау и Ли-Янг предположили, что законы природы обладают зарядово-зеркальной симметрией.
Но и эта симметрия оказалась неточной. В опытах по распаду того же злополучного К-мезона, который принес первые неприятности с нарушением зеркальной симметрии, было обнаружено небольшое, но колоссально важное, с принципиальной точки зрения, нарушение закона зарядово-зеркальной симметрии.
Означает ли это, что наше пространство не симметрично, или же опять нарушение есть свойство частиц, а не пространства?
Любое важное открытие вначале нарушает красоту и порядок, но через некоторое время приводит к еще более стройной картине.
Поэтому лучше подождать с ответом на вопрос, поставленный в заглавии раздела.
Все уравнения физики наряду с частицами допускают существование античастиц. И такие античастицы (позитрон, антипротон, антинейтрон и т. д.) действительно были обнаружены. Подобно ядру любого химического элемента, состоящему из протонов и нейтронов, можно составить ядро соответствующего антиэлемента из антипротонов и антинейтронов. Если к такому антиядру, заряженному отрицательно, добавить позитроны, то получится антиатом, а из антиатомов можно образовать антивещество. Силы между античастицами равны силам между частицами, поэтому антивещество будет обладать теми же свойствами, что и вещество.
Теперь, для того чтобы учесть свойства слабого взаимодействия, закон зарядовой симметрии пришлось уточнить - природа обладает не зарядовой, а зарядово-зер-калыюй симметрией. Никакие законы природы не изменятся, если все заряды в мире изменить на обратные и одновременно произвести зеркальное отражение.
Антимир отличается от нашего мира не только знаком зарядов. В таком мире изменяется понятие правого и левого: антимир - зеркальное отражение нашего мира. Люди этого мира, если бы они проходили ту же историческую эволюцию, что и мы, имели бы сердце с правой стороны. Более сильная рука у них была бы левая. Замечательный американский физик Ричард Фейнман в своих лекциях говорит: «Если в космическом пространстве вы встретите корабль, идущий из далекого мира, н космонавт протянет вам левую руку, - берегитесь, возможно, он состоит из антивещества!»
Существуют ли в нашей Вселенной антимиры, то есть
области антивещества? Этот вопрос пока остается без окончательного ответа, хотя большинство астрофизиков полагает, что антимиров нет. Если бы они существовали, то на границах вещества и антивещества происходила бы аннигиляция электронов и позитронов, то есть превращение электрона и позитрона в два кванта; энергия каждого из квантов должна равняться энергии покоя электрона (0,5 МэВ). Во Вселенной должны были бы присутствовать в большом количестве кванты с энергией 0,5 МэВ. Между тем таких квантов нет.
Итак, Ландау и Ли-Янг предположили, что законы природы обладают зарядово-зеркальной симметрией.
Но и эта симметрия оказалась неточной. В опытах по распаду того же злополучного К-мезона, который принес первые неприятности с нарушением зеркальной симметрии, было обнаружено небольшое, но колоссально важное, с принципиальной точки зрения, нарушение закона зарядово-зеркальной симметрии.
Означает ли это, что наше пространство не симметрично, или же опять нарушение есть свойство частиц, а не пространства?
Любое важное открытие вначале нарушает красоту и порядок, но через некоторое время приводит к еще более стройной картине.
Поэтому лучше подождать с ответом на вопрос, поставленный в заглавии раздела.
ВНУТРЕННЯЯ СИММЕТРИЯ
…от явлений к законам природы, от законов природы к симметрии…
Е. В и г н е р
Нам предстоит обсудить еще один тип симметрии, так же оплодотворяющий современную физику, как и пространственные.
Существуют «внутренние симметрии», которые означают неизменность явлений не при отражениях, сдвигах или поворотах в пространстве, а при изменении некоторых внутренних свойств полей или частиц. Так, сильные взаимодействия слабо зависят от заряда участвующих частиц, это свойство позволяет установить «изотопическую симметрию сильных взаимодействий» - пример внутренней симметрии.
Каждая внутренняя симметрия, так же как и пространственная, приводит к своему закону сохранения, и наоборот - когда какая-либо величина сохраняется во многих явлениях, это, как правило, означает, что существует симметрия, обеспечивающая сохранение. Например, электрический заряд сохраняется во всех известных явлениях природы. Симметрия, которая соответствует этому закону сохранения, называется калибровочной инвариантностью. Она пронизывает не только электродинамику, но и всю современную теоретическую физику. Поэтому о ней следует поговорить подробнее.
Электромагнитные поля, взаимодействующие с заряженными частицами, удобно описывать с помощью так называемых «векторных потенциалов». Между тем силы, действующие на заряженные тела, определяются не непосредственно векторным потенциалом, а напряжен-ностями электрического и магнитного полей. Эти поля выражаются через разности значений векторного потенциала в соседних точках (через «градиенты» векторного потенциала). Можно изменять векторный потенциал, не изменяя при этом напряженности полей. Калнбро
Калибровочная инвариантность
вочная инвариантность, или калибровочная симметрия, означает, что никакие электродинамические явления не изменяются при тех изменениях векторного потенциала, которые сохраняют значения электрического и магнитного полей в каждой точке пространства-времени. Следствия этого свойства электродинамики выполняются на опыте с большой точностью. Какие же изменения векторного потенциала допустимы? Самое простое - добавление к векторному потенциалу постоянного слагаемого, не зависящего от координат. От этого разности значений векторного потенциала не изменятся, и, значит, напряженности будут прежними. Но, оказывается, векторный потенциал допускает гораздо больший произвол - к нему можно добавить определенным образом подобранную функцию от координат и времени без того, чтобы изменились электрические и магнитные поля.
Калибровочная инвариантность должна выполняться в каждой точке пространства, это локальная симметрия.
Калибровочная инвариантность обеспечивает сохранение полного заряда не только во всем пространстве, но и в каждой точке. Заряды могут только перетекать, они не могут исчезнуть в одной области пространства и появиться в другой без того, чтобы возник электрический ток, переносящий заряды.
Хорошо проверенный на опыте закон Кулона тоже есть следствие калибровочной инвариантности, даже малое нарушение этого требования изменило бы закон распространения длинных радиоволн, что противоречило бы нашему повседневному опыту.
Требование калибровочной симметрии было определяющим при создании квантовой электродинамики, в которой законы квантовой механики применяются не только к частицам, но и к самому электромагнитному полю.
Понимание калибровочной инвариантности особенно обогатилось после создания квантовой механики. Волновые функции заряженных частиц изменяются при калибровочном изменении векторного потенциала таким образом, чтобы оставались неизменными уравнения движения всей системы - полей и взаимодействующих с ними частиц. Такая обобщенная калибровочная инвариантность приводит к громадному количеству наблюдаемых следствий.
Неотличимость одинаковых частиц
Не менее важная симметрия возникает как следствие принципиальной неотличимости одинаковых частиц. Никакие физические явления не должны изменяться при перестановке двух одинаковых частиц, например, двух электронов или двух нейтронов. Это требование называется «перестановочной симметрией тождественных объектов».
Два туриста, боясь перепутать одинаковые палки, выкрасили их в разные цвета. Но тут же поняли, что достаточно было покрасить лишь одну. Если же подумать еще немного, то станет ясно, что в покраске нет необходимости - два идеально одинаковых предмета спутать нельзя. Марк Твен, рассказывая о своем брате-близнеце, утонувшем в корыте, замечает: «Никто так и не узнал, кто на самом деле утонул, я или мой брат». Ведь если они действительно одинаковы, нет способа установить замену. Это непроверяемое, а значит, ненаучное утверждение. Вспомним наши рассуждения о ненаучных вопросах в главе «О психологии научного творчества».
В квантовой механике состояние системы описывается волновой функцией. Физические величины выражаются через эту функцию квадратично. Поэтому есть две возможности, не нарушающие перестановочную симметрию: во-первых, при перестановке частиц волновая функция не изменяется; и во-вторых, волновая функция изменяет знак при такой перестановке.
В работе, оказавшей огромное влияние на всю последующую физику, Вольфганг Паули показал, что первая возможность осуществляется для частиц с целым спином, а вторая - для частиц с полуцелым спином*
Но поясним, что такое спин частицы.
Элементарные частицы можно представить себе как маленькие вращающиеся волчки. Они характеризуются своим моментом количества движения. Как мы увидим в следующей главе, согласно квантовой механике угловой момент системы может принимать не любые значения, он изменяется скачками величины h (h - та самая постоянная Планка, которая определяет скачки в энергии электромагнитного поля и о которой мы говорили во второй главе, рассуждая о физических парадоксах). Угловой момент естественно измерять в единицах h, и такой момент называется «спином». Он может принимать целые или полуцелые значения. Так, спин электрона в атоме водорода в основном состоянии равен 1/2, а в возбужденных состояниях принимает значения 1/2, 3/2, 5/2… Спин атома гелия в основном состоянии 0, а в возбужденных: 0, 1, 2, 3… Спин покоящихся электрона, нейтрона, протона равен 1/2.
Дискретность возможных значений момента количества движения совершенно незаметна в обычной жизни, так как h очень мало (h = 10^{-27} в системе CGS). Проекции момента на какую-либо ось тоже принимают значения, отличающиеся на h. Так как проекция вектора на ось, скажем, z есть его длина, помноженная на косинус угла между вектором и осью г, то и угол может принимать только дискретные значения. Таким образом, квантовый волчок может наклоняться не под любыми углами. Разумеется, и эта дискретность находится так же далеко за пределами измерительных возможностей обычной механики.
Иное дело - малые объекты - атомы и молекулы, электроны и нуклоны. Там дискретность возможных значений вектора момента и его проекции проверяется непосредственно. Так, проекция спина 1/2 может принимать только два значения: 1/2 и -1/2, и здесь дискретность очень заметна. Частица со спином 1 имеет только три возможных проекции: +1,0,- 1. Число проекций возрастает с увеличением спина. У тел с макроскопическим моментом, то есть с огромным спином, значений проекций момента так много, что дискретность невозможно заметить.
Самый простой способ найти спин - это определить число его проекций. Число проекций у частиц со спином 1 равно 21+1. Кроме того, спин частицы влияет на зависимость сечения рассеяния от угла отклонения.
Таким образом, волновая функция изменяет знак при перестановке, скажем, двух электронов (спин электрона равен 1/2) и не изменяется при перестановке двух пи-мезонов (спин пи-мезона равен нулю). Теперь уже нетрудно понять принцип «запрета Паули», относящийся к частицам с полуцелым спином: если две частицы с полуцелым спином находятся в одинаковом состоянии, то их перестановка не может изменить волновую функцию. Между тем, по теореме Паули, волновая функция должна была бы изменить знак. Следовательно, такая волновая функция равна нулю. Но волновая функция определяет вероятность нахождения частицы в данном состоянии: если она равна нулю, значит, такое состояние невозможно - две частицы с полуцелым спином не могут находиться в одинаковом состоянии.
Е. В и г н е р
Нам предстоит обсудить еще один тип симметрии, так же оплодотворяющий современную физику, как и пространственные.
Существуют «внутренние симметрии», которые означают неизменность явлений не при отражениях, сдвигах или поворотах в пространстве, а при изменении некоторых внутренних свойств полей или частиц. Так, сильные взаимодействия слабо зависят от заряда участвующих частиц, это свойство позволяет установить «изотопическую симметрию сильных взаимодействий» - пример внутренней симметрии.
Каждая внутренняя симметрия, так же как и пространственная, приводит к своему закону сохранения, и наоборот - когда какая-либо величина сохраняется во многих явлениях, это, как правило, означает, что существует симметрия, обеспечивающая сохранение. Например, электрический заряд сохраняется во всех известных явлениях природы. Симметрия, которая соответствует этому закону сохранения, называется калибровочной инвариантностью. Она пронизывает не только электродинамику, но и всю современную теоретическую физику. Поэтому о ней следует поговорить подробнее.
Электромагнитные поля, взаимодействующие с заряженными частицами, удобно описывать с помощью так называемых «векторных потенциалов». Между тем силы, действующие на заряженные тела, определяются не непосредственно векторным потенциалом, а напряжен-ностями электрического и магнитного полей. Эти поля выражаются через разности значений векторного потенциала в соседних точках (через «градиенты» векторного потенциала). Можно изменять векторный потенциал, не изменяя при этом напряженности полей. Калнбро
Калибровочная инвариантность
вочная инвариантность, или калибровочная симметрия, означает, что никакие электродинамические явления не изменяются при тех изменениях векторного потенциала, которые сохраняют значения электрического и магнитного полей в каждой точке пространства-времени. Следствия этого свойства электродинамики выполняются на опыте с большой точностью. Какие же изменения векторного потенциала допустимы? Самое простое - добавление к векторному потенциалу постоянного слагаемого, не зависящего от координат. От этого разности значений векторного потенциала не изменятся, и, значит, напряженности будут прежними. Но, оказывается, векторный потенциал допускает гораздо больший произвол - к нему можно добавить определенным образом подобранную функцию от координат и времени без того, чтобы изменились электрические и магнитные поля.
Калибровочная инвариантность должна выполняться в каждой точке пространства, это локальная симметрия.
Калибровочная инвариантность обеспечивает сохранение полного заряда не только во всем пространстве, но и в каждой точке. Заряды могут только перетекать, они не могут исчезнуть в одной области пространства и появиться в другой без того, чтобы возник электрический ток, переносящий заряды.
Хорошо проверенный на опыте закон Кулона тоже есть следствие калибровочной инвариантности, даже малое нарушение этого требования изменило бы закон распространения длинных радиоволн, что противоречило бы нашему повседневному опыту.
Требование калибровочной симметрии было определяющим при создании квантовой электродинамики, в которой законы квантовой механики применяются не только к частицам, но и к самому электромагнитному полю.
Понимание калибровочной инвариантности особенно обогатилось после создания квантовой механики. Волновые функции заряженных частиц изменяются при калибровочном изменении векторного потенциала таким образом, чтобы оставались неизменными уравнения движения всей системы - полей и взаимодействующих с ними частиц. Такая обобщенная калибровочная инвариантность приводит к громадному количеству наблюдаемых следствий.
Неотличимость одинаковых частиц
Не менее важная симметрия возникает как следствие принципиальной неотличимости одинаковых частиц. Никакие физические явления не должны изменяться при перестановке двух одинаковых частиц, например, двух электронов или двух нейтронов. Это требование называется «перестановочной симметрией тождественных объектов».
Два туриста, боясь перепутать одинаковые палки, выкрасили их в разные цвета. Но тут же поняли, что достаточно было покрасить лишь одну. Если же подумать еще немного, то станет ясно, что в покраске нет необходимости - два идеально одинаковых предмета спутать нельзя. Марк Твен, рассказывая о своем брате-близнеце, утонувшем в корыте, замечает: «Никто так и не узнал, кто на самом деле утонул, я или мой брат». Ведь если они действительно одинаковы, нет способа установить замену. Это непроверяемое, а значит, ненаучное утверждение. Вспомним наши рассуждения о ненаучных вопросах в главе «О психологии научного творчества».
В квантовой механике состояние системы описывается волновой функцией. Физические величины выражаются через эту функцию квадратично. Поэтому есть две возможности, не нарушающие перестановочную симметрию: во-первых, при перестановке частиц волновая функция не изменяется; и во-вторых, волновая функция изменяет знак при такой перестановке.
В работе, оказавшей огромное влияние на всю последующую физику, Вольфганг Паули показал, что первая возможность осуществляется для частиц с целым спином, а вторая - для частиц с полуцелым спином*
Но поясним, что такое спин частицы.
Элементарные частицы можно представить себе как маленькие вращающиеся волчки. Они характеризуются своим моментом количества движения. Как мы увидим в следующей главе, согласно квантовой механике угловой момент системы может принимать не любые значения, он изменяется скачками величины h (h - та самая постоянная Планка, которая определяет скачки в энергии электромагнитного поля и о которой мы говорили во второй главе, рассуждая о физических парадоксах). Угловой момент естественно измерять в единицах h, и такой момент называется «спином». Он может принимать целые или полуцелые значения. Так, спин электрона в атоме водорода в основном состоянии равен 1/2, а в возбужденных состояниях принимает значения 1/2, 3/2, 5/2… Спин атома гелия в основном состоянии 0, а в возбужденных: 0, 1, 2, 3… Спин покоящихся электрона, нейтрона, протона равен 1/2.
Дискретность возможных значений момента количества движения совершенно незаметна в обычной жизни, так как h очень мало (h = 10^{-27} в системе CGS). Проекции момента на какую-либо ось тоже принимают значения, отличающиеся на h. Так как проекция вектора на ось, скажем, z есть его длина, помноженная на косинус угла между вектором и осью г, то и угол может принимать только дискретные значения. Таким образом, квантовый волчок может наклоняться не под любыми углами. Разумеется, и эта дискретность находится так же далеко за пределами измерительных возможностей обычной механики.
Иное дело - малые объекты - атомы и молекулы, электроны и нуклоны. Там дискретность возможных значений вектора момента и его проекции проверяется непосредственно. Так, проекция спина 1/2 может принимать только два значения: 1/2 и -1/2, и здесь дискретность очень заметна. Частица со спином 1 имеет только три возможных проекции: +1,0,- 1. Число проекций возрастает с увеличением спина. У тел с макроскопическим моментом, то есть с огромным спином, значений проекций момента так много, что дискретность невозможно заметить.
Самый простой способ найти спин - это определить число его проекций. Число проекций у частиц со спином 1 равно 21+1. Кроме того, спин частицы влияет на зависимость сечения рассеяния от угла отклонения.
Таким образом, волновая функция изменяет знак при перестановке, скажем, двух электронов (спин электрона равен 1/2) и не изменяется при перестановке двух пи-мезонов (спин пи-мезона равен нулю). Теперь уже нетрудно понять принцип «запрета Паули», относящийся к частицам с полуцелым спином: если две частицы с полуцелым спином находятся в одинаковом состоянии, то их перестановка не может изменить волновую функцию. Между тем, по теореме Паули, волновая функция должна была бы изменить знак. Следовательно, такая волновая функция равна нулю. Но волновая функция определяет вероятность нахождения частицы в данном состоянии: если она равна нулю, значит, такое состояние невозможно - две частицы с полуцелым спином не могут находиться в одинаковом состоянии.
Изотопическая симметрия
Один из простых примеров внутренней симметрии - «изотопическая инвариантность сильных взаимодействий» - подтвердился многочисленными экспериментами и оказался очень важным для построения теории ядра. Бросается в глаза необыкновенное сходство некоторых частиц, например, нейтрона и протона, или положительного, отрицательного и нейтрального пи-мезонов. Нейтрон и протон практически отличаются только зарядом, их масса совпадает с точностью до 0,1 процента, и они одинаково взаимодействуют с другими частицами. Спин протона и нейтрона одинаков и равен 1/2. То же самое относится и к трем пи-мезонам: у них не только близкие массы, не только одинаковый, равный нулю, спин, но и одинаковое взаимодействие с нуклонами.
Это сходство навело на мысль, что нейтрон и протон есть как бы два состояния одной и той же частицы. Три пи-мезона - это тоже одна частица, которая может находиться уже не в двух, а в трех изотопических состояниях.
Введем новое понятие - изотопический спин (изо-спин), и пусть его свойства напоминают обычный спин, тогда изоспин 1 будет иметь три проекции, а изоспин - 1/2 - две. У нуклона два изотопических состояния, следовательно, его изоспин равен 1/2, а протон и нейтрон соответствуют двум проекциям 1/2 и -1/2. У пи-мезона изотопический спин 1. Положительный, отрицательный и нейтральный пи-мезоны соответствуют трем проекциям изоспина 1. Таким образом, сильные взаимодействия обладают свойством изотопической инвариантности, они не зависят от того, в каком изотопическом состоянии находятся взаимодействующие частицы.
Изотопическая симметрия неточна: частицы разных зарядов имеют хоть и близкие, но неравные массы.
Странность
Создание мощных ускорителей и чувствительных методов обнаружения привело к открытию огромного количества новых частиц. Они рождаются при столкновениях нуклонов или обнаруживаются по их влиянию на рассеяние. Прежде всего обнаружились «странные» частицы. Их странность в том, что они рождаются не поодиночке, как пи-мезоны, а только парами - частица с античастицей. Чтобы объяснить это свойство, пришлось приписать частицам, помимо спина и изоспина, еще одно число - «странность». Так, лямбда-частица имеет странность -1, а антилямбда +1. У пары частица-античастица странность равна нулю. Теперь легко понять, почему лямбды рождаются только парами. Достаточно предположить, что странность сохраняется и что у нуклона и пи-мезона странность равна нулю, чтобы рождение одиночной лямбда-частицы стало невозможным в реакциях с участием нуклонов и пи-мезонов. В остальном лямбда очень похожа на нуклон.
Все сильновзаимодействующие частицы (адроны) обладают еще одним свойством: число барионов не изменяется при их (адронных) столкновениях, барионы могут только переходить друг в друга: точнее, не изменяется разность барионов и антибарионов. Это свойство можно сформулировать как закон сохранения барионного заряда, достаточно лишь приписать каждому бариону барионный заряд 1, а антибариону -1. Барионный заряд пи-мезонов, которые могут рождаться в любом количестве, следует считать равным нулю.
Вскоре обнаружились и другие странные частицы. Для включения их в одно семейство с нуклоном или с пионом (в случае барионного заряда, равного нулю) понадобилось усложнение изотопической симметрии. Нужно было предположить более широкую симметрию, включающую странные частицы. Обнаружились два больших семейства сильновзаимодействующих частиц: барионы и мезоны. Барионы имеют полуцелый спин (1/2,3/2…) и барионный заряд 1, мезоны - целый спин (0, 1, 2…) и не имеют барионного заряда. Семейство барионов разбилось на две группы с близкими свойствами. Барионы одной из них (их восемь) имеют спин 1/2; в другой группе десять частиц, и спин их 3/2. Аналогично мезоны с нулевым спином образуют восьмерку схожих часгиц.
Изобилие частиц, обнаруженных в результате успехов теоретической и экспериментальной физики, не радовало, а только озадачивало теоретиков. Начались попытки найти праматерию или прачастицы, с тем чтобы все обилие наблюдаемых частиц получалось бы из комбинаций нескольких элементарных, или, говоря осторожнее, более элементарных частиц.
Это сходство навело на мысль, что нейтрон и протон есть как бы два состояния одной и той же частицы. Три пи-мезона - это тоже одна частица, которая может находиться уже не в двух, а в трех изотопических состояниях.
Введем новое понятие - изотопический спин (изо-спин), и пусть его свойства напоминают обычный спин, тогда изоспин 1 будет иметь три проекции, а изоспин - 1/2 - две. У нуклона два изотопических состояния, следовательно, его изоспин равен 1/2, а протон и нейтрон соответствуют двум проекциям 1/2 и -1/2. У пи-мезона изотопический спин 1. Положительный, отрицательный и нейтральный пи-мезоны соответствуют трем проекциям изоспина 1. Таким образом, сильные взаимодействия обладают свойством изотопической инвариантности, они не зависят от того, в каком изотопическом состоянии находятся взаимодействующие частицы.
Изотопическая симметрия неточна: частицы разных зарядов имеют хоть и близкие, но неравные массы.
Странность
Создание мощных ускорителей и чувствительных методов обнаружения привело к открытию огромного количества новых частиц. Они рождаются при столкновениях нуклонов или обнаруживаются по их влиянию на рассеяние. Прежде всего обнаружились «странные» частицы. Их странность в том, что они рождаются не поодиночке, как пи-мезоны, а только парами - частица с античастицей. Чтобы объяснить это свойство, пришлось приписать частицам, помимо спина и изоспина, еще одно число - «странность». Так, лямбда-частица имеет странность -1, а антилямбда +1. У пары частица-античастица странность равна нулю. Теперь легко понять, почему лямбды рождаются только парами. Достаточно предположить, что странность сохраняется и что у нуклона и пи-мезона странность равна нулю, чтобы рождение одиночной лямбда-частицы стало невозможным в реакциях с участием нуклонов и пи-мезонов. В остальном лямбда очень похожа на нуклон.
Все сильновзаимодействующие частицы (адроны) обладают еще одним свойством: число барионов не изменяется при их (адронных) столкновениях, барионы могут только переходить друг в друга: точнее, не изменяется разность барионов и антибарионов. Это свойство можно сформулировать как закон сохранения барионного заряда, достаточно лишь приписать каждому бариону барионный заряд 1, а антибариону -1. Барионный заряд пи-мезонов, которые могут рождаться в любом количестве, следует считать равным нулю.
Вскоре обнаружились и другие странные частицы. Для включения их в одно семейство с нуклоном или с пионом (в случае барионного заряда, равного нулю) понадобилось усложнение изотопической симметрии. Нужно было предположить более широкую симметрию, включающую странные частицы. Обнаружились два больших семейства сильновзаимодействующих частиц: барионы и мезоны. Барионы имеют полуцелый спин (1/2,3/2…) и барионный заряд 1, мезоны - целый спин (0, 1, 2…) и не имеют барионного заряда. Семейство барионов разбилось на две группы с близкими свойствами. Барионы одной из них (их восемь) имеют спин 1/2; в другой группе десять частиц, и спин их 3/2. Аналогично мезоны с нулевым спином образуют восьмерку схожих часгиц.
Изобилие частиц, обнаруженных в результате успехов теоретической и экспериментальной физики, не радовало, а только озадачивало теоретиков. Начались попытки найти праматерию или прачастицы, с тем чтобы все обилие наблюдаемых частиц получалось бы из комбинаций нескольких элементарных, или, говоря осторожнее, более элементарных частиц.
ИСТОРИЯ ОДНОЙ СИММЕТРИИ
Три кварка для мастера Марка!..
Д. Джойс
Необыкновенно поучительна и драматична история работ по нахождению субчастиц, из которых состоят адроны. Из разрозненных фактов постепенно возникала все более отчетливая картина устройства адронов. Мы перечислим главные события этой драмы, за которыми стоят огромные усилия физиков всех стран, временные удачи и провалы, судьбы людей, потерявших годы в попытках найти истину на неправильном пути. И вместе с тем мы увидим, что неудавшиеся попытки каждый раз приближали к цели и подготовили правильное решение.
Пока были известны только два адрона - нуклон и пи-мезок, была надежда, что элементарными частицами являются нейтрон и протон, а пи-мезон есть связанное состояние нуклона и антинуклона. Так, отрицательный пи-мезон строился из антипротона и нейтрона с противоположными спинами. Эту идею не удалось превратить в убедительную количественную теорию, и к лучшему, так как сразу после открытия лямбда-частицы стало ясно, что первичные частицы следует снабдить странностью. Тогда возникла идея, что есть не два, а три строительных элемента, которые обозначались аналогично нейтрону, протону и лямбде: n, р, \lambda. Развитие этой идеи привело к созданию модели Окуня - Сакаты, по именам советского теоретика Льва Окуня и японского - Сёити Сакаты. Субчастицы имели те же свойства, что и их тезки - нейтрон, протон, лямбда.
Мезоны составлялись из субчастицы и ее античастицы, а барионы - из двух частиц и античастицы. Таким образом, из субчастиц n, р, К и их античастиц были составлены все известные тогда адроны и предсказано су
Начало истории
шествование некоторых новых адронов, которые были открыты позднее.
Так, из трех частиц, n, р, \lambda и трех античастиц можно составить девять мезонов со спином ноль, а известны были лишь семь: три пи-мезона и четыре К-мезона. Два недостающих электрически нейтральных мезона \eta и \eta' были открыты через несколько лет.
Составная модель естественным образом объяснила разбиение девяти мезонов на семейство из восьми (октет) и одиночного мезона (синглет), но объяснить наблюдавшиеся семейства барионов, в частности семейство восьми барионов со спином 1/2, на основе этой модели не удавалось.
Кварки
Все многочисленные попытки получить наблюдаемые семейства барионов и мезонов из частиц с целым электрическим и барионным зарядом потерпели неудачу. Неожиданный выход из тупика был найден американскими теоретиками Марри Гелл-Маном и независимо Джорджем Цвейгом.
Они предположили, что все адроны составлены из частиц с барионным зарядом, равным 1/3 нуклонного, и с электрическим зарядом, равным 2/3 или -1/3 заряда протона. Спин у этих частиц такой же, как у нуклона, равный 1/2. Частицы с дробным электрическим зарядом никогда не появлялись на опыте, и физики были так прочно убеждены в том, что все заряды кратны электронному или протонному, что идея частиц с дробным зарядом казалась дикой. Американский журнал «Physical Rewiew Letters» отказался печатать статью Гелл-Мана, и ему пришлось отправить ее в Европу в «Physics Letters». Гелл-Ман назвал эти дикие частицы «кварками» - так в романе Д. Джойса «Поминки по Финнега-ну» кричат чайки.
Все адроны, как по мановению волшебной палочки, улеглись в те группы с одинаковыми свойствами, которые были ранее установлены экспериментально.
Барионы состоят из троек кварков, чтобы барионный заряд был равен единице. Из трех кварков можно составить две комбинации со спином 1/2 и 3/2, поэтому и возникают два семейства барионов. Пришлось ввести три типа кварков: верхний, нижний и странный. Они обозначаются начальными буквами английских слов up, down, strange. Кварк u имеет электрический заряд 2/3; d- и s-кварки - 1/3; странный кварк имеет странность 1 (он входит только в странные адроны), а и- и d-кварки имеют странность 0. Кварки u, d есть две изоспино-вые проекции одной частицы с изоспином 1/2 (верхняя и нижняя проекции - отсюда и название этих кварков). Нейтрон и протон устроены так: n = (udd); р = (duu). Или, иначе, нейтрон состоит из двух d-кварков и одного u-кварка, а протон получается заменой u +1 d. Легко увидеть, что при этом заряд нейтрона равен нулю, а протона 1, как и полагается. Почти так же легко составить все возможные комбинации троек из трех кварков с суммарным спином 1/2 и 3/2. Получаются все барионы, входящие в два семейства - восьмерку и десятку. Мезоны состоят из кварка и антикварка. Так, заряженные пи-мезоны изображаются как л+ = (ud); \pi^- = (du); а нейтральные как комбинация (uu) (dd). Чертой обозначаются антикварки; их электрический заряд отличается знаком от заряда соответствующего кварка. В пи-мезон странный кварк не входит, пи-мезоны, как мы уже говорили, - частицы со странностью и спином, равными нулю. У К°-мезона странность - 1 . К°= (ds). Это нейтральный мезон. Аналогично составляются и заряженные: К+ =(us); К-= (us).
Д. Джойс
Необыкновенно поучительна и драматична история работ по нахождению субчастиц, из которых состоят адроны. Из разрозненных фактов постепенно возникала все более отчетливая картина устройства адронов. Мы перечислим главные события этой драмы, за которыми стоят огромные усилия физиков всех стран, временные удачи и провалы, судьбы людей, потерявших годы в попытках найти истину на неправильном пути. И вместе с тем мы увидим, что неудавшиеся попытки каждый раз приближали к цели и подготовили правильное решение.
Пока были известны только два адрона - нуклон и пи-мезок, была надежда, что элементарными частицами являются нейтрон и протон, а пи-мезон есть связанное состояние нуклона и антинуклона. Так, отрицательный пи-мезон строился из антипротона и нейтрона с противоположными спинами. Эту идею не удалось превратить в убедительную количественную теорию, и к лучшему, так как сразу после открытия лямбда-частицы стало ясно, что первичные частицы следует снабдить странностью. Тогда возникла идея, что есть не два, а три строительных элемента, которые обозначались аналогично нейтрону, протону и лямбде: n, р, \lambda. Развитие этой идеи привело к созданию модели Окуня - Сакаты, по именам советского теоретика Льва Окуня и японского - Сёити Сакаты. Субчастицы имели те же свойства, что и их тезки - нейтрон, протон, лямбда.
Мезоны составлялись из субчастицы и ее античастицы, а барионы - из двух частиц и античастицы. Таким образом, из субчастиц n, р, К и их античастиц были составлены все известные тогда адроны и предсказано су
Начало истории
шествование некоторых новых адронов, которые были открыты позднее.
Так, из трех частиц, n, р, \lambda и трех античастиц можно составить девять мезонов со спином ноль, а известны были лишь семь: три пи-мезона и четыре К-мезона. Два недостающих электрически нейтральных мезона \eta и \eta' были открыты через несколько лет.
Составная модель естественным образом объяснила разбиение девяти мезонов на семейство из восьми (октет) и одиночного мезона (синглет), но объяснить наблюдавшиеся семейства барионов, в частности семейство восьми барионов со спином 1/2, на основе этой модели не удавалось.
Кварки
Все многочисленные попытки получить наблюдаемые семейства барионов и мезонов из частиц с целым электрическим и барионным зарядом потерпели неудачу. Неожиданный выход из тупика был найден американскими теоретиками Марри Гелл-Маном и независимо Джорджем Цвейгом.
Они предположили, что все адроны составлены из частиц с барионным зарядом, равным 1/3 нуклонного, и с электрическим зарядом, равным 2/3 или -1/3 заряда протона. Спин у этих частиц такой же, как у нуклона, равный 1/2. Частицы с дробным электрическим зарядом никогда не появлялись на опыте, и физики были так прочно убеждены в том, что все заряды кратны электронному или протонному, что идея частиц с дробным зарядом казалась дикой. Американский журнал «Physical Rewiew Letters» отказался печатать статью Гелл-Мана, и ему пришлось отправить ее в Европу в «Physics Letters». Гелл-Ман назвал эти дикие частицы «кварками» - так в романе Д. Джойса «Поминки по Финнега-ну» кричат чайки.
Все адроны, как по мановению волшебной палочки, улеглись в те группы с одинаковыми свойствами, которые были ранее установлены экспериментально.
Барионы состоят из троек кварков, чтобы барионный заряд был равен единице. Из трех кварков можно составить две комбинации со спином 1/2 и 3/2, поэтому и возникают два семейства барионов. Пришлось ввести три типа кварков: верхний, нижний и странный. Они обозначаются начальными буквами английских слов up, down, strange. Кварк u имеет электрический заряд 2/3; d- и s-кварки - 1/3; странный кварк имеет странность 1 (он входит только в странные адроны), а и- и d-кварки имеют странность 0. Кварки u, d есть две изоспино-вые проекции одной частицы с изоспином 1/2 (верхняя и нижняя проекции - отсюда и название этих кварков). Нейтрон и протон устроены так: n = (udd); р = (duu). Или, иначе, нейтрон состоит из двух d-кварков и одного u-кварка, а протон получается заменой u +1 d. Легко увидеть, что при этом заряд нейтрона равен нулю, а протона 1, как и полагается. Почти так же легко составить все возможные комбинации троек из трех кварков с суммарным спином 1/2 и 3/2. Получаются все барионы, входящие в два семейства - восьмерку и десятку. Мезоны состоят из кварка и антикварка. Так, заряженные пи-мезоны изображаются как л+ = (ud); \pi^- = (du); а нейтральные как комбинация (uu) (dd). Чертой обозначаются антикварки; их электрический заряд отличается знаком от заряда соответствующего кварка. В пи-мезон странный кварк не входит, пи-мезоны, как мы уже говорили, - частицы со странностью и спином, равными нулю. У К°-мезона странность - 1 . К°= (ds). Это нейтральный мезон. Аналогично составляются и заряженные: К+ =(us); К-= (us).