Если позволительно применить к разумной на первый взгляд физической идее эпитет «вредная», то он здесь вполне уместен. Эта идея отвлекла многих талантливых людей от более плодотворных направлений. Впрочем, издержки неизбежны, наука не развивается по прямой.
   Поскольку S-матрица имеет дело только с поведением частиц, разведенных на большие расстояния, где их можно наблюдать изолированно, то, разумеется, в ней теряются такие частицы, как кварки (см. с. 141), которые не существуют в изолированном виде.
   Без вхождения в механизм взаимодействия элементарных частиц и полей на малых расстояниях невозможно построить разумную теорию. Поэтому попытки построить замкнутую систему уравнений для матрицы рассеяния оказались безнадежными. Успехи последнего времени в теоретической физике элементарных частиц покоятся на квантовой теории поля, изучающей взаимодействия полей и частиц как на малых, так и на больших расстояниях.
   Требование буквальной наблюдаемости оказалось слишком стеснительным для современной физики.
   «Только полнота порождает ясность, но истина скрывается в бездне» (Ф. Шиллер)
   На Нильса Бора, по словам его близкого сотрудника Леона Розенфельда, большое влияние оказал мало известный у нас датский писатель и философ Серен Кьер-кегор. Может быть, в этом истоки той неожиданной формы диалектики, которая характерна для Нильса Бора. Так, он говорил: «Каждое высказанное мною суждение надо понимать не как утверждение, а как вопрос». Или: «Есть два вида истины - тривиальная, которую отрицать нелепо, и глубокая, для которой обратное утверждение - тоже глубокая истина». Можно сформулировать эту мысль более мягко: содержательность утверждения проверяется тем, что оно может быть опровергнуто.
   Принцип дополнительности, о котором пойдет речь, - вершина боровской диалектики.
   В начале 1927 года произошли два важных события: Вернер Гейзенберг получил соотношение неопределенности, а Нильс Бор сформулировал принцип дополнительности.
   Анализируя все возможные мысленные эксперименты по измерению координаты и скорости частицы, Гейзенберг пришел к заключению, что одновременное их измерение ограничено в своих возможностях: чем точнее мы измеряем координату электрона, например, освещая его светом короткой волны, тем менее определенной делается скорость электрона из-за неопределенной отдачи, которую он получает при взаимодействии с волной. Формула, полученная Гейзенбергом, так проста, что ее стоит здесь написать: /del q /del p›=h. В правой части стоит постоянная Планка, а слева - неопределенность координаты, помноженная на неопределенность импульса (количества движения) частицы. Мы недаром употребили слово «неопределенность». Не ошибка, не незнание, а именно неопределенность. Ведь принципиальная невозможность измерить означает согласно принципу наблюдаемости неопределенность самого понятия.
   Точное определение координаты делает полно~тью неопределенным импульс. Эти два понятия ограничивают и дополняют друг друга. Согласно Бору соотношение неопределенности Гейзенберга есть проявление принципа дополнительности (см. с. 165).
   Слова Гегеля о единстве и борьбе противоположностей, как и всякое слишком общее суждение, от частого повторения могут показаться тривиальными. Боровская идея дополнительности понятий дает мысли Гегеля новое воплощение. Именно понятие дополнительности позволяет примирить, казалось бы, непримиримое: ведь электрон проявляет себя в различных экспериментах то как частица, то как волна.
   Частица-волна - две дополнительные стороны единой сущности. Нельзя подчеркивать одну из этих сторон в ущерб другой. Квантовая механика осуществляет синтез этих понятий, поскольку она позволяет предсказать исход любого опыта, в котором проявляются как корпускулярные, так и волновые свойства частиц.
   Идею дополнительности Нильс Бор иллюстрировал и применял во многих областях.
   Сводятся ли биологические закономерности к физико-химическим процессам? Казалось бы, все биологические процессы определяются движением частиц, составляющих живую материю. Предельное выражение этой точки зрения: «Физиология - это физическая химия азотсодержащих коллоидов». Но ведь ясно, что такая точка зрения, которую часто называют «механистической», отражает только одну сторону дела. Другая сторона, более важная, - это закономерности живой материи, которая хотя и определяется законами физики и химии, но не сводится к ним. Для биологических процессов характерна финалистическая закономерность. Она отвечает на вопрос «зачем», физика же отвечает на вопрос «почему».
   Существует и другая крайность: виталисты считают существенной только биологическую закономерность, отрицая и игнорируя физико-химическую сторону биологических процессов. Правильное понимание биологии возможно только на основе дополнительности физико-химической причинности и биологической целенаправленности. По мнению Дж. Холтона, Нильс Бор, размышляя об этом, как бы выполнял сыновний долг: его отец, физиолог Христиан Бор, стоял на точке зрения витализма. Понятие дополнительности показывает односторонность обеих точек зрения и позволяет строить описание живых процессов на основе взаимодополняющих подходов.
   Полнота описания природы только в понимании дополнительности понятий. Можно привести много примеров дополнительности - так, физическая картина явления и его математическое описание дополнительны. Создание физической картины требует пренебрежения деталями и уводит от математической точности. И наоборот- попытка точного математического описания явлений затрудняет ясное понимание.
   Вот еще пример. С. Аверинцев пишет в статье, помещенной в энциклопедии «Мифы народов мира»: «Сатана противостоит богу… как падшее творение бога и мятежный подданный его державы, который только и может, что обращать против бога силу, полученную от него же, и против собственной воли в конечном счете содействовать выполнению божьего замысла…» Мефистофель у Гёте говорит: «Я тот, кто вечно хочет зла и вечно совершает благо…»
   Бор однажды сказал: «Нельзя одновременно смотреть глазами любви и справедливости», - он понял, что не способен наказать провинившегося сына. На вопрос «Что дополнительно понятию истины?» Бор ответил: «Ясность».
   Именно в этом смысл слов Шиллера, которые стоят в заглавии.

ЗАБЛУЖДЕНИЯ

   Я предпочитаю вредную истину полезной ошибке, истина сама исцеляет зло, которое причинила.
   И.-В. Гёте
   Когда система заблуждений преподносится под видом научной теории, ее называют лженаукой. К сожалению, это слово часто употребляли лжеученые, порочившие подлинные научные достижения, пытавшиеся привесить ярлык лженауки кибернетике, молекулярной биологии, генетике, теории относительности, но другого слова не придумано, и - хочешь не хочешь - придется пользоваться этим.
   Как установить, где наука и где лженаука, особенно если речь идет об истинах, еще не установленных окончательно? Ведь истина одна, а заблуждений неисчислимое множество. Классифицировать все разновидности лженауки трудно и неинтересно, достаточно провести границу, отделяющую ее от науки, и перечислить главные признаки.
   «Незнание не довод, невежество не аргумент»
   (Спиноза)
   Что такое лженаука? Может быть, это то, что противоречит представлениям науки сегодняшнего дня? Ни в коем случае! Именно работы, убедительно доказывающие противоречивость принятых моделей, могут привести к научной революции. Даже незаконченные работы такого рода вызывают дискуссии и побуждают к дальнейшим исследованиям.
   Так, закон зеркальной симметрии явлений природы подтверждался многими опытами и прочно вошел в представления физиков. Но опыты по проверке этого, казалось бы, точного закона, разумеется, никто не отнес к области лженауки, и результатом явилось важнейшее открытие - оказалось, что закон зеркальной симметрии нарушается при радиоактивном распаде.
   Нужно ли считать лженаучными работы, основанные на предположениях, которые, как выясняется потом, в результате исследований оказываются неверными? Раз-
   умеется, не нужно. Подтверждение предположений не единственный критерий научной ценности работы. И отрицательный результат дает важную информацию - исключается одна из возможностей.
   Лженаука - это попытка доказать утверждение, пользуясь ненаучными методами, прежде всего выводя заключение из неповторяемого неоднозначного эксперимента или делая предположения, противоречащие хорошо установленным фактам.
   А куда отнести незаконченные научные работы, не устанавливающие истину, а только намекающие на ее существование? Они требуют дальнейшей проверки научными методами. Если такую проверку не сделают и объявят без основания работу законченной, она может перейти в разряд лженауки.
   Непонимание того, какой мучительный творческий процесс отделяет научный результат от первоначальной идеи, преувеличение ценности неоконченных работ, стремление заменить недоделанное догадками - все это в конечном счете приводит к лженауке.
   Аристотель утверждал, что тяжелые тела падают быстрее, чем легкие. Он считал это очевидным и не требующим проверки. Авторитет же его был так велик, что прошло более пятнадцати столетий, прежде чем это утверждение было опровергнуто. Галилей проанализировал свои опыты по движению тел по наклонной плоскости и пришел к заключению, что все тела на поверхности Земли должны падать с одинаковым ускорением.
   Опыты, опровергнувшие Аристотеля, были актом не только научного, но и гражданского мужества - авторитет Аристотеля строго охранялся церковью. Окончательным судьей истины стал эксперимент.
   Навязывание природе умозрительных идей - один из источников заблуждений.
   Это те редкие случаи, когда наука соприкасается с лженаукой. Обычно дело обстоит грубее и проще - смутная идея объявляется достоверной истиной; то, что противоречит ей, замалчивается, а то, что подтверждает, громко рекламируется.
   Вот описание эксперимента в работе, доказывающей самозарождение жизни и возведенной лжеучеными на уровень мирового открытия: «…методика заключалась в том, что 20 гидр растирались в ступке, затем к этой кашице прибавлялось 8 капель водопроводной воды, насыщенной путем встряхивания воздухом… Через час появляются мельчайшие блестящие точки величиной с укол булавки… из них развиваются шарообразные тельца - коацерваты… Поведение шариков, их развитие свидетельствуют об их жизнедеятельности. Они живые». Примечаний не требуется.
   Вот еще один пример, взятый со страниц - увы! - научно-популярного журнала: «…триста лет тому назад любили физику выводить из биологии (считали, например, что кристалл растет из семени). Сейчас этот настрой мысли возрождается: кое-кто среди физиков говорит о прапсихике атома».
   Насколько мне известно, ни о прапсихике атома, ни о сексуальности двухатомных молекул, ни о шизофрении распадающихся ядер физики с нормальной психикой, занимающиеся наукой, не говорят.
   Разговоры о превращении лженауки в науку и обратно возникают из смешения понятий - словом «лженаука» часто обозначают либо заблуждения, либо поиски неожиданного. Заблуждения неизбежны в науке, но заблуждения не есть лженаука, так же как и неудавшиеся поиски неожиданного, если они возникают и устраняются научными методами в процессе познания.
   По нашему определению даже поиски «философского камня», превращающего все металлы в золото, нельзя безоговорочно отнести к лженауке - эта идея не противоречила научным фактам средневековья. Те алхимики, что ставили воспроизводимые эксперименты, внесли свой вклад в познание природы.
   «- Трудно представить себе, чтобы на коне жили мыши, - сказала Алиса. - Трудно, - ответил Белый Рыцарь, - но можно»
   (Л. Кэрролл)
   К сожалению, случается, что ученые догматического склада объявляют лженаукой добросовестные научные поиски неожиданных явлений, то есть таких, которые противоречат принятым представлениям (но не установленным фактам!).
   Было бы очень хорошо, если бы серьезные экспериментаторы непредвзято изучали явления такого рода, как телепатия. Исследуйте, ставьте эксперименты, только эксперименты научные, по правилам, принятым в науке со времен Фрэнсиса Бэкона. Толчок для рождения идеи могут дать и рассказы очевидцев, и поверья, и слухи, и неожиданные ассоциации, но от идеи до истины так далеко, что из сотен идей едва ли выживает одна.
   Разумеется, одного только желания доказать невероятное недостаточно. Необходимо сначала сформулировать исследовательскую задачу, найти и разработать достаточно убедительный метод исследования, который позволил бы установить явление.
   Вокруг живых организмов существуют физические поля - электрическое, световое, звуковое, и они довольно хорошо изучены. Так, измеряя электрическое поле, меняющееся в ритме сердца, можно снимать кардиограмму, не касаясь тела. Поля эти быстро убывают с расстоянием и уже в нескольких метрах неотличимы от случайных «шумовых» полей. Физические поля, излучаемые человеком, не могут объяснить таких явлений, как передача мыслей или изображений на большие расстояния. Нельзя ли предположить, что, кроме известных, есть еще необнаруженные физические поля?
   В интересующей нас области энергий и частот все сколько-нибудь заметные поля, действующие на физические приборы, исчерпывающе изучены. Если бы, скажем, на электрон, движущийся в ускорителе, действовало бы еще какое-то поле, то движение отличалось бы от расчетного, чего не происходит на опыте. Вероятность обнаружить физическое поле новой, еще неизвестной природы в макроскопической области настолько мала, что с ней вряд ли следует считаться.
   А нет ли каких-нибудь нефизических полей, которые испускаются и принимаются живыми существами и дают право на существование такому чудесному явлению, как телепатия? Нет ли вокруг организмов особого «биополя»? Конечно, это биополе не могло бы объяснить перемещения неодушевленных предметов силой духа или уменьшения силы тяжести - такие явления прямо противоречат хорошо установленным физическим законам. Ведь ни в одном добросовестном физическом эксперименте желание экспериментатора не влияло на результат измерений, хотя физикам приходится иметь дело с необычайно легкими и легко перемещающимися предметами. Даже самые слабые способности к изменению веса сделали бы невозможным такое простое измерение, как взвешивание на аналитических весах - при равном весе одна из чашек по желанию экспериментатора делалась бы тяжелее. Как могло бы случиться, что физики, измерявшие силу тяжести с точностью до миллиардной доли грамма, не обнаружили бы грубого нарушения законов тяготения? Тщательный анализ выигрышей в рулетку не показывает отклонений от теории вероятности. А ведь стоило бы экстрасенсу заняться перемещением шарика, как все расчеты вероятности выигрыша были бы нарушены.
   Мы оставляем в стороне возможные чисто физические причины перемещения легких предметов, которые всегда учитываются в физических экспериментах, например, давлением ультразвука, испускаемого живым объектом. Такие явления относятся к биофизике и не имеют ничего общего с тем миром сверхъестественного, который так волнует людей, далеких от естественных наук.
   Существование биополя, то есть поля, которое не сводится к известным физическим полям и, следовательно, не регистрируется обычными физическими приборами, противоречит ожиданиям современной биофизики. До сих пор не существует никаких проявлений биополя, подтвержденных научным экспериментом. Однако работы по поискам биополя научными методами были бы важным исследованием, даже если бы они дали отрицательный результат. Теперь нам остается обсудить приемы, которыми пользуется лженаука.

«На удочку насаживайте ложь и подцепляйте правду на приманку…»

   (В. Шекспир)
   У лженауки есть устойчивые, почти непременные черты. Одна из них - нетерпимость к опровергающим доводам.
   К этому надо добавить претенциозность и малограмотный пафос. Лжеученый не любит мелочиться, он решает только глобальные проблемы и по возможности такие, которые не оставляют камня на камне от всей существующей науки. Как правило, работ меньшего значения у него никогда не было. У него самого нет сомнений, задача только в том, чтобы убедить тупых специалистов в своей очевидной правоте. Почти всегда он обещает громадный, немедленный практический выход там, где его не может быть. Далее почти без исключения - невежество и антипрофессионализм, очевидные любому серьезному специалисту.
   И наконец, агрессивность.
   Лженаука пытается доказать свою правоту, не гнушаясь никакими приемами. Можно и нужно протестовать против несправедливой оценки работы, но стремиться изменить общественное мнение следует принятыми в науке способами. Нельзя воспринимать всерьез жалобы на будто бы существующие ущемления лженауки. Во все времена именно лженаука преследовала науку, и утверждать обратное - неуважение к памяти жертв лженауки, начиная с Галилея.
   Естественно, статьи, опровергающие научный метод познания, также недобросовестны, агрессивны и претенциозны.
   «Ну да хочешь, я тебе сейчас выведу… что у тебя белые ресницы единственно оттого только, что в Иване Великом тридцать пять сажен высоты, и выведу точно, ясно, прогрессивно и даже с либеральным оттенком?..» Так в полемическом задоре кричит Разумихин Порфи-рию в «Преступлении и наказании». Так как же доказать, что белое равно черному? Попросим воображаемого Критика научного метода продемонстрировать свои приемы.
   Вот простой и эффективный прием: фраза вырывается из текста опровергаемой статьи, лишается смысла или приобретает смысл прямо противоположный, становясь удобным объектом для критики. Редкий читатель окажется таким дотошным, чтобы сверить цитаты: он понадеется, что это сделал редактор.
   Другой прием назовем «удар по соседним клавишам» - вместо сомнительного утверждения подставляется близкое ему, но несомненное, и создается впечатление, будто спор идет о бесспорном.
   Можно услышать от Критика, защищающего научную ценность лженауки: «Либо нужно отказаться от термина «лженаука» и ему подобных, либо придется признать, что лженаука - такой же феномен культуры, как и привычная нам школьная наука». Никто не спорит с тем, что лженаука и школьная наука, варварство и гуманизм, мракобесие и просвещение - феномены породившей их культуры. Но неравноценные!
   Вот излюбленный прием Критика: в белом квадрате можно найти черные точки, а в черном - белые. Поэтому нужно отказаться от противопоставления белого черному и признать, что это одно и то же. Так пытаются доказать равноправие науки и лженауки. Доказательство начинается словами: «Среди исторических корней любой науки всегда найдется корешок лженауки…» - и так далее.
   Иногда Критик берется за непосильную задачу - доказать, что повторяемость эксперимента необязательна. Для этого требование повторяемости результатов подменяется требованием повторяемости объектов исследования. Вращение орбиты Меркурия исследовалось только на Меркурии, следовательно, опыт неповторяем, заявляет Критик. Не хочется и говорить о том, что нужен не десяток Меркуриев, а десятки научных наблюдений одного-единственного неповторимого Меркурия!
   «Организмы, как говорят вдумчивые биологи, непе-речислимо разнообразны, - продолжает Критик, - поэтому в биологии нельзя требовать повторяемого эксперимента». Но именно сходство «неперечислимо разнообразных» биологических объектов позволяет ставить воспроизводимые эксперименты и делает биологию наукой, а не совокупностью фактов.
   Черпая свои знания из научно-популярных книг, такой Критик берет на себя роль толкователя науки, и это не может не покоробить специалистов. Он не ограничивается общими замечаниями, а пытается давать конкретные методические указания, искажая историю науки и путая термины.
   Слова «академическая наука» и «специалист» наш Критик употребляет с оттенком пренебрежения, рисуя образ специалиста - тупого приверженца научных представлений сегодняшнего дня, неспособного понять очевидную истину, что эти представления могут измениться после серьезного открытия, и нельзя с достоверностью продолжать закон за пределы изученной области.
   Обычно словом «специалисты» называют людей, занимающихся определенной областью науки на высоком урсвне и понимающих ее перспективы. Спору нет - есть плохие специалисты. Но оттого, что есть плохие врачи, не следует обращаться к повивальным бабкам. Вероятность получить правильный ответ от специалиста наибольшая. Перефразируем Ильфа и Петрова: специалистов надо любить. Это они распространили культуру по всему свету, изобрели книгопечатание и научно-популярные журналы. Более того, именно они написали те популярные книги, по которым обучились толкователи незнакомых наук.
   Надо ли бороться с лженаукой?
   В некоторых случаях лженаука приносит ощутимый вред обществу, например, когда лжеученому удается повлиять на экономику, культуру, подействовать на воображение молодых людей, начинающих свой путь в науке. Но если научная ценность работы определяется не приказом администратора, а общественным мнением научных коллективов, вероятность ошибочной оценки минимальна.
   Поэтому, мне кажется, не следует бороться с лженаукой, запрещая ее или используя ее же приемы.
   Что касается невежественных лекций, которые так распространились в последнее время, - например, о летающих тарелках, управляемых гуманоидами, - то им следует противопоставить положительную программу распространения знаний. Молодые люди, посещавшие эти лекции, с охотой придут послушать серьезных специалистов. Им интересно будет узнать, что ни один материальный объект не может перемещаться с такой скоростью и с таким ускорением, с каким иногда передвигаются летающие тарелки, - на это способен только световой зайчик.
   Итак, когда вы увидите или услышите о странном явлении, которое противоречит законам, известным вам со школьных времен, не верьте ему безоговорочно. Так же как юристы должны предполагать невиновность, здравый смысл предполагает отсутствие чуда. Одно из основных положений римского права: «Бремя доказательств лежит на том, кто утверждает, а не на том, кто отрицает». Не нужно доказывать, что нет странных, необычных явлений, нужно доказать, что они есть.
   Задача науки - отбирать наиболее правдоподобные объяснения и придерживаться их до тех пор, пока опыт или теория не заставят от этого отказаться. Это единственный путь найти те явления, которые опровергают принятые представления.
   Вот что говорил известный английский скульптор Генри Мур: «Скульптор или художник делает ошибку, когда он слишком часто говорит или пишет о своей работе. Это ослабляет необходимое ему напряжение». Может быть, поэтому серьезные специалисты так редко пишут о методах своей науки и так часто огорчаются, читая недобросовестные статьи. Как много чудесного узнали бы читатели, если бы ученые считали своим долгом рассказать о красоте своей науки!

О ПСИХОЛОГИИ НАУЧНОГО ТВОРЧЕСТВА

   Интерес к психологической стороне научного творчества возник тогда же, когда и сама наука. В нашу задачу не входит обзор литературы - пропустим мысленно абзац, который мог бы начинаться словами: «Уже у Аристотеля в «Органоне»…», - и перейдем к более позднему времени.
   Нисколько не потеряли своей ценности глубокие замечания и наблюдения в книгах и статьях великого французского математика Анри Пуанкаре (1854-1912). Попытка классифицировать психологические типы ученых была сделана в книге «Великие люди» выдающимся немецким химиком Вильгельмом Оствальдом (1863- 1932). Анализируя характер и стиль работы различных ученых, Оствальд предложил деление на «классиков» и «романтиков». В увлекательнейшей книге «Математика и правдоподобные рассуждения» (М., ИЛ, 1957) известного математика и выдающегося педагога Дьердя Пойа дается анализ приемов и методов, облегчающих процесс математического творчества.
   В последнее время интерес к этим вопросам внезапно вырос - появилось множество статей о психологии и методологии науки. Возникла даже новая область знания - «науковедение». Чем это объяснить? Ответ можно найти в самих статьях: «сейчас нация, не способная ценить обученный интеллект, обречена», или «в качестве показателя национального богатства выступают не запасы сырья или цифры производства, а количество способных к научному творчеству людей».
   Характерная особенность большинства таких статей - они обычно пишутся не самими учеными, а людьми, изучающими структуру науки, так же как статьи по искусству пишут не художники, а искусствоведы.
   То, о чем здесь будет рассказано, - исключение из правила. Это извлечение из размышлений и споров людей, занимающихся не «наукой» о науке, а самой наукой. Это не науковедческое исследование, а попытка поделиться опытом, сформулировать соображения, накопленные в процессе работы.