Итак, физические законы должны быть инвариантны относительно перемещений и поворотов. Это требование облегчает нахождение уравнений физики, придает им более красивый вид.
   Еще одна важная симметрия - однородность времени. Все физические процессы протекают одинаково, когда бы они ни начались - вчера, сегодня, завтра…
   Если какая-нибудь машина в этом году работает не так, как в прошлом, значит, у нее износились детали, или изменились климатические условия, или произошло еще что-нибудь, но это не связано с нарушением однородности хода времени.
   Ход времени определяется относительной скоростью различных процессов в природе. Скорость космического корабля можно сравнить со скоростью света или звука в воздухе. Ход часов можно определить числом периодов колебания света, излучаемого атомом за время перемещения стрелки на одно деление. Любое измерение интервала времени означает сравнение скоростей разных процессов.
   Равномерность хода времени означает, что во всякое время, и сегодня, и через год, относительная скорость всех процессов в природе одинакова.
   Равномерность хода времени установлена с колоссальной точностью на примере излучения атомов. Атомы звезд излучают свет таких же длин волн, как и атомы земные, даже если этот свет был испущен миллиард лет тому назад.
   Законы природы не изменяются и от замены времени на обратное. Это означает, что взгляд назад по времени являет такую же картину, что и взгляд вперед. Так ли это? Нам случается видеть, как яйцо, упавшее со стола, растекается, но никогда не доводилось наблюдать, как белок и желток собираются обратно в скорлупу и прыгают на стол. Старая английская песенка говорит, что если уж яйцо разбилось, тут не поможет и «вся королевская конница, вся королевская рать». И тем не менее молекулы могут случайно так согласовать свои движения, что невероятное свершится, хотя вероятность его осуществления неслыханно мала, и ждать чуда пришлось бы гораздо дольше, чем существует Вселенная. В простых системах явления такого рода происходят с большой вероятностью: молекулы в малом объеме газа под влиянием столкновений то стекаются вместе, то растекаются так, чтобы плотность в среднем была везде одинакова и равнялась плотности газа.
   Глубокий анализ подобных событий привел физиков к заключению, что «обратимость» времени существует не только в механике и электродинамике, где она прямо видна из уравнений, но и во многих других явлениях природы. Расширение Вселенной хотя и означает необратимость на космологических интервалах времени (порядка миллиардов лет), но практически не влияет на обычные земные эксперименты.
   Существует, кроме того, зеркальная симметрия - волчок, закрученный вправо, ведет себя так же, как закрученный влево, - единственная разница в том, что фигуры движения правого волчка будут зеркальным отражением фигур левого. Существуют зеркально асимметричные молекулы, как правая и левая руки, но если они образуются в одинаковых условиях, число левых молекул равно числу правых.
   Зеркальная симметрия явлений природы - неточная, как и большинство других симметрии. В слабых взаимодействиях, ответственных за радиоактивный распад, зеркальная симметрия нарушается. Даже в явлениях, не связанных с радиоактивными превращениями, влияние слабых взаимодействий приводит к небольшому нарушению зеркальной симметрии. Так, в атомах относительная неточность зеркальной симметрии - порядка 10-15.
   Однако влияние этого ничтожного нарушения на переходы между очень близкими уровнями не так мало (порядка 10-3-10-8). В 1964 году группа физиков Московского института теоретической и экспериментальной физики обнаружила небольшое нарушение четности ядерных сил, вызванное слабыми взаимодействиями (Ю. Абов, П. Крупчицкий, Ю. Оратовский). В 1966 году нарушение четности было обнаружено другим методом в Ленинградском институте ядерной физики имени Б. П. Константинова (В. Лобашов, В. Назаренко, Л. Саенко, Л. Смотрицкий, Г. Харкевич). В 1978 году Л. Баркову и М. Золотареву из Института ядерной физики новосибирского академгородка удалось обнаружить это явление в атоме. Кроме того, слабые взаимодействия приводят также к небольшому нарушению временной обратимости.
   Важнейшая симметрия, пронизывающая всю современную физику, была обнаружена в начале XX века. Еще Галилей нашел замечательное свойство механических движений: они не зависят от того, в какой системе координат их изучать - в равномерно движущейся или в неподвижной.
   Замечательный голландский физик Хендрик Антон Лоренц в 1904 году убедился, что таким свойством обладают и электродинамические явления, причем не только для медленно движущихся тел, но и для тел, движущихся со скоростью, близкой к скорости света. При этом выяснилось, что скорость заряженных тел не может превысить скорости света.
   Анри Пуанкаре в работе, оказавшей огромное влияние на теоретическую физику, показал, что результаты Лоренца означают инвариантность уравнений электродинамики относительно поворотов в пространстве-времени, то есть в пространстве, в котором, кроме трех обычных координат, есть еще одна - временная.
   Но самый важный шаг сделал Эйнштейн, обнаружив, что симметрия пространства-времени - всеобщая, что не только электродинамика, но все явления природы - физические, химические, биологические - не изменяются при поворотах. Ему удалось это сделать после глубокого и не сразу понятого современниками пересмотра наших привычных представлений о пространстве и времени.
   Слово «поворот» надо было бы заключить в кавычки - это не обычный поворот, при котором сохраняют
   ся расстояния между точками; например, расстояние от какой-либо точки до начала координат.
   В четырехмерном пространстве, о котором мы только что говорили, по четвертой оси откладывается время t, помноженное на скорость света с, и «поворот» соответствует неизменности не расстояния до начала координат, а величины l2 = x2+y2+z2-c2t2 = хl2+yl2+ + zl2-c2ti2, где x, у, z; хl yl,zl - координаты до и после поворота. Такой «поворот» обеспечивает постоянство скорости распространения света в разных системах координат.
   Таким образом, все симметрии, которые мы до сих пор рассматривали, объединяются в одну, всеобщую -¦ все явления природы инвариантны относительно сдвигов, поворотов и отражений в четырехмерном пространстве-времени. Инвариантность относительно сдвигов и поворотов в обычном пространстве получается как частный случай, когда сдвиг не изменяет отсчета времени или когда вращение происходит вокруг временной оси.
   Нужно пояснить, что означает инвариантность явлений природы относительно поворотов. Все физические величины можно классифицировать по тому, как они изменяются при повороте. Есть величины, которые не изменяются вовсе, - они называются «скалярами». Другие - векторы - ведут себя как отрезок, проведенный из начала координат в какую-либо точку пространства. При повороте системы координат длина вектора не изменяется, а его проекции на оси координат изменяются по известному закону. Есть величины, изменяющиеся более сложно, например как произведение двух векторов. Они называются «тензорными».
   Кроме векторных и тензорных величин, есть и другие, которые при поворотах тоже изменяются заданным образом. Я не сразу решился их назвать, боясь испугать читателя незнакомым словом, - они называются «спинорами». Из спиноров можно образовать квадратичную комбинацию, которая изменяется как вектор; или другую - скалярную, не изменяющуюся при поворотах. Волновая функция электрона изменяется при поворотах как спинор, или, кратко, - она есть спинор. Пока достаточно знать само слово, не раскрывая его математического смысла. Неизменность законов или уравнений означает, что во всех слагаемых уравнения и в левой и в правой частях стоят величины, одинаково изменяющиеся при поворотах.
   Так же как бессмысленно сравнивать величины разной размерности, скажем, время и длину, массу и скорость, - невозможно и равенство, в котором слева - скаляр, а справа - вектор.
   Суть симметрии именно в этом делении величин на скаляры, векторы, тензоры, спиноры… Ясно, насколько легче отыскать уравнение, если требовать, чтобы все слагаемые одинаково изменялись.
   Мы увидим в следующей главе, как размерные оценки позволяют находить неожиданные физические соотношения. Классификация величин по их изменению при поворотах или при какой-либо другой операции - это следующий шаг в сторону глубины понимания природы; жаль, что школьный курс ограничивается лишь первым шагом - размерностью.
   Симметриям, которые мы до сих пор рассматривали, соответствовали операции, не зависящие от пространственной точки. Во всем пространстве происходит одинаковый сдвиг или поворот. Такие симметрии называются «глобальными». Можно было бы попытаться найти такие уравнения, так записать законы природы, чтобы они не изменялись не только при глобальных сдвигах и поворотах, но при сдвигах и поворотах различных в разных точках. Такая симметрия называется «локальной».
   Именно из этого исходил Эйнштейн в поисках своих знаменитых уравнений тяготения, связавших геометрию пространства с плотностью материи. Уравнения тяготения возникают как следствие локальной симметрии пространства-времени. Эти уравнения объединили механику и тяготение; из них при малых скоростях вытекают уравнения ньютоновой механики.
   Мы пока рассматривали пространственно-временные, или, короче, пространственные симметрии.
   В физике последнего времени играют важнейшую роль и так называемые «внутренние симметрии». Одна из них - «калибровочная инвариантность». Не вдаваясь в сложные объяснения, скажу, что она обеспечивает, в частности, справедливость такого важного закона, как закон Кулона. Даже малое нарушение калибровочной инвариантности в электродинамике несовместимо с тем, что нам известно о распространении длинных радиоволн.
   Другой пример внутренней симметрии - «изотопическая инвариантность сильных взаимодействий». Она объясняет сходство целых семейств элементарных частиц, например нейтрона и протона. Обобщение этой симметрии привело физику к открытию кварков - частиц, из которых построены все сильновзаимодействующие частицы - адроны, - такие, как нейтрон, протон, пи-мезон, прежде считавшиеся элементарными.
   Дальше я расскажу подробнее об этих и других внутренних симметриях. Мы увидим, что законы сохранения - закон сохранения энергии, импульса или заряда - получаются как строгое следствие различных симметрии.

Природа не терпит точных симметрии

   Большинство симметрии возникает при некоторой идеализации задачи. Учет влияния более сложных взаимодействий приводит к нарушению симметрии. Например, независимость энергии атома водорода от орбитального момента становится неточной - симметрия слегка нарушается, если учитывать релятивистские поправки к движению электрона. Даже законы сохранения, связанные с пространственной симметрией, крайне мало, но все же нарушаются неоднородностью Вселенной во времени и пространстве.
   Существует гораздо более важное нарушение симметрии - «спонтанное». Примеры такого нарушения встречаются на каждом шагу в обыденной жизни. Капля воды, лежащая на столе, - пример нарушения симметрии, ведь взаимодействие молекул между собой и с молекулами стола допускает более симметричное решение - вода размазана тонким слоем по столу. Но это решение для малых капель оказывается энергетически невыгодным. Таким образом, система, обладающая высокой симметрией, может иметь менее симметричные решения. Твердые тела представляют собой кристаллические решетки, и это пример нарушения не только трансляционной симметрии (относительно сдвигов), но и симметрии относительно поворотов. Однородное хаотичное расположение атомов, как в жидкости, полнее отражало бы симметрию взаимодействия. Атомное ядро представляет собой каплю нуклонной жидкости - тоже пример нарушения трансляционной симметрии.
   Существуют не только сферические, но и «деформированные» ядра, имеющие форму эллипсоида, - это нарушение и трансляционной и вращательной симметрии.
   Спонтанное нарушение симметрии весьма распространенное явление в макроскопической физике. Однако в физику высоких энергий оно пришло с большим запозданием. Не все физики, занимавшиеся теорией элементарных частиц, сразу приняли возможность асимметричных решений в симметричных системах. Что поделаешь - узкая специализация имеет свои теневые стороны!
   Как сказывается это явление в физике элементарных частиц? Плодотворная тенденция теории элементарных частиц состоит в предположении, что на сверхмалых расстояниях царствует максимальная симметрия, но при переходе к большим расстояниям возникает спонтанное нарушение, которое может сильно замаскировать симметрию. Так, в теории электрослабого взаимодействия, объединяющего электродинамику и слабые взаимодействия, при сверхмалых расстояниях (порядка 10-16 сантиметра) существуют четыре равноценных безмассовых поля, которые при больших масштабах в силу спонтанного нарушения превращаются в три массивных W-бозона с массами порядка 100 ГэВ и один безмассовый фотон. Возникновение в системе безмассовых глюонов и кварков, массивных адронов, есть другой пример спонтанного нарушения симметрии. Эти примеры показывают, какие принципиальные свойства элементарных частиц определяются явлением спонтанного нарушения.
   Спонтанное нарушение симметрии связано еще с одним очень важным явлением. Когда нарушается симметрия, то все-таки остаются следы от бывшей ранее более высокой симметрии. Это так называемые «возбуждения Гольдстоуна», по имени обнаружившего их английского физика. Когда атомы собираются в кусок твердого тела, возникает нарушение трансляционной симметрии. Но при этом остается свобода перемещения в пространстве центра тяжести всего куска в целом. Когда происходит упругое колебание с большой длиной волны, каждый маленький участок перемещается словно целое. Поэтому мы вправе ожидать, что при увеличении длины волны частота упругого колебания должна стремиться к нулю. Это действительно выполняется, частота длинноволнового колебания - частота звука, обратно" пропорциональная длине волны. Звук в твердом и жидком теле и есть простейший пример «гольдстоу-новского колебания». Вращательные состояния больших деформированных ядер тоже «гольдстоуновские колебания», на этот раз возникающие в результате нарушения вращательной симметрии, именно поэтому вращательные возбуждения ядер имеют малую частоту.
   Спонтанное нарушение симметрии - хороший пример того, как разные области физики, даже далекие друг от Друга, оказывают взаимное влияние. В данном случае это влияние физики твердого тела на теорию элементарных частиц. Но можно привести не меньше и обратных примеров - современные теоретические методы исследования фазовых переходов, а также других явлений макроскопической физики пришли в нее из физики высоких энергий.

Объять необъятное

   Другое направление, по которому развивалась физика, - поиски единых причин для явлений разного круга, попытки объединения различных областей физической науки.
   Важный шаг на этом пути был сделан Ньютоном. Он доказал, что падение тел на Земле, движение Луны вокруг Земли и движение звезд определяются одной причиной - притяжением с силой, обратно пропорциональной квадрату расстояния. Он показал, что все эти явления можно количественно рассчитать с помощью сформулированных им законов механики.
   Следующий, не менее грандиозный шаг сделал Джеймс Максвелл. Он получил удивительные уравнения, объединившие все явления электричества, магнетизма и оптики. Замечательный немецкий физик, один из создателей статистической физики - Людвиг Больц-ман сказал об уравнениях Максвелла: «Не бог ли начертал эти письмена?»
   В начале XX века физики знали только два типа взаимодействий - электромагнитное и гравитационное. Уже первые исследования атомных ядер показали, что нейтроны и протоны, входящие в состав ядра, удерживаются силами, в десятки раз большими электромагнитных. Эти частицы связаны сильными взаимодействиями. Кроме того, были обнаружены гораздо более слабые силы между электронами, нейтрино и нуклонами (нейтронами и протонами). Эти взаимодействия ответственны за радиоактивный распад и названы «слабыми». Они вызывают, в частности, превращение свободного нейтрона в протон, электрон и антинейтрино.
   До недавнего времени казалось, что между четырьмя взаимодействиями - сильным, слабым, гравитационным и электромагнитным - не существует никакой связи. В последние десятилетия усилия физиков были направлены на их объединение. Электромагнитное и слабое взаимодействия объединяются в «электрослабое». Они, как мы уже упоминали, оказались проявлениями более общего единого взаимодействия. В чем красота такого объединения?
   Возникли неожиданные связи между разнородными явлениями. Так, постоянная, определявшая величину слабого взаимодействия, оказалась связанной с зарядом электрона. Теория объяснила многие явления, казавшиеся ранее загадочными.
   Еще далека от завершения, но, можно надеяться, на верном пути теория Великого объединения, которая даст единое объяснение электромагнитным, слабым и сильным взаимодействиям. Согласно предсказаниям этой теории протон не стабильная частица, время распада протона на позитрон и нейтральный пион или на нейтрино и положительный пион составляет примерно 1030-1033 лет. Уже поставлен ряд опытов по проверке этого предсказания. Если распад обнаружится, то, по крайней мере, подтвердится идея Великого объединения.
   В последнее время многие теоретики пытаются создать теорию Суперобъединения, которое охватило бы все четыре взаимодействия - сильное, электромагнитное, слабое и гравитационное.
   У Пастернака есть строки: «В родстве со всем, что есть, уверясь и знаясь с будущим в быту, нельзя не впасть к концу, как в ересь, в неслыханную простоту…» К сожалению, пока попытки объединения слишком сложны, и пройдет немало времени, прежде чем откроется «неслыханная простота». Картина только начала возникать. Она еще недостаточно красива и, значит, далека от истины. И тем не менее уже сейчас ясно, что мы на пути к более глубокому пониманию величественной красоты, скрытой во Вселенной.
   Поиски симметрии законов природы показывают, как извилист путь к научно доказанной истине, как иногда приходится отказаться от утверждений, казалось, незыблемых, и как внезапно возникают неожиданные связи между совершенно разнородными явлениями. Вопросы, о которых сейчас пойдет речь, касаются самых глубоких свойств Вселенной - связи законов природы со свойствами пространства и времени. Это вопросы, которые определяют характер нашего понимания мира.
   Законы сохранения вытекают из симметрии пространства и времени
   Существует поразительная и в то же время естественная связь между свойствами пространства и времени и так называемыми «законами сохранения», такими, как закон сохранения энергии или закон сохранения количества движения. Эту замечательную связь сформулировала немецкий математик Эмми Нетер (1882-1935).
   СИММЕТРИЧНО ЛИ ПРОСТРАНСТВО?
   Симметрия обозначает тот внд согласованности отдельных частей, который объединяет их в единое целое. Красота тесно связана с симметрией.
   Гермаи Вейль
   Каждому виду симметрии соответствует свой закон сохранения. Так, закон сохранения энергии - следствие симметрии природы относительно сдвигов во времени. Симметрия относительно сдвигов в пространстве приводит к закону сохранения количества движения, или импульса. Мы часто пользуемся этим законом, на нем основано ракетное движение. Так как полное количество движения должно сохраняться, то импульс самой ракеты (произведение ее массы на скорость) увеличивается на величину импульса, уносимого вылетающими газами.
   Симметрия относительно поворотов приводит к сохранению момента количества движения, или углового момента, частицы. Для частицы, движущейся по окружности, момент есть произведение расстояния от частицы до центра вращения па массу и скорость частицы. Для неточечных тел нужно сложить моменты отдельных, достаточно малых частей тела. Законом сохранения момента широко пользуются балерины: приближая руки к телу, они уменьшают расстояние до оси вращения и в силу сохранения момента увеличивают ско-
   рость вращения. Надеюсь, балеринам будет приятно узнать, что их пируэты получаются благодаря симметрии пространства относительно поворотов.
   Попробую пояснить, как неравномерность хода времени приводит к несохранению энергии. Допустим, что неравномерность хода времени проявилась в том, что начиная с некоторого момента стала периодически изменяться постоянная всемирного тяготения. Тогда легко построить машину, которая будет получать энергию из ничего, - «вечный двигатель». Для этого нужно поднимать грузы в период слабого тяготения и превращать приобретенную ими энергию в кинетическую, сбрасывая грузы в период увеличения тяготения. Видите, неравномерность хода времени, то есть изменение относительного ритма разных процессов, приводит к нарушению закона сохранения энергии.
   Теперь не покажется странным, что законы сохранения энергии и других величин выполняются во всех явлениях природы. Ведь они вытекают из такого общего свойства нашего мира, как симметрия пространства и времени.
   Из сказанного следует, что однородность хода времени можно проверить по тому, насколько точно выполняется закон сохранения энергии. Если у нас возникло ощущение, что в юности время шло быстрее, свет горел ярче, краски были свежее, мысли острее, его нужно объяснять изменениями, происходящими внутри нас, а не изменением хода времени; время течет равномерно. И, как ни удивительно, для доказательства достаточно убедиться, что в бездушных машинах энергия с большой точностью сохраняется. И наоборот, только из того факта, что атомы во все времена испускают свет с колоссальной точностью одной и той же частоты, можно заключить, что с такой же точностью выполняется закон сохранения энергии.
   Почему сердце слева?
   Зеркальная симметрия законов природы означает, что если две экспериментальные установки отличаются только тем, что одна есть зеркальное отражение другой, то такие установки работают совершенно одинаково.
   Но разве не нарушается это требование в повседневной жизни? Примеров нарушения зеркальной симметрии в природе немало. У людей сердце расположено с левой стороны, а для соблюдения зеркальной симметрии в процессе эволюции должно было получиться равное количество лево- и правосердечных. Однако при более внимательном взгляде противоречие разъясняется. Рассмотрим объект менее сложный, чем человек. Существуют, например, два типа кварца, которые по своему молекулярному строению зеркально подобны, как правая и левая руки. Эти два типа кварца встречаются на Земле в различных количествах. То же относится и к другим минералам. Поэтому асимметрию живых объектов можно объяснить тем, что пища или «строительный материал», встречающийся в природе, не имеет зеркальной симметрии. Тогда вопрос сводится к более простому - к нарушению зеркальной симметрии в мертвой природе.
   В связи с этим следует вспомнить об одном удивительном опыте Луи Пастера.
   Было известно, что поляризованный свет, проходя через виннокаменную кислоту, встречающуюся в природе, изменяет направление поляризации - направление электрического поля в световой волне. Поляризованный свет - свет с фиксированным направлением поляризации - получается после прохождения обычного света через поляризатор - устройство, пропускающее свет только с определенным направлением поляризации. На этом основано действие поляроидных очков. Их линзы пропускают свет только с вертикальным направлением поляризации. Между тем свет, отраженный от луж или от мокрого асфальта, имеет преимущественно горизонтальное направление. Поэтому поляроидные очки уменьшают слепящее действие отраженного света. В этом легко убедиться, поворачивая поляроидные очки вокруг горизонтальной оси.
   После того как свойства естественной виннокаменной кислоты были хорошо изучены, химики получили искусственную. По всем физическим и химическим свойствам она не отличалась от натуральной. К колоссальному удивлению ученых, когда через синтезированную кислоту пропустили поляризованный свет, обнаружилось, что он не изменил направления поляризации!
   Пастер предположил, что искусственная кислота представляет собой смесь двух зеркально симметричных форм, как правая и левая руки. Один тип кислоты поворачивает направление поляризации направо, другой - налево. В результате поляризация не изменяется.
   Для доказательства этой гипотезы Пастер вырастил в искусственной кислоте колонию микробов, рассудив, что микробы, приученные к поглощению естественной кислоты, не станут использовать ее зеркальную форму. Героиня сказок Льюиса Кэрролла, современника Пасте-ра, - Алиса - была озабочена таким же вопросом. Приглашая свою кошку в путешествие за Зеркало, она размышляет, можно ли пить зеркальное молоко, не повредит ли оно Китти. Настолько удивительной может быть научная проблема, что кажется на своем месте в волшебной сказке!