208
   ние и так далее. И все это множество явлений описывается единой теорией, основы которой были заложены Л. Д. Ландау в 1937 году. С тех пор теория фазовых переходов обогатилась многими новыми идеями и превратилась в одну из интереснейших областей теоретической физики с большим количеством практических применений.
   Что же отличает одну фазу от другой и что объединяет все эти разнородные явления? Оказывается, всегда существует некая величина, которая называется «параметром порядка» и которая равна нулю в одной фазе и отлична от нуля в другой. В случае перехода из твердого состояния в жидкое в качестве параметра можно взять отношение числа атомов, расположенных в правильном порядке (в кристаллической решетке), к полному числу атомов. Ниже точки плавления это отношение равно единице, выше - нулю. При этом переходе параметр порядка изменяется скачком.
   В таких случаях переход называется «переходом 1-го рода».
   Рассмотрим переход из ферромагнитного состояния в парамагнитное. Ферромагнитное состояние - такое, в котором находится вещество в магните. При этом магнитные моменты отдельных атомов имеют преимущественное направление - большинство магнитных моментов расположено вдоль оси магнита. По мере нагревания магнита тепловое движение все больше и больше разбрасывает магнитные моменты по разным направлениям, и при некоторой температуре средний магнитный момент атомов вдоль оси магнита обращается в нуль. Значит, вещество перешло в парамагнитное состояние, в котором магнитные моменты атомов ориентированы беспорядочно. При переходе из ферромагнитного состояния в парамагнитное роль параметра порядка играет среднее значение проекции магнитного момента на ось намагничивания. В точке перехода эта величина обращается в нуль и остается нулем после перехода в парамагнитное состояние.
   Таким образом, параметр порядка не испытывает скачка в точке фазового перехода. Такой переход называется «переходом 2-го рода».
   Как мы увидим, перестройка вакуума во внешних полях тоже представляет собой фазовый переход 2-го рода. Роль параметра порядка играет величина конден-сатного поля, которое возникает после перестройки.
   Фазовые переходы вакуума
   Как изменяется вакуум в присутствии внешнего поля, то есть поля, создаваемого внесенными в вакуум частицами? Небольшая перестройка вакуума происходит даже в слабых полях. Нас будет интересовать перестройка вакуума, внезапно наступающая при достижении некоторого критического значения внешнего поля, перестройка, вызываемая возможностью самопроизвольного рождения частиц определенного типа.
   Как мы уже знаем, в вакууме непрерывно рождаются и исчезают всевозможные частицы, он заполнен такими виртуальными частицами.
   Зададим себе вопрос: что случится с виртуальными частицами, если в вакууме появится сильное поле? Не сделаются ли они реальными?
   Допустим, что в некоторой области пространства создано сильное поле - электрическое, гравитационное или ядерное (поле, создаваемое нуклонами). Пусть поле имеет вид потенциальной ямы. Самый простой пример потенциальной ямы - это впадина на поверхности Земли. Когда частица попадает извне в потенциальную яму, ее кинетическая энергия увеличивается, как у камня, скатывающегося с горы.
   В вакууме у верхнего края ямы непрерывно рождаются и исчезают всевозможные частицы. Для того чтобы виртуальная частица стала реальной, ей согласно формуле Эйнштейна необходимо передать энергию, равную тс2, где т - масса частицы, ас - скорость света. Энергия, передаваемая полем частице при ее падении на дно ямы, может пойти либо на увеличение кинетической энергии уже родившейся частицы, либо на то, чтобы превратить виртуальную частицу у верхнего края ямы в реальную частицу, находящуюся на дне.
   Что произойдет, если глубина энергетической ямы превысит величину mс2, то есть энергию покоящейся частицы? Тогда при рождении частиц будет выигрываться энергия. Действительно, чтобы создать одну покоящуюся частицу, надо затратить энергию, равную mс2, а энергия, выигрываемая при сбрасывании частицы в яму, превышает mс2. Следовательно, в присутствии сильного внешнего поля возникает неустойчивость: в вакууме будут рождаться и накапливаться частицы до тех пор, пока они не создадут дополнительное поле, которое сделает дальнейшее рождение частиц энергетически невыгодным.
   210
   Критические условия достигаются тем легче, чем меньше масса рождающихся частиц.
   Наименьшую массу среди заряженных частиц имеют электроны. Однако они, как и все другие частицы со спином 1/2, подчиняются «запрету Паули» и не могут накапливаться в большом количестве - в каждом состоянии может находиться только один электрон.
   Гораздо более существенная перестройка вакуума должна происходить в таких полях, в которых возможно рождение частиц с целым спином. Тогда нет запрета Паули, и частицы могут накапливаться в состоянии наинизшей энергии в любом количестве. Предел накапливания определяется только отталкиванием частиц друг от друга. Наименьшую массу среди частиц такого типа имеют пи-мезоны, поэтому наиболее интересно исследование свойств пионного поля и выяснение условий, при которых возникает пионная неустойчивость вакуума (неустойчивость по отношению к образованию пионного поля).
   Такая неустойчивость может возникнуть в достаточно сильном электрическом поле. Вблизи ядра с числом протонов Z пионная неустойчивость возникает, как показывает расчет, при значениях Z›1500.
   Ядра с таким зарядом, если не принимать во внимание возможность перестройки вакуума, были бы неустойчивы из-за громадного кулоновского отталкивания протонов. Однако расчет энергии, выигрываемой от перестройки вакуума, показывает, что этот выигрыш может превысить потерю энергии из-за кулоновского отталкивания. В результате такие «сверхзаряженные» ядра могут оказаться устойчивыми, и не исключено, что они возникли в процессе эволюции Вселенной. В этом случае следует пытаться искать их в космических лучах.
   Наиболее интересна пионная неустойчивость вакуума, которая проявляется в достаточно плотной нуклон-ной среде (в среде, состоящей из нейтронов и протонов). Поскольку пи-мезоны сильно взаимодействуют с нуклонами, такая среда создает ту потенциальную яму, в которой при достаточной плотности возникает неустойчивость вакуума. Как мы увидим, неустойчивость пионного поля в нуклонной среде приводит к большому количеству важных физических следствий и может быть проверена экспериментально. Обсудим это явление более подробно.
   Пиониая конденсация
   Эффективная потенциальная яма для пионов, создаваемая нуклонным веществом с плотностью п, имеет глубину
   U = nA,
   где А - амплитуда рассеяния пиона на нуклоне (квадрат этой величины определяет сечение рассеяния). Величина А играет роль глубины ямы, создаваемой одним нуклоном. Неустойчивость вакуума относительно рождения пионов наступит при увеличении плотности, когда глубина ямы сделается больше, чем энергия покоя пиона:
   U = nА \gg m_\pi с2.
   Критическая плотность, при которой начинается перестройка вакуума:
 
   n_c=(m_\pi с2)/A.
   В действительности все обстоит не так просто. Во-первых, амплитуда рассеяния мала при малом импульсе (напомним, что количество движения - импульс - масса X скорость) пионов. И неустойчивость возникает не для покоящихся пионов, а для пионов с импульсом, для которого амплитуда рассеяния максимальна. Этот импульс порядка m_\pi с. Кроме того, при большой плотности нуклонов в этой простой формуле появляются дополнительные слагаемые, которые пока можно найти только приближенно. Поэтому значение критической плотности известно не очень точно: можно только сказать, что она близка к равновесной плотности ядерного вещества (к плотности атомных ядер). Мы будем обозначать эту плотность n0. Таким образом n_c\simeq=n_0.
   Итак, в нуклонной среде с плотностью, большей, чем nс возникает пионное поле. Когда оно делается достаточно большим, отталкивание между пионами уменьшает яму и процесс останавливается. Когда плотность нук-лонного вещества заметно превышает критическое значение, глубина ямы делается больше энергии покоя, - при конденсации выигрывается энергия. Энергия Е_\pi , которая освобождается при конденсации, пропорциональна квадрату превышения плотности над критическим значением:
   Е_\pi =\alpha(n-nс )2.
   Это явление называется «пионной конденсацией». Пионное поле, возникающее при конденсации, называют «конденсатом».
   Пионная конденсация приводит к возможному существованию сверхплотных ядер, о которых мы говорили во вступлении, а также ко многим другим физическим следствиям.
   Пока такие ядра не обнаружены. Их поисками заняты физические лаборатории многих стран. Теоретическое исследование пионной конденсации и ее следствий началось в 1971 году с работы автора этой книги и продолжается до сих пор во многих научных центрах.
   Неустойчивость ядерного вещества при большой плотности
   Самое важное следствие пионной конденсации - неустойчивость нуклонного вещества, которая может возникнуть в результате конденсации. Поясним, в чем физическая причина этой неустойчивости. Пусть критическая плотность нуклонов nс , соответствующая пионной конденсации, превышает равновесную плотность n0 ядерного вещества. Покуда нет конденсации, энергия ядерного вещества возрастает с увеличением плотности по сравнению с равновесным значением.
   Однако при появлении конденсата, то есть при n›n_c, выигрывается энергия. Если выигрыш энергии нарастает с увеличением плотности быстрее, чем проигрыш от сжатия, то наступает неустойчивость ядерного вещества. Иными словами, при возникновении пи-конденсата жесткость ядерного вещества уменьшается. Если же жесткость сделается отрицательной, то ядерное вещество станет неустойчивым.
   Можно ли вычислить изменение жесткости ядерного вещества при конденсации и тем самым установить, возможно ли существование более плотного равновесного состояния ядер? К сожалению, в расчеты входят недостаточно хорошо известные в настоящее время величины, характеризующие взаимодействие нуклонов и пи-мезонов в ядерном веществе. Предварительные оценки говорят в пользу того, что одновременно с возникновением конденсации наступает и неустойчивость ядерного вещества. Если эти оценки подтвердятся дальнейшим развитием теории и эксперимента, из этого будет следовать, что ядерное вещество должно сделаться неустойчивым уже при плотностях, близких к плотности ядерного вещества в атомных ядрах.
   Эта неустойчивость может означать, что наряду с обычным состоянием ядерного вещества, которое существует в атомных ядрах, есть еще одно (или больше чем одно) необычное устойчивое состояние с большей плотностью. Иными словами, возможны аномальные ядра.
   Нет ли пионного конденсата в обычных ядрах? Расчеты дают недостаточно точные значения интересующих нас величин. В частности, неточность в вычислении критической плотности пс такова, что можно допустить обе возможности: критическая плотность пс может быть как меньше, так и больше равновесной ядерной плотности По. Если критическая плотность пс ‹п0, то пионный конденсат должен существовать в обычных ядрах.
   Присутствие конденсата в обычных ядрах привело бы к большому числу интересных физических следствий, которые можно обнаружить на опыте. Как показывает расчет, конденсатное поле в ядерном веществе должно периодически изменяться в пространстве. Эти периодические изменения передаются нуклонам и приводят к периодической структуре плотности нейтронов и протонов. Периодическая структура плотности протонов, то есть плотности заряда, могла бы проявиться в рассеянии электронов на ядрах или повлиять на вращательные свойства ядер. Особенно чувствительны к существованию периодической структуры такие процессы рассеяния, которые не происходят в однородном ядерном веществе. Эксперименты подобного рода, по-видимому, показывают, что конденсата в ядрах нет, то есть что пс ›п0. Однако есть много ядерных явлений, которые можно объяснить только близостью к пионной конденсации.

Пиониая степень свободы

   В критической точке энергия, которую нужно затратить на рождение пиона, обращается в нуль. В случае, когда плотность меньше критической, но близка к ней, конденсата нет. Однако в этом случае для превращения виртуального пиона в ядре в реальный нужна энергия гораздо меньшая, чем для рождения пиона в пустоте. Конечно, пион в яме не настоящий, его называют «возбуждение с квантовыми числами пиона». Вблизи критической точки эти возбуждения имеют малую энергию, на физическом жаргоне их называют «мягкими».
   Таким образом, близость ядерной и критической плотности проявляется в том, что в ядре возникает «мягкая» степень свободы - возбуждения, напоминающие пи-мезон, но с малой энергией («пионная степень свободы»). Взаимодействие между нуклонами в ядре сильно изменяется благодаря возможности «обмена» такими «мягкими» пионами. Появляется новый механизм взаимодействия нуклонов: один нуклон испускает мягкий пион, другой его поглощает. Обмен мягким пионом заменяет происходящее в пустоте взаимодействие за счет обмена обычным «жестким» пионом. В результате положение некоторых уровней ядра существенно изменяется. Расчет положения уровней с учетом «пионной степени свободы» приводит к хорошему согласию с экспериментом и тем самым подтверждает правильность выбранных при расчете констант. Расчеты позволяют заключить, что ядра находятся в состоянии, очень близком к пионной конденсации. Но даже такие величины, как энергия связи ядра, на которые пионная степень свободы влияет только косвенно, нельзя точно рассчитать без ее учета. Учет пионной степени свободы - необходимый элемент современных ядерных расчетов. После того как теория подвергается экспериментальной проверке, многое приходится изменять. Оставшееся на жаргоне физиков называется «сухим остатком». Даже если предсказание об аномальных состояниях ядерного вещества не подтвердится на опыте, обнаружение пионной степени свободы останется как «сухой остаток» теории.
   Возможное существование сверхплотных и нейтронных ядер
   Как мы видели, однородное ядерное вещество при плотности п›пс, по-видимому, делается неустойчивым и должно сжиматься. Это заключение можно считать достаточно правдоподобным, поскольку оно сохраняется при варьировании констант теории в широких пределах. Однако отсюда еще не следует, что должны существовать сверхплотные ядра. Для устойчивости таких ядер требуется выполнение ряда условий. Прежде всего энергия такого ядра должна быть меньше, чем сумма энергий покоя нейтронов и протонов, иначе оно распадется на отдельные частицы. Кроме того, ядро должно быть устойчиво относительно деления, то есть не должно делиться на две или больше частей. И наконец, для того, чтобы аномальные ядра можно было наблюдать в космических лучах, они должны жить достаточно долго для прохождения космических расстояний, то есть должны быть устойчивы относительно \beta-распада. Чтобы сформулировать эти условия количественно, необходимо знать, как изменяется энергия ядра от малых плотностей нуклонов n~n0 до плотностей, при которых ожидаются устойчивые аномальные ядра (как показывает расчет, эта плотность в 3-6 раз превышает n0).
   Энергия ядра складывается из чисто нуклонной энергии и из энергии, выигрываемой при образовании конденсата. Так как чисто нуклонная энергия минимальна, при плотности n = n0~nc, то при n›nс она растет с ростом n. Энергия же, освобождающаяся при пионной конденсации, частично или полностью компенсирует возрастание нуклонной энергии.
   Энергия ядра, отсчитанная от суммы энергий покоя нуклонов, в зависимости от плотности может иметь два минимума. Первый соответствует обычным ядрам. Второй, если он существует при энергии, меньшей нуля, соответствует аномальным ядрам. Сверхплотные ядра могут оказаться устойчивыми как при NssZ, так и при N›Z («нейтронные ядра»). Расчет показывает, что при некоторых допустимых предположениях о константах взаимодействия нейтронные ядра могут оказаться устойчивыми относительно деления и р-распада. В зависимости от выбора недостаточно хорошо известных параметров нуклон-нуклонного взаимодействия второй минимум может либо отсутствовать, либо лежать ниже нуля, что соответствует устойчивым сверхплотным ядрам; либо лежать выше нуля, и тогда система будет рассыпаться на отдельные нуклоны.
   Следует заметить, что расчет нуклонной энергии и энергии, освобождающейся при конденсации при больших плотностях, - очень сложная задача. Ее решение стало возможным только недавно благодаря усилиям физиков-теоретиков в Советском Союзе и за рубежом. Пока получены очень грубые результаты, и к неточности в выборе параметров взаимодействия добавляется еще и неточность самой теории.
   Таким образом, нельзя сделать определенного заключения о существовании аномальных ядер; можно только сказать, что их существование достаточно правдоподобно, чтобы предпринимать самые серьезные усилия для доказательства или опровержения этого предположения.
   Возможные пути обнаружения аномальных ядер
   В случае, если сверхплотные ядра существуют и имеют большую энергию связи, чем нормальные, последние должны были бы переходить в сверхплотное состояние. Кроме того, если бы аномальные ядра находились в природе вместе с нормальными, их можно было бы наблюдать по большой энергии \gamma-квантов, испускаемых при захвате нейтронов. Пока опыты такого рода давали отрицательный результат.
   Представляют интерес поиски стабильных или корот-коживущих \beta-активных аномальных ядер в продуктах деления обычных ядер.
   Возможно, сверхплотные ядра могут образовываться при столкновениях тяжелых ионов с энергиями порядка нескольких сот МэВ на нуклон. Возникающая при этом ударная волна может привести к значительному уплотнению ядерного вещества. Если при этом плотность превысит критическое значение пс, то начнет образовываться сверхплотная фаза. Независимо от того, существуют или нет устойчивые сверхплотные ядра, пионная конденсация должна существенно повлиять на динамику столкновения.
   Можно надеяться обнаружить аномальные ядра в космических лучах. Интересны поиски сверхплотных ядер космического происхождения, накопившихся за космологические времена в поверхностных слоях лунного грунта и в метеоритах.
   Наконец, возможность образования сверхплотного вещества в результате пионной конденсации оказывает решающее влияние на эволюцию нейтронных звезд при плотностях, превышающих ядерную. Об этом речь пойдет в следующем разделе.
   Трудно сказать, что случалось чаще в истории физики - сначала обнаруживался экспериментальный факт, дававший толчок развитию теории, или сначала возникала теория, требующая экспериментальной проверки. Эксперимент и теория постоянно стимулируют друг друга. Если следствия этой теории подтвердятся на опыте - будет сделан существенный шаг в понимании природы. Если же не подтвердятся, теория сохранит свою методическую ценность и послужит основой для более успешных теорий. Как всегда, последнее слово остается за экспериментом.

СУДЬБА НЕЙТРОННЫХ ЗВЕЗД

   Незнание природы - величайшая неблагодарность.
   Плиний Старшин
   Я попытаюсь рассказать о сверхмощных взрывах звезд и о том, как возникают звезды, состоящие из нейтронов. Теория предсказывает, что в таких звездах может происходить еще не обнаруженный на опыте вид ядерных превращений - образование ядерного вещества с плотностью, намного большей, чем плотность атомных ядер (а плотность атомных ядер - порядка 1014 г/см3).
   Для того чтобы разобраться в этих явлениях, нам придется обращаться ко многим областям физики. Здесь астрономия и теория тяготения переплетаются с физикой элементарных частиц и ядерной физикой.
   Уже в древности астрономы заметили, что время от времени внезапно вспыхивают новые сверхъяркие звезды. Такая вспышка была, например, отмечена китайскими астрономами в 1054 году в Крабовидной туманности, входящей в состав нашей Галактики. Сейчас «вспышки сверхновых» хорошо изучены и обнаружены не только в нашей Галактике, но и в других звездных скоплениях. За несколько месяцев сверхновая испускает столько же света, сколько целая галактика, в которую входят десятки или сотни миллиардов солнц. По интенсивности и длительности излучения можно было установить, что полная энергия, выделяющаяся при вспышке сверхновой, составляет 1043-1045 джоулей. Между тем тепловая энергия звезды в тысячу раз меньше. Значительно меньше и энергия, которая могла бы выделиться при химических превращениях. Откуда же берется громадная энергия сверхновой? Этот вопрос долго оставался без ответа. Надежды объяснить вспышки сверхновых появились только после открытия ядерных реакций, освобождающих энергию в миллионы раз большую, чем химические превращения.
   Ярче ста миллиардов солнц
   Итак, источником энергии сверхновой могли бы быть ядерные реакции, протекающие внутри звезды. Существует, впрочем, еще более мощный источник - это гравитационная энергия звезды. Однако освободить эту энергию можно только с помощью ядерных превращений. Если в ходе ядерных реакций плотность центральной части звезды увеличится, то под действием сил тяготения вещество наружных областей начнет падать к центру, приобретая кинетическую энергию. Иными словами, потенциальная энергия тяготения превратится в кинетическую энергию звездного вещества.
   Плотность звезды определяется равновесием между силой тяжести и силой давления вещества звезды. Для того чтобы звезда сжалась, давление должно уменьшиться. Очень сильное уменьшение давления могло бы произойти при образовании нейтронного вещества, когда протоны и электроны превращаются в нейтроны. Попробуем в этом разобраться.
   Давление пропорционально кинетической энергии частиц, из которых состоит вещество. При понижении температуры падает кинетическая энергия частиц и поэтому падает давление. Однако даже при абсолютном нуле температуры кинетическая энергия частиц не равна нулю. Дело в том, что нейтроны, протоны и электроны подчиняются запрету Паули - две одинаковые частицы со спином 1/2 не могут находиться в одном и том же состоянии. По этой причине даже при абсолютном нуле температуры частицы не покоятся и обладают разными скоростями - как говорят, разбросаны по скоростям. При этом наибольшую кинетическую энергию имеют легкие частицы. Таким образом, главный вклад в давление в звезде вносят электроны, масса которых приблизительно в две тысячи раз меньше массы протона или нейтрона. Неудивительно, что сила тяжести сжимает нейтронное вещество до гораздо большей плотности, чем обычное вещество, состоящее из атомных ядер и электронов, - ведь при этом легкие частицы заменяются тяжелыми, и давление резко падает.
   Если бы в результате ядерных превращений звезда могла превратиться в нейтронную, то это привело бы к резкому сжатию звезды и за короткое время освободилась бы громадная энергия. Достаточна ли она для объяснения вспышки сверхновой? Этот вопрос пока остается без ответа. При таком внезапном сжатии звезды должны возникать могучие упругие волны, идущие от центра. Под их действием наружная часть звезды могла бы сбрасываться, превращаясь в горячий газ, который разлетается с громадной скоростью. Свечение этого газа и объясняло бы длительность вспышек сверхновой.
   Итак, всвышки сверхновых перестали казаться загадочным явлением - появились надежды объяснить их как следствие сжатия звезд в ходе ядерных превращений.
   Но от догадки до прочно установленного утверждения нужно пройти долгий путь сомнений и доказательств.
   В 1932 году Джеймс Чедвик открыл нейтрон. Уже два года спустя астрономы Карл Бааде и Вальтер Цви-ки сделали предположение, что вспышки сверхновых возникают в процессе рождения нейтронной звезды. Для того чтобы подтвердить или опровергнуть эту догадку, следовало изучить свойства нейтронного вещества и выяснить, может ли оно образоваться внутри звезды. А для этого понадобилось около тридцати лет экспериментального н теоретического исследования ядерной материи.
   Что же стало известно в результате этого исследования?

Нейтронная жидкость

   В 1937 году Л. Д. Ландау высказал мысль, что звезда достаточно большой массы должна состоять из нейтронного вещества. Для образования нейтронного вещества атомные ядра и электроны должны превратиться в нейтроны. Допустим, что звезда состоит из кислорода. В ядре каждого атома кислорода имеется восемь нейтронов и восемь протонов. Восемь протонов ядра и восемь электронов, окружающих атомное ядро кислорода, должны превратиться в восемь нейтронов. Эта реакция энергетически невыгодна - на образование каждого нейтрона надо израсходовать несколько миллионов электрон-вольт. Если масса звезды достаточно велика, процесс образования нейтронов с избытком обеспечивается энергией, выделяющейся при сжатии звезды. В 1937 году Ландау показал, что превращение кислорода в нейтронное вещество делается энергетически возможным уже при массе звезды, составляющей малую долю массы Солнца. Однако такое превращение не может произойти сразу, а только через целую цепь ядерных реакций; каждая из этих реакций требует сравнительно небольшой затраты энергии, которая берется из энергии теплового движения частиц звезды.