(2.27)

где т - масса Земли, R - ее радиус, g - ускорение силы тяжести у поверхности Земли, h - высота точки запуска спутника от поверхности Земли. У воображаемого спутника, движущегося по окружности у самой поверхности Земли (h = 0), при R = 6,370 ·108 см и g = 981 см/сек2 скорость должна быть равна v1к = 7,91 км/сек. Скорость v1к называется первой космической скоростью относительно Земли. Однако из-за наличия вокруг Земли атмосферы спутник, движущийся у самой ее поверхности, реально существовать не может. Поэтому запуск ИСЗ производится на некоторой высоте h (h > 150 км). Круговая скорость на высоте h меньше первой космической скорости v1к и определяется из уравнения (2.27) или по формуле . Элементы орбиты ИСЗ зависят от места и времени его запуска, от величины и направления начальной скорости. Связь между большой полуосью а орбиты спутника и его начальной скоростью v0 , согласно интегралу энергии (2.18), определяется формулой где r0 - расстояние точки выхода ИСЗ на орбиту от центра Земли. Обычно запуск ИСЗ производится горизонтально, точнее, перпендикулярно к радиальному направлению. Эксцентриситет орбиты е при горизонтальном запуске равен где q - расстояние перигея (ближайшей точки орбиты от центра Земли). В случае эллиптической орбиты (рис. 35) q = а (1 - е) = R + hП , где hП линейная высота перигея над поверхностью Земли. Расстояние апогея (наиболее удаленной точки орбиты от центра Земли) Q = a (l + e) = R + hA , где hA высота апогея над земной поверхностью. Если запуск произведен в перигее (чего может и не быть), то r0 = q = R + hП .

Зависимость формы орбиты ИСЗ от начальной скорости, с которой он выведен на орбиту, показана на рис. 36. Если в точке К спутнику сообщена горизонтальная скорость, равная круговой для этого расстояния от центра Земли, то он будет двигаться по круговой орбите (I). Если начальная скорость. в точке К меньше соответствующей круговой, то спутник будет двигаться по эллипсу (II), а при очень малой скорости по эллипсу (III), сильно вытянутому и пересекающему поверхность Земли; в этом случае запущенный спутник упадет на поверхность Земли, не совершив и одного оборота. Если скорость в точке К больше соответствующей круговой, но меньше соответствующей параболической, то спутник будет двигаться по эллипсу (IV). Примерное расположение эллиптической орбиты спутника в пространстве показано на рис. 37. Здесь i - наклонение орбиты спутника к экватору Земли, < - восходящий узел орбиты, > - нисходящий узел, П - перигей орбиты, А - апогей орбиты, ^ проекция точки весеннего равноденствия на земном экваторе, W - прямое восхождение восходящего узла, w - угловое расстояние перигея от восходящего узла.

Период обращения ИСЗ определяется по третьему закону Кеплера (2.23). Он равен или, если иметь в виду (2.25), Если а выражать в километрах, то при R = 6370 км и g = 981 см/сек2 период обращения спутника получится в минутах из следующей формулы: Основных причин, изменяющих орбиту ИСЗ, две: действие экваториального утолщения Земли и влияние сопротивления атмосферы Земли. Первая причина вызывает вековые возмущения восходящего узла DW и перигея Dw, которые легко учитываются по формулам небесной механики. Вторая причина вызывает уменьшение большой полуоси а, т.е. высоты h, и изменение формы орбиты. Поскольку плотность атмосферы быстро падает с высотой, основное сопротивление и уменьшение скорости спутник испытывает вблизи перигея. Вследствие этого высота апогея орбиты спутника с каждым оборотом заметно уменьшается (высота перигея уменьшается гораздо медленнее). В результате уменьшается большая полуось и эксцентриситет орбиты; орбита спутника постепенно округляется. Когда высота апогея становится сравнимой с высотой перигея, спутник испытывает торможение и теряет свою скорость вдоль почти всей орбиты, уменьшение высоты апогея и перигея происходит еще быстрее, и спутник, приближаясь по спирали к поверхности Земли, входит в плотные слои атмосферы и сгорает. Так как спутник с каждым оборотом снижается, то его потенциальная энергия уменьшается, часть ее переходит в кинетическую энергию. Это приращение кинетической энергии с избытком покрывает энергию движения, которая теряется при торможении. Поэтому скорость спутника не уменьшается, а наоборот, увеличивается, в то время как орбита уменьшается. Следовательно, по мере снижения спутника его период обращения вокруг Земли сокращается. Описанное возмущенное движение спутника дано в первом приближении. В действительности элементы орбиты спутника испытывают более сложные и разнообразные возмущения. Сжатие Земли, отличие гравитационного поля от поля сферически-симметричной притягивающей массы, вызывают не только вековые возмущения долготы восходящего узла <, и расстояния перигея от узла w. Они являются также причиной их периодических возмущений, а также эксцентриситета е (правда, весьма умеренных) и малых колебаний наклонения орбиты к экватору i. Наличие атмосферы вызывает не только вековое уменьшение большой полуоси а и эксцентриситета е. Боковое давление на спутник, создаваемое вращающей атмосферой, приводит к монотонному изменению i, знак которого определяется направлением движения спутника на орбите. Атмосфера обусловливает также малые периодические изменения < и w. Наконец, возмущающие действия Луны и Солнца вызывают малые периодические возмущения всех элементов орбиты спутника.

§ 60. Движение космических аппаратов

Траектория космического аппарата состоит из двух основных участков: активного и пассивного. Движение на активном участке определяется в основном тягой реактивных двигателей и притяжением Земли. Пассивный участок траектории начинается с момента выключения двигателя последней ступени. На пассивном участке космический аппарат движется под действием притяжения Земли и других тел Солнечной системы (Луны, Солнца, планет). При предварительном расчете космических траекторий пользуются приближенной методикой, которая заключается в следующем. Если скорость аппарата в начале пассивного участка равна (или больше) параболической скорости (2.20) относительно Земли, то, если пренебречь возмущениями, космический аппарат будет двигаться относительно Земли по параболе (или по гиперболе) до тех пор, пока он не выйдет из сферы действия Земли или не войдет в сферу действия другого небесного тела. Сферой действия какого-либо тела с массой т относительно другого тела с массой т' называется область, внутри которой выполняется условие где g и g' - гравитационные ускорения в поле тяготения тел т и т', a Dg и Dg' возмущающие ускорения соответственно со стороны т' и т. Радиус сферы действия равен где r - расстояние между телами т и m'. Например, радиус сферы действия Земли относительно Солнца - 930 000 км, а радиус сферы действия Луны относительно Земли - 66 000 км. Говорить в указанном смысле о сфере действия Солнца можно, строго говоря, лишь как об области пространства, определенной по отношению к звездам. Ниже мы для простоты будем понимать под сферой действия Солнца просто область околосолнечного пространства, за исключением сфер действия планет относительно Солнца. Войдя в сферу действия другого небесного тела, космический аппарат будет двигаться дальше под действием силы притяжения этого тела. Притяжение Земли перестанет оказывать на движение аппарата существенное влияние и будет играть роль возмущающей силы. Характер дальнейшего движения космического аппарата зависит от величины его скорости на границе сферы действия небесного тела. Если эта скорость относительно небесного тела равна нулю, то космический аппарат упадет на него. Если скорость аппарата относительно небесного тела будет больше нуля, но меньше параболической скорости, то при некоторых дополнительных условиях аппарат может стать искусственным спутником этого тела и будет обращаться вокруг него по круговой или эллиптической орбите. Наконец, если скорость космического аппарата будет равна или больше параболической скорости, то аппарат, описав относительно небесного тела отрезок параболы или гиперболы, удалится от него, а затем выйдет из его сферы действия. Таким образом, космический аппарат может упасть на поверхность любого тела Солнечной системы, может стать его искусственным спутником и может выйти из пределов Солнечной системы. В последнем случае он должен иметь на границе сферы действия Земли с Солнцем скорость, равную или большую параболической скорости относительно Солнца. Первой искусственной планетой стала советская космическая ракета, запущенная 2 января 1959 г. Для того чтобы космический аппарат преодолел притяжение Земли и ушел в космическое пространство, необходимо в начале пассивного участка сообщить ему скорость, равную или большую скорости

(2.28)

где h - линейная высота начальной точки пассивного участка. У поверхности Земли h = 0 и Скорость v2к называется второй космической скоростью относительно Земли. Параболическая скорость на высоте h меньше второй космической скорости v2к и определяется из уравнения (2.28) или по формуле Скорость космического аппарата в любой точке на пассивном участке (без учета возмущений) определяется по формуле

(2.29)

Для того чтобы космический аппарат, преодолев притяжение Земли и войдя в сферу действия Солнца, не упал на его поверхность, он должен иметь в этот момент скорость относительно Солнца, отличную от нуля. Разность гелиоцентрической скорости аппарата V (определяющей форму его орбиты относительно Солнца) и гелиоцентрической скорости Земли V3 называется дополнительной скоростью аппарата Vдоп . С этой скоростью аппарат покидает сферу действия Земли относительно Солнца. Начальная скорость космического аппарата v0 , согласно формуле (2.29), определяется из уравнения Скорость аппарата на расстоянии r = r (где r - радиус сферы действия Земли), т.е. дополнительная скорость аппарата Vдоп , согласно той же формуле (2.29) определится из уравнения Из двух последних уравнений получим Первый член в правой части, согласно формуле (2.28), равен vп2, а второй при r ® Ґ обращается в нуль. Тогда начальная скорость космического аппарата определится по формуле

(2.30)

Воспользуемся формулой (2.30) и рассчитаем, какова должна быть начальная скорость, чтобы космический аппарат, запущенный с поверхности Земли, покинул пределы Солнечной системы. В этом случае гелиоцентрическая скорость аппарата V должна быть равна параболической скорости относительно Солнца. Круговая скорость Земли относительно Солнца Vc = 29,8 км/сек (см. § 40). Параболическая скорость относительно Солнца на расстоянии Земли от Солнца равна Vп = = 42,l км/сек. Следовательно, гелиоцентрическая скорость космического аппарата должна быть равна V = Vп = 42,1 км/сек. Если за гелиоцентрическую скорость Земли V3 принять ее круговую скорость Vc , т.е. V3 = Vc = 29,8 км/сек, то при выходе космического аппарата из сферы действия Земли в направлении орбитального движения Земли его дополнительная скорость будет такой: Vдоп = Vп - Vc = (42,1 - 29,8) км/сек = 12,3 км/сек. а при выходе в сторону, противоположную орбитальному движению Земли, Vдоп = Vп + Vc = 71,9 км/сек. Тогда начальная скорость космического аппарата, согласно формуле (2.30), в первом случае будет равна а во втором случае Следовательно, скорость, при которой запущенный с Земли космический аппарат может уйти за пределы Солнечной системы, сильно зависит от направления выхода аппарата из сферы действия Земли по отношению к направлению орбитального движения Земли и лежит в пределах 16,6 км/сек Ј v0 Ј 72,8 км/сек. Минимальная скорость v3к = 16,6 км/сек называется третьей космической скоростью относительно Земли.

§ 61. Определение радиуса Земли. Триангуляция

Согласно теории всемирного тяготения всякое массивное, изолированное тело, вращающееся вокруг оси с определенной скоростью (не очень быстро), должно принять форму, близкую к шару. Действительно, все наблюдаемые массивные небесные тела (Солнце, Луна, планеты) имеют формы, мало отличающиеся от правильных шаров. Шарообразность Земли хорошо видна на ее фотографиях, полученных из космоса (1967-1969 гг.).

Шарообразность Земли позволяет определить ее размеры способом, который был впервые применен еще Эратосфеном в III в. до н. э. Идея этого способа проста. Возьмем на земном шаре две точки O1 и О2 , лежащие на одном географическом меридиане (рис. 38). Обозначим длину дуги меридиана O1O2 (например, в километрах) через l, а ее угловое значение (например, в градусах) - через п°. Тогда длина дуги 1° меридиана l0 будет равна а длина всей окружности меридиана где R - радиус земного шара. Отсюда Угловое значение дуги п° равно разности географических широт точек O1 и О2, т.е. п° = j 1 - j 2 , определение которых представляет простую астрометрическую задачу (см. § 86, 87). Значительно сложнее определить линейное расстояние l между точками O1 и О2. Непосредственное измерение расстояния по кратчайшей линии между этими точками, отстоящими одна от другой на сотни километров, невыполнимо вследствие естественных препятствий - гор, лесов, рек и т.п. Поэтому длина дуги l определяется путем вычислений с помощью специального способа, который требует непосредственного измерения только сравнительно небольшого расстояния - базиса и ряда углов. Этот способ разработан в геодезии и называется триангуляцией. Суть метода триангуляции заключается в следующем. По обе стороны дуги O1О2 (рис. 39), длину которой необходимо определить, выбирается несколько точек А, В, С, ... на расстояниях 30-40 км одна от другой. Точки выбираются так, чтобы из каждой были видны по меньшей мере две другие точки. Во всех точках устанавливаются геодезические сигналы - вышки в форме пирамид - высотой в несколько десятков метров. Наверху сигнала устраивается площадка для наблюдателя и инструмента. Расстояние между какими-нибудь двумя точками, например O1А , выбирается на совершенно ровной поверхности и принимается за базис. Длину базиса очень тщательно измеряют непосредственно с помощью специальных мерных лент. Наиболее точные современные измерения базиса длиной в 10 км производятся с ошибкой ±2 мм. Затем устанавливают угломерный инструмент (теодолит)

последовательно в точках O1, A, В, С, ..., O2 и измеряют все углы треугольников O1АВ, АВС, BCD, ... Зная в треугольнике O1AB все углы и сторону O1A (базис), можно вычислить и две другие его стороны O1B и АВ, я зная сторону АВ и все углы треугольника ABC. можно вычислить стороны АС и ВС и т.д. Иными словами, зная в зтой цепи треугольников только одну сторону (базис) и все углы, можно вычислить длину ломаной линии O1BDO2 (или O1ACEO2 ) . При этих вычислениях учитывается, что треугольники не плоские, а сферические. Далее, определив из точки O1 азимут направления стороны O1В (или O1A), можно спроецировать ломаную линию O1ВDO2 (или O1АСЕO2 ) на меридиан O1O2 , т.е. получить длину дуги O1O2 в линейных мерах.

§ 62. Размеры и форма Земли

Метод триангуляции впервые был применен Снеллиусом в 1615 г. при измерении дуги меридиана в Голландии. С тех пор и до настоящего времени в разных странах, на разных широтах было измерено много дуг на поверхности Земли и не только по меридианам, но и по параллелям. Все эти измерения показали, что длина дуги 1° меридиана не одинакова под разными широтами: около экватора она равна 110,6 км, а около полюсов - 111,7 км, т.е. увеличивается к полюсам. Это означает, что кривизна земной поверхности меньше в полярных областях, чем в экваториальных. Следовательно, Земля отличается от шара и имеет несколько сплющенную форму, близкую к сфероиду (эллипсоиду вращения). На протяжении последних полутора столетий неоднократно определялись элементы земного сфероида, форма которого наилучшим образом согласовывалась с наиболее точными измерениями дуг. Фундаментальные определения были сделаны в СССР Ф.Н. Красовским и А.А. Изотовым в 1940 г. Согласно их исследованиям малая полуось сфероида, совпадающая с осью вращения Земли, равна b = 6356,86 км, а большая полуось, лежащая в плоскости экватора, а = 6378,24 км. Отношение называемое сжатием сфероида, равно . Попытки изобразить поверхность Земли более сложной геометрической фигурой, например, трехосным эллипсоидом, все три оси которого отличаются одна от другой по длине, пока не дали согласующихся между собой результатов. Тем не менее при выводе элементов эллипсоида Красовского экваториальное сжатие Земли было принято равным , что соответствует разности между наибольшим и наименьшим экваториальными радиусами Земли всего лишь в 213 м. При этом долгота наибольшего экваториального радиуса (наибольшего меридиана). равна 15° к востоку. Одной из многочисленных и разнообразных научных задач, решаемых с помощью ИСЗ, является задача исследования формы Земли. Уже в настоящее время с помощью ИСЗ более точно определены некоторые элементы ее фигуры. В результате таких исследований была получена (см., например, Д. Кинг-Хили, Искусственные спутники и научные исследования, ИЛ, 1963) величина экваториального радиуса Земли а = 6375,75 км. Величина северного полярного радиуса оказалась равной 6355,39 км, а южного полярного радиуса - 6355,36 км, т.е. южный полюс Земли находится на 30 м ближе к центру Земли, чем северный. Сжатие Земли оказалось почти таким же, как у эллипсоида Ф.Н.Красовского и А.А.Изотова. На основе многочисленных определений Международный астрономический союз в 1964 г. принял следующие значения элементов земного эллипсоида: а = 6378,16 км, b == 6356,78 км (оба полярных радиуса - одинаковы), e =1 : 298,25, что очень близко к результатам советских исследований. Истинная фигура Земли отличается и от сфероида, и от трехосного эллипсоида и не может быть представлена ни одной из известных математических фигур. Поэтому, говоря о фигуре Земли, имеют в виду нефизическую форму земной поверхности, с океанами и материками, с их возвышенностями и впадинами, а так называемую поверхность геоида. Поверхность, нормалями к которой в любой из ее точек являются отвесные линии, называется уровенной поверхностью, или поверхностью равновесия. Уровенных поверхностей, как внутри Земли, так и охватывающих земную поверхность, или пересекающихся с ней, можно провести бесчисленное множество. Та поверхность равновесия, которая совпадает в открытом океане с поверхностью покоящейся свободной воды, называется геоидом. Поверхность геоида мало отличается от поверхности земного эллипсоида, как правило, поднимаясь над ней внутри материков и опускаясь в океанах (рис. 40). Разность уровней геоида и наиболее близкого к нему по размерам и форме эллипсоида, исключая немногие места на Земле, меньше 100 м.

Изучение истинной фигуры Земли является одной из основных задач геодезии и гравиметрии и состоит из определения элементов эллипсоида, наиболее близкого к геоиду, и положения отдельных частей поверхности геоида относительно эллипсоида.

§ 63. Определение расстояний до небесных тел

Определение расстояний до тел Солнечной системы основано на измерении их горизонтальных параллаксов, рассмотренных в § 31. Зная горизонтальный экваториальный параллакс р0 светила, легко определить его расстояние от центра Земли (см. рис. 20). Действительно, если ТО = R0 есть экваториальный радиус Земли, ТМ = D - расстояние от центра Земли до светила М, а угол р - горизонтальный экваториальный параллакс светила р0 , то из прямоугольного треугольника ТОМ имеем

(3.1)

Для всех светил, кроме Луны, параллаксы очень малы. Поэтому формулу (3.1) можно написать иначе, положив

а именно,

(3.2)

Расстояние D получается в тех же единицах, в которых выражен радиус Земли R0. По формуле (3.2) определяются расстояния до тел Солнечной системы. Быстрое развитие радиотехники дало астрономам возможность определять расстояния до тел Солнечной системы радиолокационными методами. В 1946 г. была произведена радиолокация Луны, а в 1957-1963 гг.- радиолокация Солнца, Меркурия, Венеры, Марса и Юпитера. По скорости распространения радиоволн с = 3 Ч 105 км/сек и по промежутку времени t (сек) прохождения радиосигнала с Земли до небесного тела и обратно легко вычислить расстояние до небесного тела

Расстояния до звезд определяются по их годичному параллактическому смещению, которое обусловлено перемещением наблюдателя (вместе с Землей) по земной орбите (рис. 41). Угол, под которым со звезды был бы виден средний радиус земной орбиты при условии, что направление на звезду перпендикулярно к радиусу, называется годичным параллаксом звезды p. Если СТ = а есть средний радиус земной орбиты, МС = D - расстояние звезды М от Солнца С, а угол p - годичный параллакс звезды, то из прямоугольного треугольника СТМ имеем

(3.3)

Годичные параллаксы звезд меньше 1", и поэтому

(3.4)

Расстояние D по этим формулам получается в тех же единицах, в которых выражено среднее расстояние а Земли от Солнца.

§ 64. Единицы расстояний в астрономии

Если расстояния до небесных тел очень велики, то выражать их в километрах неудобно, так как получаются очень большие числа, состоящие из многих цифр. Поэтому в астрономии, помимо километров, приняты следующие единицы расстояний: астрономическая единица (а.е.) - среднее расстояние Земли от Солнца; парсек (пс) - расстояние, соответствующее годичному параллаксу в 1"; световой год - расстояние, которое свет проходит за один год, распространяясь со скоростью около 300 000 км/сек. Если астрономическую единицу принять равной 149 600 000 км (см. § 66), то 1 пс = 30,86Ч1012 км = 206 265 а.е. = 3,26 светового года; 1 световой год = 9,460Ч1012 км = 63 240 а.е. = 0,3067 пс. В астрономических единицах обычно выражаются расстоянии до тел Солнечной системы. Например, Меркурий находится от Солнца на расстоянии 0,387 а.е., а Плутон - на расстоянии 39,75 а.е. Расстояния до небесных тел, находящихся за пределами Солнечной системы, обычно выражаются в парсеках, килопарсеках (1 000 пс) и мегапарсеках (1 000 000 пс), а также в световых годах. В этих случаях

и световых лет. Ближайшая к Солнцу звезда Проксима Центавра имеет годичный параллакс p = 0",762. Следовательно, она находится от нас на расстоянии 1,31 пс или 4,26 светового года.

§ 65. Определение суточного и годичного параллаксов из наблюдений

Пусть из двух точек O1 и О2 (рис. 42) на поверхности Земли, лежащих на одном географическом меридиане, измерены зенитные расстояния z1 и z2 одного и того же светила М в момент прохождения его через небесный меридиан. Предположим далее, что оба пункта наблюдения находятся в северном полушарии и светило наблюдалось в каждом из них к югу от зенита. Следовательно, z1 = j 1 - d 1 и z2 = j 2 - d 2, где j 1 и j 2 - географические широты пунктов, a d 1 и d 2 - топоцентрические склонения светила, отличающиеся от его геоцентрического склонения d на величины (см. § 31)

и В четырехугольнике O1TO2M (рис. 42) угол O1МO2 равен (p1 - p2), угол MO2T тупой (больше 180°) и равен (180° + z2 ), угол O1TO2 равен (j 1 - j 2) и, наконец, угол ТO1М равен (180°- z1). Так как сумма внутренних углов четырехугольника равна четырем прямым, то 360° = p1 - р2 + 180° + z2 + j 1 - j 2 + 180° - z1 или p1 - p2 = (j 2 - z2) - (j 1 - z1).

Принимая во внимание соотношения, написанные выше, имеем р (sin z1 - sin z2) = [sin (j 1 - d 1) - sin (j 2 - d 2)] Ч p = d 2 - d 1, откуда горизонтальный параллакс светила

По значениям радиуса Земли R в месте наблюдения и экваториального радиуса Земли R0 вычисляется горизонтальный экваториальный параллакс

Горизонтальный параллакс светила можно определить и из измерений его прямого восхождения из одного и того же места на Земле, но в различные моменты времени. За промежуток времени между этими моментами вращение Земли переносит наблюдателя из одной точки пространства в другую, что дает соответствующее параллактическое смещение светила. Таким образом, горизонтальный параллакс светила определяется из его топоцентрических координат, полученных из соответствующих и целесообразно выполненных наблюдений. Аналогичным путем получается годичный параллакс звезд, только в этом случае определяются геоцентрические координаты звезды из наблюдений, произведенных в двух различных точках орбиты Земли и приблизительно через полгода одно после другого (см. § 92). Параллаксы, определенные по параллактическому смещению светила, называются тригонометрическими. Наилучшие современные угломерные инструменты позволяют надежно определять годичное параллактическое смещение звезд до расстояния не свыше 100 пс (p = 0",01). Поэтому тригонометрические годичные параллаксы известны лишь для сравнительно небольшого числа звезд (около 6000), наиболее близких к Солнцу. Расстояния до более далеких объектов определяются различными косвенными методами.

§ 66. Определение астрономической единицы (параллакса Солнца)