Тем не менее у Луны почти наверное нет жидкого ядра. Об этом говорит отсутствие магнитного поля (у Земли оно поддерживается токами в жидком ядре). Еще в 1959 г. магнитометр, установленный на советской космической ракете, показал, что магнитное поле Луны не превышает одной десятитысячной доли земного. Большие споры вызывает вопрос о природе типичных лунных образований - кратеров, морей, гор и т.д. Кажется естественным предположить, по аналогии с Землей, что лунные образования имеют вулканическое происхождение. В пользу этого говорят и некоторые наблюдательные факты. Например, гладкие моря очень напоминают большие лавовые поля. В некоторых местах видно, как лава заливала и обтекала другие образования. Истечение лавы, образовавшее море, произошло сравнительно поздно, и это объясняет, почему на них мало кратеров: старые были залиты, а новые не успели образоваться. Однако среди лунных образований есть много таких форм, которые на Земле встречаются крайне редко. Это цирки, кратеры, лунки, светлые лучи. Форма кратеров наводит на мысль, что они могут иметь совсем другое происхождение. Представим себе, что в лунную поверхность ударил большой метеорит. При этом происходит взрыв, образуется круглая воронка, выброшенное вещество может сформировать вал, а разлет более легких остатков - систему лучей. Все эти явления наблюдаются при сильных взрывах на Земле. Более тонкое рассмотрение показывает, что таким способом можно объяснить и наличие центральной горки. Правило Шретера тоже очень естественно объясняется гипотезой взрыва. На Земле известно несколько больших метеоритных кратеров, сохранившихся более или менее хорошо (крупнейший из них - Аризонский кратер) и, кроме того, в последнее время было найдено большое количество разрушенных кольцевых образований, которые представляют собой, по-видимому, остатки древних метеоритных кратеров. Создается впечатление, что Земля и Луна в далеком прошлом подвергались более сильной метеоритной бомбардировке, чем сейчас, и тогда возникло значительное количество цирков и кратеров. На Земле они были стерты в результате выветривания, а Луна сохранила следы этой катастрофической эпохи. Большое число кратеров сохранилось и на Марсе (см. § 136). Вероятно, часть кратеров имеет метеоритное происхождение, а часть вулканическое. В некоторых случаях играло роль одновременное действие обоих эффектов, так как падение метеорита может нарушить прочность лунной коры и привести к образованию вулкана, к прорыву лавы, истечению газов и т.д. Таким образом, одни образования могут иметь чисто вулканическое происхождение, другие - чисто метеоритное, третьи - комбинированное. Несколько слов о лунной атмосфере. В последние десятилетия были поставлены очень тонкие исследования с целью обнаружить следы хотя бы очень разреженной атмосферы (не отдельных выбросов газа, которые, как указывалось выше, наблюдались, а постоянной атмосферы). Использовалось несколько независимых методов. Один из них - оптические наблюдения яркости и поляризации вблизи лунных рогов. Если атмосфера существует, рога должны чуть-чуть заходить на неосвещенную сторону Луны. При рэлеевском рассеянии излучение поляризуется, и поляризация достигает 100% при угле фазы 90° (она равна нулю при фазовом угле 0° и 180°). Поэтому наличие атмосферы привело бы к слабому поляризованному свечению на концах рогов при углах фаз, близких к 90°. Это свечение искали очень тщательно, однако обнаружить его не удалось. Отсюда был сделан вывод, что лунная атмосфера, если она существует, по плотности по крайней мере в 109 раз уступает земной. У земной поверхности концентрация молекул в атмосфере равна 2,7 ґ 1019 см -3. Следовательно, верхний предел концентрации молекул в лунной атмосфере составляет около 1010 см -3. Такая концентрация имеет место в земной атмосфере на высоте около 200 км. Прямые измерения концентрации атомов в лунной атмосфере были проведены с помощью приборов, оставленных на Луне американскими космонавтами. Оказалось, что в дневное время лунная атмосфера содержит около 106 атомов водорода и 6Ч104 атомов неона. Ночью концентрация на порядок меньше. Таким образом, лунная атмосфера крайне разрежена, состав ее резко отличается от земной (а также, например, марсианской, см. § 136) и плотность сильно меняется в течение суток. Возникает вопрос, почему это так? Ведь на Луне, по крайней мере в прошлом, должны были действовать вулканические процессы. Недавно были получены доказательства, что они действуют и сейчас. При вулканических процессах на поверхность выбрасываются газы, такие как СО2 , Н2О, NН3 . Вся земная атмосфера, как теперь считают, имеет вулканическое происхождение. Куда же деваются газовые продукты вулканической деятельности на Луне? Многие из них удаляются в результате диссипации, из-за малой параболической скорости. Такие газы, как кислород и азот, покидают Луну очень быстро. Тяжелый углекислый газ тоже не мог бы удержаться, так как он диссоциируется солнечным ультрафиолетовым излучением. Однако при радиоактивных процессах в лунной коре должны образовываться тяжелые инертные газы Аr, Кr, Хе, диссипация которых и на Луне протекает медленно. Их удаляет с Луны другой физический процесс, а именно - взаимодействие корпускулярных потоков с лунной атмосферой. Магнитное поле и кинетическая энергия, которые несут эти потоки, вполне достаточны для "сдувания" инертных газов, выделяющихся из коры. С другой стороны, некоторая доля водорода, гелия и неона, содержащихся в корпускулярных потоках, захватывается Луной и образует ту очень разреженную атмосферу, которая была обнаружена.
§ 133. Фазы планет. Условия наблюдений
Прежде чем перейти к изучению других планет Солнечной системы, необходимо сделать несколько общих замечаний относительно условий их видимости. Угол фазы Меркурия и Венеры изменяется в пределах от 0 до 180°. Поэтому Меркурий и Венера проходят те же стадии смены фаз, что и Луна. В верхнем соединении (Солнце между планетой и Землей) диск освещен полностью, угол фазы равен нулю; в нижнем соединении к нам обращена неосвещенная сторона планеты. Иногда (это бывает очень редко), эклиптическая широта Солнца и планеты различается настолько мало, что планета проходит перед диском Солнца или за ним. Вблизи нижнего соединения Меркурий и Венера выглядят как узкие серпы. При угле фазы y2 = 90° освещена ровно половина диска (квадратура).
На рис. 162 видно, что угол фазы не может достигнуть 180°, если орбита планеты расположена вне орбиты Земли (верхние планеты). В противостоянии угол фазы для этих планет приблизительно равен нулю, и диск освещен полностью. По мере удаления от противостояния угол фазы увеличивается, достигает некоторого максимального значения ym и затем снова становится равным нулю в соединении. Чем дальше планета от Солнца, тем меньше максимальный фазовый угол ym. У Марса максимальный фазовый угол составляет 47°, у Юпитера 12°, у Сатурна 6°, у Урана 3°, Нептуна 2° и у Плутона 2°. Видимые угловые размеры Марса, Венеры и Меркурия сильно зависят от взаимного положения этих планет и Земли. Венера и Меркурий ближе всего к Земле во время нижнего соединения, и при этом угловой диаметр их максимален. Однако в нижнем соединении мы видим неосвещенную сторону диска. Кроме того, в нижнем и верхнем соединении угловое расстояние от планеты до Солнца (элонгация) очень мало, что сильно затрудняет наблюдения. Венеру и Меркурий предпочитают наблюдать вблизи наибольшей элонгации. У Меркурия наибольшая элонгация достигает 28°, и даже в этом положении его можно наблюдать только в сумерках или днем. Венера в максимальной элонгации (48°) восходит примерно за три-четыре часа до восхода Солнца (или при вечерней видимости заходит через три-четыре часа после захода Солнца). В дневное время Венеру и Меркурий можно видеть в телескоп, если они не очень близки к Солнцу. Угловые размеры Марса максимальны вблизи противостояния. Так как противостояние совпадает с нулевой фазой (диск освещен полностью), то оно является самым удобным для наблюдений положения планеты. В противостоянии можно различить на диске детали наименьших размеров. Так как орбита Марса имеет большой эксцентриситет, то расстояние от Марса до Земли не одинаково в различных противостояниях: оно минимально, когда противостояние совпадает с прохождением планеты через перигелий (около 55 млн. км) и максимально при прохождении через афелий (около 100 млн. км). Орбиты остальных верхних планет намного больше земной, поэтому расстояние до Земли при их удалении от противостояния меняется гораздо в меньшей степени, чем у Марса. Фаза изменяется тоже в небольших пределах, поэтому условия наблюдения этих планет даже вдали от противостояния часто остаются благоприятными.
§ 134. Меркурий
Ближайшая к Солнцу планета Меркурий по размерам лишь немного больше Луны: его радиус равен 2439 км. Однако средняя плотность его (5,45 г/см3) заметно больше, чем у Луны, она почти такая же, как у Земли. Ускорение силы тяжести на поверхности 372 см/сек2, в 2,6 раза меньше земного. Период обращения вокруг Солнца составляет около 88 земных суток. Из-за малых угловых размеров (около 7" в наибольшей элонгации) и близости к Солнцу Меркурий (рис. 163) наблюдать трудно, и данных об этой планете получено немного. Радиолокация Меркурия позволила определить направление и период вращения планеты. В этих экспериментах Меркурий облучался длительными, почти монохроматическими импульсами радиоволн длиной 70 см с помощью гигантской антенны диаметром 300 м (Пуэрто-Рико, радиоастрономическая обсерватория Аресибо; см. рис. 103). Отраженный импульс вследствие эффекта Доплера размывается по частоте, если планета вращается. Видимое с Земли вращение складывается из действительного осевого вращения и поворота, вызванного движением по орбите. Проводя радиолокацию при различных положениях планеты на орбите, можно определить как скорость, так и направление осевого вращения. Радиолокация Меркурия на длине волны 70 см показала, что его вращение является прямым, с периодом 58,6 ±0,5 суток. Это близко к 2/3 периода обращения планеты. Ось вращения приблизительно перпендикулярна к плоскости эклиптики.
Опытные наблюдатели различают на диске Меркурия более или менее устойчивые детали. Анализ визуальных зарисовок и фотографий показывает, что наблюдаемые на них повторения можно объяснить периодами вращения
(10.7)
где T - период обращения вокруг Солнца. Третье из этих значений в пределах ошибок совпадает с радиолокационным периодом. По наблюдениям деталей на диске отношение t/T = 2/3 выдерживается с точностью не ниже 0,01 земных суток. Нетрудно убедиться, что при таком отношении периодов меркурианские солнечные сутки (интервал от одного восхода Солнца до другого) должны длиться вдвое дольше меркурианского года! Еще недавно было распространено убеждение, что периоды вращения и обращения Меркурия равны и Меркурий обращен к Солнцу постоянно одной и той же стороной. Причина понятна: из ряда чисел (10.7) выбиралось только первое, остальные отбрасывались как маловероятные. Радиолокация показала ошибочность этой точки зрения. Американский космический аппарат "Маринер-10" передал фототелевизионные изображения Меркурия примерно с такой же степенью детальности, какая получается при изучении Луны в наземные телескопы. Прямой перелет космического аппарата от Земли к Меркурию требует больших затрат энергии. Эту трудность можно обойти, если рассчитать такую орбиту, чтобы аппарат прошел вблизи Венеры прежде, чем идти к Меркурию. По такой орбите и совершил перелет к Меркурию "Маринер-10". На рис. 164 приведено "мозаичное" изображение Меркурия, полученное с помощью телевизионных камер "Маринера-10". Поверхность Меркурия очень напоминает лунную. Первое, что бросается в глаза, - это большое число кратеров самых различных размеров. Однако имеются и различия. На Меркурии нет обширных морских районов, сравнительно гладких и более свободных от кратеров. С другой стороны, на поверхности Меркурия имеются такие образования, как очень высокие (в несколько километров) уступы, которые тянутся на расстояния в тысячи километров. Они свидетельствуют о том, что планета сжималась в процессе своей эволюции.
Рис. 164. "Мозаичная" (сложенная из многих отдельных изображений) фотография Меркурия, полученная с помощью телевизионных камер "Маринера-10".
О подобии Луны и Меркурия говорит также сходство их фотометрических и поляриметрических характеристик: зависимость звездной величины и поляризации от фазы, отражательная способность поверхности. Как и на Луне, очень велики перепады температуры поверхности, измеренные по инфракрасному излучению. В полдень на экваторе максимальная температура достигает 700 °К, а на ночной стороне падает до 100°К,. В то же время интенсивность теплового радиоизлучения сантиметрового диапазона на ночной и дневной стороне мало отличается. Следовательно, поверхностный слой грунта на Меркурии, так же как и на Луне, представляет собой мелко раздробленную породу с относительно низкой плотностью (реголит). Атмосфера Меркурия имеет чрезвычайно малую плотность - концентрация не более 106 см -3 у поверхности. Такая концентрация газа в земной атмосфере имеется на высоте 700 км. Состав атмосферы точно не известен; спектроскопические измерения на "Маринере-10" обнаружили гелий (концентрация около 104 см -3), но, по-видимому, должны быть и другие газы. Меркурий имеет собственное магнитное поле. Напряженность его вблизи поверхности у экватора около 0,002 э (в 300 раз меньше, чем на Земле). Ось магнитного диполя приблизительно совпадает с осью вращения. Спутников Меркурий не имеет.
§ 135. Венера
Масса и радиус Венеры (рис. 165) очень близки к земным (0,82 МЕ и 0,95 RЕ соответственно). Уже в 1761 г. наблюдения прохождения Венеры по диску Солнца позволили М. В. Ломоносову установить, что эта планета, как и Земля, обладает мощной атмосферой. Таким образом, Венера и Земля во многом похожи друг на друга. Еще недавно многие астрономы, основываясь на этом, считали, что физические условия на поверхности Венеры и Земли не могут сильно различаться. Однако исследования, проведенные в последние годы, заставили пересмотреть. старые представления.
Угловой диаметр Венеры довольно велик. Он меняется от 20" вблизи верхнего соединения почти до 1 вблизи нижнего. Вблизи наибольшей элонгации можно заметить постепенное потемнение видимой поверхности диска от лимба к терминатору. Иногда это потемнение является не вполне регулярным. Опытные наблюдатели отмечают на диске наличие туманных пятен, вид которых меняется ото дня ко дню. Эти пятна могут быть только деталями облачной структуры. Облака на Венере образуют мощный сплошной слой, полностью скрывающий от нас поверхность планеты. Фотографии Венеры в ультрафиолетовых лучах (l " 3500 Е) часто показывают более или менее устойчивые (в течение нескольких дней) детали, иногда имеющие вид параллельных полос, но и они, безусловно, не связаны с твердой поверхностью. Что скрывается под облачным слоем Венеры, как высоко расположен облачный слой над ее поверхностью, какова температура поверхности и давление атмосферы? Только недавно мы получили ответ на эти вопросы. Даже период вращения Венеры до последнего времени не был известен. Проще всего можно определить период вращения планеты по измерению скорости видимого перемещения деталей, наблюдаемых на диске. Движение деталей, наблюдаемых на ультрафиолетовых фотографиях Венеры, дает период вращения около четырех земных суток, т. е. намного меньше периода обращения вокруг Солнца (около 225 суток). Однако в ультрафиолетовых лучах мы наблюдаем облака, плавающие в довольно высоких слоях атмосферы, и эти облака могут иметь систематические движения, связанные с циркуляцией атмосферы. Скорость вращения твердого тела Венеры уверенно можно определить только радиолокацией. Впервые радиолокационное отражение от Венеры было получено в 1957 г. Сначала радиолокационные импульсы посылались на Венеру с целью измерения расстояния для уточнения астрономической единицы. В последние годы в США и СССР стали исследовать размытие отраженного импульса по частоте ("спектр отраженного импульса") и затягивание во времени. Размытие по частоте объясняется вращением планеты (эффект Доплера), затягивание во времени - различным расстоянием до центра и краев диска. Эти исследования проводились главным образом на радиоволнах дециметрового диапазона и показали, что период вращения составляет 243,2 земных суток, причем направление вращения обратно направлению орбитального движения. Ось приблизительно перпендикулярна к плоскости орбиты и, следовательно, на Венере отсутствует явление смены времен года. По-видимому, на планете есть участки, лучше отражающие радиоволны, чем остальная часть ее поверхности, что сказывается на спектре отраженного импульса: он содержит минимумы и максимумы, частота которых медленно изменяется из-за вращения планеты По скорости этого изменения определяется период вращения. Период вращения, определенный из радиолокационных экспериментов, дает скорость вращения твердого тела планеты, так как дециметровые радиоволны должны свободно проходить сквозь облачный слой. Период, найденный по ультрафиолетовым фотографиям, определяется, видимо, систематическими движениями облаков в относительно высоких слоях атмосферы. Поскольку периоды вращения (243 суток) и обращения (225 суток) близки по величине, а направление противоположно, то за один оборот вокруг Солнца на Венере наблюдаются два восхода и два захода Солнца, т.е. длительность солнечных суток на Венере составляет земных 117 суток. Вращение Венеры обладает еще одной очень интересной особенностью. Скорость его как раз такова, что во время нижнего соединения Венера обращена к Земле все время одной и той же стороной. Причины такой согласованности между вращением Венеры и орбитальным движением Земли пока не ясны. Радиолокация позволила определить радиус твердой поверхности Венеры. Он равен 6050 км с точностью порядка нескольких километров. С помощью радиолокации получались также изображения поверхности Венеры с разрешением от нескольких сотен до нескольких километров. При этом были обнаружены кратеры, похожие на лунные и марсианские, но гораздо более сглаженные. В экваториальном поясе относительная высота различных участков поверхности не превышает 2 км.
В октябре 1975 г. спускаемые аппараты АМС "Венера-9" и "Венера-10" совершили мягкую посадку на поверхность планеты и передали на Землю изображение места посадки (рис. 166). Это были первые в мире фотографии, переданные с поверхности другой планеты. Изображение получалось в видимых лучах с помощью телефотометра системы, по принципу действия напоминающей механическое телевидение. Мы видим на рис. 166, что место посадки "Венеры-9" представляет собой россыпь довольно крупных камней. Возраст поверхности такого типа не может быть большим (106-107 лет) и, следовательно, Венера является геологически активной планетой. На АМС "Венера-8", "Венера-9" и "Венера-10" были установлены приборы для измерения плотности поверхностных пород и содержания в них естественных радиоактивных элементов. В местах посадки "Венеры-9" и "Венеры-10" плотность близка к 2,8 а/см3, а по уровню содержания радиоактивных элементов можно заключить, что эти породы близки по составу к базальтам - наиболее широко распространенным изверженным породам земной коры. Перейдем к характеристикам венерианской атмосферы. Спектроскопические наблюдения показали, что в атмосфере Венеры присутствует СО2 , а также некоторые другие газы (Н2О, СО, НСl, HF), но в гораздо меньших количествах, чем СО2 . На рис. 167 показан участок спектра Венеры с полосой СО2 (напомним, что инфракрасные спектры молекул состоят из полос - групп линий, расположенных в определенной закономерности). Несмотря на большое количество спектроскопических данных, было невозможно определить полное содержание СО2 в атмосфере Венеры из-за присутствия мощного облачного слоя. Оценки процентного содержания СО2 тоже были весьма неточны. До полетов советских АМС предполагали, по аналогии с Землей, что в атмосфере Венеры много азота. Прямые измерения на советских АМС "Венера-4, 5, 6" показали, что содержание СО2 в атмосфере Венеры около 97%, а количество азота не превышает 2%. Содержание Н2О в глубоких слоях атмосферы составляет около 0,1% (по данным "Венеры-9 и 10"). Заметим, что это очень малая величина в сравнении с количеством воды на Земле. На Венере нет океанов, и вся вода, выделившаяся в течение геологической истории планеты, должна быть в атмосфере.
Советские АМС "Венера-4" - "Венера-10" измерили давление, температуру и плотность в нижних слоях атмосферы планеты. На рис. 168 показана зависимость давления и температуры от высоты, полученная в этих экспериментах. Станции "Венера-7", "Венера-8", "Венера-9" и "Венера-10" измеряли основные параметры атмосферы и передавали их на Землю вплоть до посадки на поверхность планеты и продолжали работать некоторое время после посадки. В результате работы этих станций установлено, что температура на поверхности Венеры составляет около 750°К, а давление близко к 100 атм. Изучение Венеры космическими средствами проводится не только с помощью спускаемых аппаратов. Космический аппарат "Венера-4", после отделения спускаемого отсека, использовался для исследований верхней атмосферы при помощи ультрафиолетового фотометра с пролетной траектории. Американские космические аппараты "Маринер-5" и "Маринер-10" также исследовали Венеру с пролетной траектории. Однако гораздо
более полные данные путем изучения планеты из космоса с близкого расстояния позволяют получить искусственные спутники, выведенные на орбиту вокруг этой планеты. Первыми искусственными спутниками Венеры стали орбитальные аппараты "Венера-9" и "Венера-10", выведенные на околопланетную орбиту после отделения спускаемых аппаратов. Они оснащены набором аппаратуры для исследования атмосферы, облачного слоя и взаимодействия солнечного ветра с планетой. Просвечивание атмосферы радиоволнами с американских пролетных и советских орбитальных аппаратов позволило получить данные о высотной зависимости плотности и температуры атмосферы между уровнями 0,001 и 5 атм. При этих наблюдениях параметры атмосферы определялись по сдвигу фазы радиоволн (проходящих сквозь атмосферу планеты), вызванному их преломлением. Высокая температура поверхности, большое атмосферное давление и большое относительное содержание СO2 - факты, видимо, связанные между собой. Высокая температура способствует превращению карбонатных пород в силикатные, с выделением СО2 . На земле CO2 связывается и переходит в осадочные породы в результате действия биосферы, которая на Венере, конечно, отсутствует. С другой стороны, большое содержание СО2 способствует разогреву венерианской поверхности и нижних слоев атмосферы.
Вывод о высокой температуре в нижних слоях венерианской атмосферы был получен еще по результатам наземных астрономических исследований, хотя измерения на АМС существенно уточнили наши представления. На рис. 169 представлен спектр радиоизлучения Венеры, полученный по многочисленным измерениям с помощью наземных радиотелескопов. По оси ординат дана яркостная температура (температура абсолютно черного тела, монохроматическая яркость которого равна измеренной яркости реального источника). В диапазоне от 3 до 20 см она достигает 600-700 °К. Атмосфера Венеры прозрачна для этих частот, и здесь измерялось непосредственно тепловое излучение поверхности. Когда это было обнаружено, вначале делались попытки объяснить наблюдения по-иному (астрономы не ожидали такой высокой температуры на Венере), но попытки эти оказались несостоятельными. Исследования Венеры с помощью космических аппаратов - это один из немногих случаев, когда удалось проверить прямыми измерениями выводы астрономических наблюдений, причем выводы смелые и необычные. Уменьшение яркостной температуры на сантиметровых волнах объясняется поглощением в углекислом газе, которое возрастает с уменьшением длины волны. Так как коэффициент излучения пропорционален коэффициенту поглощения, то на коротких волнах атмосфера сама является источником излу-чения. Чем короче длина волны (и соответственно больше коэффициент поглощения), тем выше эффективный уровень в атмосфере, который испускает наблюдаемое излучение. В инфракрасном диапазоне (от примерно 5 до 100 микрон) излучают венерианские облака, имеющие температуру около 235-240 °К на верхней границе.