(7.31)
Излучательная способность el определяется так, что произведение el dl равно потоку, излучаемому 1 см2 поверхности тела по всем направлениям, в интервале спектра от l до l + dl . Поэтому ее размерность составляет эрг/см2Ч секЧ см = эрг/см3Ч сек. Если выражение (7.31) разделить на p, то получится яркость излучающей поверхности. Распределение энергии в спектре абсолютно черного тела, описываемое формулой Планка, графически изображено на рис. 91 (стр. 223) для нескольких значений температур. Из этого рисунка видно, что все планковские кривые имеют заметно выраженный максимум, приходящийся на длину волны
(7.32)
если ее выражать в сантиметрах. Это закон смещения максимума излучения Вина: с увеличением температуры максимум излучения абсолютно черного тела смещается в коротковолновую область спектра. По мере увеличения температуры меняется не только цвет излучения, но и его мощность. Мощность излучения абсолютно черного тела пропорциональна четвертой степени температуры (закон Стефана - Больцмана). Каждый квадратный сантиметр поверхности абсолютно черного тела излучает за 1 сек по всем направлениям во всех длинах волн энергию
e = sT 4, (7.33)
где s = 5,67Ч10 -5 эрг/секЧ см2Ч град4 - постоянная Стефана - Больцмана. Поскольку e дает поток излучения, оно имеет размерность эрг/см2Ч сек и численно равно площади, ограниченной кривой Планка и осью абсцисс. По обе стороны от максимума Излучательная способность, описываемая формулой Планка, убывает по-разному. В области коротких волн (фиолетовый конец спектра) знаменатель второго сомножителя в формуле Планка велик, и единицей можно пренебречь. Тогда получаем формулу Вина
(7.34)
описывающую очень крутое падение излучательной способности у фиолетового конца спектра. На противоположном конце спектра (инфракрасные и радиоволны) падение излучательной способности с длиной волны происходит значительно медленнее, так как при больших l .
и формула Планка переходит в формулу Рэлея - Джинса
(7.35)
Таким образом, в длинноволновой части спектра излучательная способность пропорциональна температуре. Эта формула используется в радиоастрономии для характеристики космического радиоизлучения. Пропорциональность потока излучения температуре позволяет выражать интенсивность наблюдаемого радиоизлучения через температуру абсолютно черного тела, имеющего такую же лучеиспускательную способность. Доля излучения, поглощаемая данным телом в некотором участке спектра, называется поглощательной способностью (или коэффициентом поглощения) и обозначается kl . По определению, поглощательная способность абсолютно черного тела kl = 1. Поэтому для абсолютно черного тела отношение излучательной и поглощательной способности равно функции Планка. Это хорошо известный закон Кирхгофа: для излучения с данной длиной волны отношение излучательной и поглощательной способности абсолютно черного тела зависит только от температуры. Элементарные процессы излучения и поглощения. Разреженные газы (например, часто встречающиеся в Млечном Пути диффузные туманности) дают линейчатые спектры, в которых излучение сосредоточено в узких участках - ярких спектральных линиях, характеризующихся определенными значениями длин волн. Расположение и количество спектральных линий в различных участках спектра зависит от химического состава излучающего газа, а также от его температуры и плотности. Каждая спектральная линия излучается атомом какого-либо одного химического элемента, обладающего определенным запасом внутренней энергии. Такой атом называется возбужденным. Энергию своего возбуждения атомы черпают как за счет излучения, которое они способны поглощать, так и из кинетической энергии частиц, с которыми они постоянно сталкиваются. Атом каждого химического элемента имеет бесконечное множество строго определенных (дискретных) значений внутренней энергии, характерных только для данного рода атомов. Эти дискретные значения внутренней потенциальной энергии называются энергетическими уровнями. Как правило, атом находится в возбужденном состоянии в течение всего лишь сотых долей микросекунды, после чего он спонтанно (самопроизвольно) переходит в состояние с меньшей энергией, излучая всю или часть потенциальной энергии в виде кванта электромагнитного излучения. Энергия этого кванта равна разности энергий исходного и конечного состояний. Из-за дискретности последних при переходах между определенными энергетическими уровнями всегда излучаются кванты в одних и тех же спектральных линиях. Таким образом, возникновение линейчатых спектров связано с беспрестанно меняющейся внутренней энергией атомов, то поглощающих, то вновь излучающих энергию. Изменение внутренней энергии атома связано с наличием у него одного или нескольких электронов. Поэтому условно иногда говорят, что при излучении или поглощении электрон в атоме переходит с одного энергетического уровня на другой. Хотя это выражение не вполне точно (можно говорить только об энергии всей системы атома и связанных с ним электронов), оно оправдывается тем, что при некотором критическом значении внутренней энергии электрон отрывается от атома и начинает двигаться как свободная частица. Этот процесс называется ионизацией, а критическое значение энергии - энергией ионизации. Как и возбуждение, ионизация может вызываться либо столкновением с какой-нибудь быстрой частицей, либо поглощением достаточно мощного светового кванта (например, ультрафиолетовых лучей). Если энергия ионизующей частицы или кванта превышает энергию ионизации, то оторванный электрон получает вдобавок остаток этой энергии в виде кинетической энергии своего свободного движения. Это является причиной, например, того, что горячие звезды, излучающие много ультрафиолетовых квантов, нагревают вокруг себя газ: каждый мощный квант, поглощенный нейтральным атомом, не только ионизует его, но и придает электрону большую скорость; сталкиваясь с другими свободными частицами, оторванные электроны отдают им часть своей кинетической энергии, нагревая тем самым газ. В частично ионизованном газе (плазме) присутствуют, помимо фотонов (т.е. излучения), частицы по крайней мере трех типов: нейтральные атомы, ионы и свободные электроны. Все многообразие элементарных атомных процессов, часто сопровождающихся поглощением и излучением квантов, сводится к взаимодействию между этими частицами, в котором излучение также принимает участие. Помимо ионизации, столкновения электронов с нейтральными атомами могут приводить либо к увеличению их внутренней энергии (возбуждению), либо к ее уменьшению, не сопровождаемому излучением (дезактивация). Излучение также может вызывать увеличение энергии электрона (возбуждение светом - фотовозбуждение или фотоионизацию), или ее уменьшение, как, например, при вынужденном излучении, когда атом избавляется от своей энергии под влиянием пролетающего мимо него светового кванта. Встречаясь с ионом, электрон может вернуться на место в связанное с атомом состояние, выделяя при этом квант с энергией, равной сумме своей кинетической энергии и энергии ионизации. В результате такой рекомбинации возникает другой важный тип излучения, имеющий непрерывный (сплошной) спектр. В отличие от линейчатого, в нем интенсивность плавно меняется в пределах большой области. Медленные электроны, скорость которых близка к нулю, рекомбинируя, образуют кванты с энергиями, близкими к энергии ионизации. Все остальные электроны, имеющие большие скорости, дают более коротковолновое излучение. Поэтому непрерывное излучение, образующееся при рекомбинации свободных электронов на каждый Данный энергетический уровень атома, имеет резкую границу с красного конца спектра. В коротковолновой области оно постепенно ослабевает. Это связано с тем, что более мощные кванты возникают при рекомбинации более быстрых электронов, количества которых при данной температуре газа, как мы видели, экспоненциально убывает. Непрерывный спектр (континуум) в виде слабого фона наблюдается в спектрах наиболее плотных и ярких туманностей, в которых велика общая масса светящегося газа. Излучение реальных тел. Закон Планка описывает лишь излучение абсолютно черного тела. Излучение реальных тел отличается от планковского, причем в некоторых случаях весьма существенно. Это отличие особенно сильно проявляется в излучении разреженных прозрачных газов уже упоминавшихся диффузных туманностей. Они имеют линейчатый эмиссионный спектр, состоящий из ярких линий излучения. Очевидно, что пока излучающий слой газа прозрачен, яркость линий пропорциональна количеству вещества на луче зрения r l . Обозначая яркость через I (интенсивность), а коэффициент излучения через e , получим
I = e r l.(7.36)
Принимая во внимание определяющее выражение (7.29), получаем, что излучение оптически тонкого слоя пропорционально его оптической толщине:
(7.37)
Если более близкие к наблюдателю слои газа заметно поглощают излучение удаленных областей, то эта пропорциональность нарушается и тогда говорят, что возникает самопоглощение. Для случая, когда отношение e /k одинаково для всего излучающего газа, оказывается, что выходящее излучение, с учетом самопоглощения, составляет
(7.38)
Заметим, что формула (7.37) является частным случаем формулы (7.38) при очень малых t . При очень больших оптических глубинах выражение (7.38) стремится к предельному значению e /k . Если вспомнить, что чем непрозрачнее газ, тем он ближе к состоянию термодинамического равновесия, когда справедлив закон Кирхгофа и отношение e /k равно функции Планка, то получится очень важное следствие: чем непрозрачнее газ в данной области спектра, тем ближе его излучение в соответствующей длине волны к значению, определяемому функцией Планка при некотором значении температуры. Как близко это значение к действительной температуре вещества, будет рассмотрено в § 108. Теперь рассмотрим, как должен меняться спектр туманности, если непрерывно увеличивать плотность ее вещества. У наиболее ярких из наблюдаемых туманностей линии излучения видны на фоне слабого непрерывного спектра, что говорит об усилившейся роли рекомбинаций. По мере дальнейшего роста оптической толщины интенсивность непрерывного спектра растет, в то время как яркость линий вследствие самопоглощения почти не меняется. Эмиссионные линии начинают все менее и менее резко выделяться на фоне непрерывного спектра. В конце концов они почти сливаются с континуумом и общий вид целой области спектра оказывается почти планковским. Вот почему излучение очень толстого слоя газов, а в еще большей степени жидких и твердых тел напоминает равновесное излучение абсолютно черного тела. Примером плотного и массивного газового образования служат звезды. Хотя их излучение напоминает планковское, в их спектрах наблюдается большое количество темных линий (спектр поглощения), существование которых из формулы Планка не следует. В спектральных линиях атомы поглощают излучение значительно сильнее, чем в непрерывном спектре. Поэтому в линиях поглощения видны самые внешние слои звезды. То, что эти линии выглядят темнее окружающего непрерывного спектра, говорит об уменьшении излучательной способности вещества наружных слоев. В астрофизике приходится иметь дело со всеми тремя рассмотренными типами спектров - линейчатым, непрерывным и поглощения (абсорбционным). Изучение непрерывных спектров позволяет получить представление о температуре, плотности и количестве излучающего газа. Отождествление спектральных линий со спектрами известных химических элементов позволяет установить их присутствие в космических объектах, а детальное исследование отдельных спектральных линий дает сведения о температуре, давлении, количестве излучающих или поглощающих атомов, внутренних движениях в газе, величине магнитного поля и других физических свойствах. Спектральные линии, наблюдаемые в астрофизических условиях. Расположение спектральных линий, характерных для атома данного химического элемента, определяется зарядом его ядра и количеством внешних, валентных электронов. Поэтому спектры элементов, входящих в группы периодической системы Д.И. Менделеева, равно как и спектры ионов с одинаковым количеством валентных электронов, сходны между собой. Так, например, сходными оказываются спектры водорода и ионизованного гелия, натрия и ионизованного кальция, нейтральных кальция и магния и т.д. В спектрах большинства астрономических объектов, в частности, почти у всех звезд, наблюдаются интенсивные линии водорода. Счет его энергетических уровней ведется от основного состояния, соответствующего минимальной энергии атома. В видимой области спектра расположены линии серии Бальмера, возникающие при переходах со всех энергетических уровней на второй: красная линия, обозначаемая Нa (l = 6563 Е), голубая Нb (l = 4861 Е) и две фиолетовые Нg (l = 4340 Е) и Нd (l = 4102 Е). Остальные линии этой серии вместе с бальмеровским континуумом, начинающимся около l = 3646 Е и возникающим при рекомбинации электронов на второй уровень, расположены в ультрафиолетовой части спектра. У всех элементов наиболее интенсивными, как правило, являются линии главной серии, возникающие в результате переходов на самый глубокий, основной уровень атома. Это связано с постоянным стремлением электрона в атоме к состоянию с наименьшей потенциальной энергией. У водорода главная серия, называемая серией Лаймана (La, Lb, ...), лежит в далеком ультрафиолете (длины волн 1216, 1026, 972 Е и т.д.). Первая линия главной серии называется резонансной. С длины волны 912 Е начинается лаймановский континуум. Переходы со всех вышележащих уровней на третий и четвертый дают соответственно серии Пашена и Брэккета, расположенные в инфракрасной части спектра. Протон (ядро водородного атома), подобно кольцевому току, обладает магнитным моментом. Момент количества движения электрона (спин) может быть направлен либо параллельно либо антипараллельно магнитному моменту ядра. Оба эти состояния обладают несколько различной энергией. Для основного состояния водородного атома разность энергий составляет 6Ч10-6 эв. Вектор момента количества движения подобно вектору угловой скорости можно рассматривать как ось вращения электрона. Если эта ось направлена в ту же сторону, что и магнитный момент ядра, то водородный атом, находящийся в основном состоянии, оказывается возбужденным. Однако это особый возбужденный уровень, называемый метастабильным: в отличие от обычного возбужденного состояния, в котором атом может находиться сотые доли микросекунды, в данном случае он может оставаться возбужденным в течение необычайно долгого времени порядка 11 миллионов лет. Если в течение этого времени спин электрона спонтанно изменит свое направление на противоположное (электрон как бы перевернется), атом перейдет в состояние с меньшей энергией и излучит квант с энергией 6Ч10-6 эв, соответствующий радиоизлучению с длиной волны 21 см. Это еще одна важная спектральная линия водорода, существование которой позволяет изучать вещество в самых холодных областях космического пространства. В спектрах некоторых тел, особенно горячих звезд, наблюдаются линии гелия. Спектр ионизованного гелия очень похож на водородный и наблюдается у самых горячих звезд. Линии нейтрального гелия встречаются чаще. Еще до того, как гелий был обнаружен на Земле, наиболее интенсивная из его спектральных линий в видимой части спектра (желтая линия с l = 5876 Е ) была замечена в спектре Солнца, что и послужило поводом к названию этого элемента (гелиос, по-гречески, Солнце). Рядом с этой линией гелия, обозначаемой D3, находятся две интенсивные линии D1 и D2 с длинами волн 5896 и 5890 Е, часто наблюдаемые в спектрах звезд и межзвездной среды. Это резонансные линии натрия. Еще более интенсивными часто бывают резонансные линии ионизованного кальция, расположенные у фиолетовой границы видимого спектра. Они обозначаются Н (l = 3968 Е) и К ( l = 3934 Е ). В спектрах небесных тел встречается также множество линии других атомов и некоторых простейших молекулярных соединений. Характерной особенностью спектров некоторых астрономических объектов являются наблюдаемые в них запрещенные линии. С одной из таких линий, излучаемой межзвездным водородом (l = 21 см), мы только что познакомились. Другие линии, часто наиболее яркие, лежат в видимой области спектра (например, эмиссионные линии в солнечной короне, небулярные линии в спектрах туманностей, авроральные линии, возбуждаемые в верхних слоях земной атмосферы). Тщетность попыток воспроизвести эти линии в земных лабораториях заставляла вначале предположить существование неизвестных гипотетических элементов короний, небулий и т.д. Как мы видели, подобное предположение оказалось справедливым только в отношении гелия. Во всех остальных случаях неизвестные линии удалось отождествить со спектрами хорошо известных химических элементов, находящихся, однако, в особых условиях возбуждения. Так, например, оказалось, что корональные линии излучаются многократно ионизованными атомами железа, никеля, аргона, кальция и других элементов, у которых оторвано по 10-15 электронов. Небулярные и авроральные линии оказались принадлежащими однократно и дважды ионизованному кислороду. Появление запрещенных линий свидетельствует об очень большой разреженности газа. Как и в случае радиолинии 21 см, чтобы излучить запрещенную линию, атом должен находиться сравнительно долго в возбужденном состоянии. Хотя для оптических запрещенных линий это время не так велико, как для линии 21 см, все же оно достигает десятых долей или даже целых секунд, т.е. в сотни миллионов раз больше, чем для обычных спектральных линий. Чтобы произошло спонтанное излучение, атом за это время не должен сталкиваться с другими частицами, чтобы не потерять энергию своего возбуждения. Следовательно, в разреженном газе, излучающем запрещенные линии, промежуток времени между последовательными столкновениями частиц должен быть порядка секунды. Полагая в формуле (7.17) s = 10 -16 см2 и v* = 108 см/сек, что соответствует условиям в солнечной короне, получаем, что концентрация частиц должна быть не больше 108 частиц/см3. В газовых туманностях концентрация частиц во много раз меньше. Поляризация излучения. Электромагнитное излучение, возникающее в результате каждого отдельного элементарного процесса, характеризуется определенной плоскостью, в которой лежит вектор напряженности колеблющегося электрического поля (плоскость распространения). Перпендикулярная к ней плоскость, содержащая вектор колеблющегося магнитного поля, называется плоскостью поляризации. Чаще всего наблюдаемое излучение неполяризовано, так как оно возникает в результате сложения одновременного излучения очень большого числа атомов, поляризованного вдоль всевозможных направлений. Такой неполяризованный свет называется естественным (рис. 88).
Пропуская свет через специальные поляризаторы (например, кристаллы кварца, полевого шпата) или поляроидные пленки, на которые нанесены эмульсии из некоторых кристаллических веществ, можно из данного излучения выделить часть, поляризованную вдоль основной плоскости поляризатора или поляроида. Поворачивая эту плоскость, измеряют интенсивность поляризованного излучения в различных направлениях. Если по всем направлениям интенсивность оказывается одинаковой, то свет не поляризован. Если наблюдается максимум поляризации вдоль некоторого направления, то в перпендикулярной к нему плоскости обязательно имеет место минимум поляризации. Разность интенсивностей вдоль направлений максимума и минимума поляризации, отнесенная к их сумме, называется степенью поляризации:
(7.39)
В простейшем случае поляризация возникает при отражении от некоторых поверхностей, особенно при определенных значениях углов падения и отражения. Так, например, свет, отраженный под углом 58° пластинкой из обычного стекла, почти полностью поляризован, причем плоскость поляризации перпендикулярна к плоскости стекла. Это свойство отраженного света используется для изучения природы отражающих поверхностей, например планет. При рассеянии света на большом количестве отдельных частиц также может возникнуть поляризация. Особенно важен случай рассеяния на свободных электронах. В направлении, составляющем с первоначальным угол ровно 90°, рассеяние на свободных электронах полностью (на 100%) поляризовано. Кроме того, поляризация возникает при рассеянии на мелких пылинках, а также при рассеянии отдельными молекулами. Так, солнечный свет, рассеянный молекулами воздуха, что придает голубой цвет небу, оказывается частично поляризованным. Спектральные линии в магнитном поле. Спектральные линии, излучаемые атомом, находящимся в магнитном поле, расщепляются на несколько тесно расположенных компонентов. В простейшем случае спектральная линия разделяется на две, если наблюдать вдоль силовых линий магнитного поля, и на три, если смотреть поперек них. Излучение в каждой из этих линий особым образом поляризовано. Это явление называется эффектом Зеемана. Расстояние между компонентами расщепленных спектральных линий пропорционально напряженности магнитного поля. Это дает возможность на основании спектроскопических наблюдений измерять космические магнитные поля. На рис. 89 приведен спектр солнечного пятна, показывающий присутствие сильного магнитного поля напряженностью около 1000 эрстед.
§ 107. Доплеровское смещение спектральных линий
Если расстояние между излучающим телом и наблюдателем меняется, то скорость их относительного движения имеет составляющую вдоль луча зрения, называемую лучевой скоростью. По линейчатым спектрам лучевые скорости могут быть измерены на основании эффекта Доплера, заключающегося в смещении спектральных линий на величину, пропорциональную лучевой скорости, вне зависимости от удаленности источника излучения. При этом, если расстояние увеличивается (лучевая скорость положительна), то смещение линий происходит в красную сторону, а в противном случае - в синюю. Объяснить это явление можно на основании следующих элементарных рассуждений. Вообразим наблюдателя, воспринимающего от объекта луч света. Предположим, что этот луч представляет собой отдельное непрерывное электромагнитное колебание (цуг волн). Пусть за 1 сек источник излучает n волн длиной l каждая. Так как n - частота, то . Неподвижный относительно источника наблюдатель за ту же одну секунду воспримет столько же (т.е. n ) волн. Теперь пусть источник или наблюдатель движутся с относительной скоростью vr . Тогда по отношению к неподвижному цугу волн наблюдатель за 1 сек пройдет расстояние vr , на котором укладывается волн. Таким образом, в случае движения вдоль луча зрения наблюдатель воспримет не n волн, а на меньше, если расстояние увеличивается, и на больше, если оно уменьшается. Следовательно, изменится частота наблюдаемого излучения n . Обозначая это изменение частоты через Dn и принимая, что положительным значениям vr соответствует увеличение расстояния, получим Учитывая зависимость между n и l , мы видим, что при движении вдоль луча зрения изменяется не только частота воспринимаемого излучения, но и длина его волны соответственно на величину Объединяя это выражение с предыдущим, найдем окончательную формулу для величины доплеровского смещения спектральных линий
(7.40)
Более строгий вывод формулы для доплеровского смещения требует применения теории относительности. При этом получается выражение, которое при vr << с очень мало отличается от формулы (7.40). Кроме того, оказывается, что смещение спектральных линий вызывается не только движениями вдоль луча зрения, но и перпендикулярными к нему перемещениями (так называемый поперечный эффект Доплера). Однако он, как и релятивистская поправка к формуле (7.40), пропорционален и должен приниматься во внимание только при скоростях, близких к скорости света. Эффект Доплера играет исключительно важную роль в астрофизике, так как позволяет на основании измерения положения спектральных линий судить о движениях небесных тел. Приведем несколько примеров. Вследствие обращения Земли вокруг Солнца ее скорость, по абсолютной величине близкая к v = 30 км/сек = 3Ч106 см/сек, все время меняет свое направление в пространстве. Поэтому линии в спектрах звезд, к которым в данный момент направлено движение Земли, слегка смещены в фиолетовую сторону на величину Dl , причем
>