Однако оказалось возможным найти решение поставленной задачи приближенно или для частных случаев. Тогда дело свелось к нахождению наиболее точных и практически наиболее удобных способов приближенного решения, и лучшие представители небесной механики начали соревнование в этой области.
   Даламбер решил свою задачу, пожалуй, удачнее, чем Клеро, но, как часто бывало с ним, не приложил своих формул к определенным конкретным случаям, известным в природе. Он ограничился – составлением небольших таблиц движения Луны.
   Зато Даламбер, как упоминалось, составил к 1743 году знаменитый трактат по механике – «Аналитическую механику», связавший воедино и обычную земную механику и небесную. Развитие науки о небе обогатило и прикладные знания, призванные двигать «самую земную», «самую практическую» технику.
   В 1749 году Даламбер разработал строгую теорию прецессии или предварения равноденствий, которую Ньютон мог рассмотреть лишь в общих чертах. При этом он об'яснил также и явление нутации – небольших колебаний земной оси, осложняющих явление прецессии и заставляющих земную ось как бы колебаться около того направления, – куда ее влечет действие прецессии. Оказалось, что сила, с которой Луна действует на экваториальную выпуклость Земли, меняется, ибо положение лунной орбиты в отношении Земли непрерывно и быстро меняется. Это создает изменение сил, вызывающих прецессию, – осложняет явления прецессии, т. е. создает то, что было названо нутацией (нутация была открыта уже после Ньютона – в 1721 году). Алексис Клеро в еще большей степени, чем его конкуренты – Эйлер и Даламбер, способствовал торжеству ньюотонианских идей. Еще двенадцатилетним мальчиком он сделал доклад французской Академии наук об изученных им кривых линиях. В дальнейшем его плодовитость немногим уступала эйлеровской.
   Кроме теории Луны, Клеро занимался вопросом о фигуре Земли, и его теория не только далеко продвинула вперед дело Ньютона, но до сих пор сохранила большое значение даже в ряде чисто практических вопросов.
   Однако наибольшей известностью пользуется предсказанное Клеро появление кометы Галлея. Галлей, ученик Ньютона, установил, что комета, наблюдавшаяся им в 1682 году, тождественна с рядом комет, наблюдавшихся ранее и нередко наводивших ужас на невежественное население Европы. Он нашел, что комета периодически возвращается к Солнцу, когда мы ее и видим, т. е., что эта комета обращается по орбите подобно планетам, но только эллипс ее вытянут гораздо сильнее. Время ее обращения он мог определить лишь приблизительно – семьдесят пять, семьдесять шесть лет. Это была первая периодическая комета, открытая человечеством. Галлей решился даже предсказать следующее появление своей кометы в 1758 году, когда сам он не будет в живых. Клеро предпринял грандиозную работу по точному предвычислению следующего появления кометы. Отметив значение теории тяготения, он писал: «Истинные любители науки ожидали комету с нетерпением, потому что она должна была своим появлением подтвердить законы Ньютона; другие же надеялись увидеть философов осмеянными, а их теории поколебленными, и утверждали, что она не вернется, а открытия Ньютона и его последователей не подтвердятся. Многие из них уже ликовали и смотрели на год задержки в появлении кометы, как на доказательство несостоятельности теории. Я хочу показать… что эта задержка не может повредить системе „всемирного тяготения“, а, наоборот, составляет необходимое следствие ее, и что комета опоздает более, чем на один год».
   Действительно, удалившись от Солнца, комета должна была сблизиться с Юпитером, и его притяжение должно было задержать возвращение кометы.
   Клеро, разработав теорию вопроса, спешно принялся за необходимые огромные вычисления. В этом ему помогал астроном Лаланд, известный своим атеизмом, и одна из первых ученых женщин – Гортензия Лепот, жена парижского часовщика. (В честь этой женщины Гортензией впоследствии назвали известный цветок, вывезенный из Индии). Перед самым появлением кометы Клеро опубликовал свой огромный труд, к которому Вольтер написал эпиграф:
   «Кометы, которых боятся, словно ударов грома, Полно вам пугать народы, населяющие землю; Двигайтесь по гигантским эллиптическим путям; Приближайтесь к светилу дня, удаляйтесь от: него; Распускайте ваши пламенные хвосты, Мчитесь в пространство, все время возвращаясь…»
   В результате вычислений комета Галлея должна была пройти ближе всего от Солнца 4 апреля 1759 года. В действительности же это произошло всего лишь на двадцать два дня раньше срока. Комета была замечена впервые немецким крестьянином Паличем еще в декабре 1758 года.
   Последнее появление яркой кометы Галлея состоялось в 1910 году, когда ее видели, вероятно, многие из наших читателей.
   Все эти исследования заканчивают эпоху, предшествующую появлению Лапласа на научной арене.

«НЕБЕСНАЯ МЕХАНИКА» ЛАПЛАСА

Теория возмущений

   Научные работы Лапласа трудно рассматривать в хронологическом порядке. К основным темам своих исследований он возвращался неоднократно на протяжении нескольких десятилетий, уточняя, проверяя и обобщая полученные им результаты. Некоторые его ранние исследования опубликованы лишь в его поздней капитальной работе «Небесная механика», печатавшейся в продолжение четверти века.
   Первая крупная работа Лапласа, напечатанная в 1773 году (ее автору было только двадцать четыре года), касается труднейшего, вопроса, перед которым опустили руки его предшественники: Эйлер, Клеро и молодой Лагранж. Дело шло о примирении теории тяготения Ньютона с неправильностями в движении двух самых крупных планет солнечной системы – Юпитера и Сатурна. Эти неправильности обнаруживались уже давно, но никто не мог дать им точного об'яснения, ввести в рамки известных законов природы.
   Далее, ряд работ Лапласа затрагивает другие важные вопросы небесной механики; с ними в основном он справился уже к 1784 году, когда ему исполнилось всего тридцать пять лет и он только-что был «причислен к лику» пенсионеров-академиков. В последующие годы Лаплас обобщал и подытоживал свои выводы, тщательно укладывая их, как кирпичи, в общее стройное здание астрономии. В это же время много внимания уделял он другим вопросам, в особенности теории вероятностей.
   Издание томов «Небесной механики» началось в эпоху Консульства и закончилось при Реставрации.
   Как указывалось, главной целью научной работы Лапласа было, доказать, что законом тяготения можно об'яснить все движения небесных тел как те, из изучения которых он был выведен, так и те, которые на первых порах казались ему противоречащими. «Потомство, – говорит Лаплас, – вероятно, с благодарностью увидит, что новейшие геометры не передали ему ни – одного астрономического явления, не определив его законов и причины». «Лучшим» – из геометров, о которых говорит Лаплас, был, конечно, он сам, и его успех породил в нем глубокую уверенность в абсолютной правильности закона тяготения.
   «Когда я выяснил эти неравенства (в движении Юпитера и Сатурна) – и определил с большим вниманием, чем это делалось до-сих пор, те, которые были уже вычислены, я убедился, что все наблюдения, древние и современные, представлены моей теорией во всей их точности. Прежде они казались необ'яснимыми при помощи закона всемирного тяготения; теперь же они служат одним из наиболее ярких его подтверждений. Такова судьба этого блестящего открытия: всякое затруднение, которое возникало тут, превращалось в его торжество, и это является вернейшим признаком его соответствия истинной системе природы».
   Многие из уклонений в движении планет, интересовавшие Лапласа, можно обнаружить только после громадных промежутков времени. Таких же периодов, часто превышающих возраст телескопической астрономии, требовала проверка некоторых теорий Лапласа на практике. Поэтому Лаплас живо интересовался развитием практической астрономии и для своих работ заказывал специальные переводы с греческого, индусского и даже китайского языков, если находил в сочинениях древних авторов наблюдения, которые могли принести ему пользу, Несмотря на грубость и неточность, ценность этих наблюдений была велика, именно благодаря древности, – астрономия своими корнями глубоко уходит в седую древность, а ветви ее тянутся к далекому будущему…
   При исследовании отклонений в движении планет от законов Кеплера Лапласу приходилось учитывать взаимодействие не двух тел, а трех или даже больше.
   Например, Луна движется вокруг Земли, а притяжение Солнца возмущает это движение. Сатурн движется около Солнца, но его движение нарушается притяжением других планет, главным образом, Юпитера. Лаплас интересовался как возможностью теоретически предсказать на ближайшее время положение планет, т. е. составить их эфемериды или таблицы непосредственно для практиков, так и возможностью предсказать наиболее отдаленное будущее и солнечной системы в целом и ее членов. В XVIII столетии еще не возникла идея эволюции, выдвинутая впервые самим Лапласом в результате его занятий небесной механикой. Среди многих ученых господствовало еще представление об изначальной неизменности вселенной, вытекающей из религиозных догматов. Лучшие умы того времени, например, Эйлер, убеждаясь в изменчивости природы и сталкиваясь с трудностью предсказать ее законы, становились втупик и впадали в мистицизм.
   Как же мог, однако, Лаплас об'яснить непокорные движения многочисленных детей солнечной семьи, непрестанно тревожащих друг друга? Ведь проблема трех, а тем более многих тел, практически не разрешена в общем виде и до сих пор.
   К счастью, в солнечной системе существует ряд особенностей, значительно упрощающих в применении к ней проблему многих тел.
   Эти особенности привлекли внимание Лапласа и позволили ему впоследствии создать свою знаменитую космогоническую гипотезу.
   Бездны пространства, отделяющие планеты и Солнце друг от друга, позволяют при математической трактовке движения рассматривать эти тела как материальные точки, массы которых сосредоточены в их. центрах.
   Масса Солнца гораздо больше массы всех планет вместе взятых и потому взаимодействие планет лишь понемногу отклоняет их движение от движения около Солнца по законам Кеплера. Орбиты планет имеют малые эксцентриситеты и близки к кругам, поэтому не только столкновения их, но и близкие встречи в настоящее время невозможны. Плоскости движения всех планет почти совпадают с плоскостью земной эклиптики (наклонения орбит невелики).
   При таких условиях проблема движения многих тел солнечной системы может быть разрешена приближенными методами. Необходимо, однако, найти эти приближенные методы и доказать, что точность, которую дает их применение, все время находится под контролем исследователя. Лаплас совместно с Лагранжем создал так называемые классические методы небесной механики, вдохновлявшие и вдохновляющие до сих пор многие поколения механиков неба.
   Возмущения в движении планет были представлены в классической небесной механике формулами, содержащими бесконечные ряды очень сложных членов. Простейшим приемом бесконечного ряда членов является известная из алгебры бесконечно убывающая геометрическая прогрессия.
   Нельзя думать, что метод, применяющий бесконечные ряды, – единственный и других быть не может. Это только следствие несовершенного состояния математического анализа, но хорошо уже то, что при всей громоздкости метода рядов Лаплас сумел извлечь из него поразительные результаты.
   В рядах, какими пользовался Лаплас, числовая величина членов постепенно убывает, быстро или медленно. Если можно доказать, например, для убывающей геометрической прогрессии, что сумма членов ряда конечна, и если ее нельзя вычислить точно, то можно ограничиться суммированием первых, самых больших, членов ряда, пренебрегая остальными. В небесной механике каждый член ряда выражается сложной формулой, поэтому, не всегда можно строго доказать законность подобного приближения. В некоторых случаях может быть, что где-нибудь далеко от начала, в особенности при некоторых особых условиях, член такого ряда окажется настолько большим, что пренебречь им – значит получить совсем неверный результат. Рядам можно придавать различную форму, и от неудачного выражения ряда может зависеть результат. Бывали случаи, когда до Лапласа разные ученые приходили к разным результатам из-за одного лишь различия в виде формул, которыми они пользовались. Кроме совершенствования чисто математической стороны дела, известным средством для правильности использованного приема может служить практика, даже современная созданию теории. Лаплас говорит: «Чрезвычайная трудность задач, относящихся к системе мира, принудила геометров прибегнуть к приближениям, при которых всегда можно опасаться, как бы отбрасываемые величины не оказали заметного влияния. Когда наблюдения указывали им на такое влияние, они снова обращались к их анализу; при проверке они всегда находили причину замеченных отклонений; они определяли их закон, открывая неравенства, которые еще не были указаны наблюдениями. Таким образом, можно сказать, что сама природа содействовала аналитическому совершенствованию теорий, основанных на принципе всемирного тяготения».
   В работе, названной «О принципе всемирного тяготения и о вековых неравенствах планет, которые от него зависят» (1773), Лаплас рассматривает замеченное до него явление «беспорядка» в движении гигантских планет.
   Из сравнения древнейших наблюдений с современными выяснилось, что Сатурн Двигался С явным замедлением, а Юпитер испытывал ускорение своего движения.
   Лаплас погрузился в изучение вопроса, на котором потерпели поражение и Эйлер и Лагранж, – по крайней мере, их выводы были противоположны.
   Представляя возмущения в движении планет бесконечными рядами членов, создатели небесной механики убедились, что члены таких рядов бывают двух видов. В одних из них время, рассматриваемое как переменная величина, входит множителем в некоторой степени, в других же это время входит под – знак так называемой «периодической функции» (встречаются, впрочем, члены и смешанного вида). Первые из этих членов называются вековыми, вторые – периодическими. Если в формуле, выражающей изменения в величине какого-нибудь элемента, характеризующего определенную орбиту, есть только периодические члены, этот элемент испытывает лишь периодические колебания, не выходя из известных пределов. Например, в этом случае наклон плоскости орбиты планет к плоскости эклиптики то увеличивается, то уменьшается, но никогда не становится очень большим. Если в формуле содержатся вековые члены, то данный элемент с течением времени будет изменяться постоянно в одном и том же направлении. Например, линия узлов планетной орбиты будет непрерывно вертеться около Солнца, все время в одну и ту же сторону!
   В 1773 году Лаплас применил ряды к исследованию движения Юпитера и Сатурна, пользуясь в усовершенствованной форме методом, предложенным Лагранжем (в 1766 г.). При этом Лаплас доказал, что Эйлер и Лагранж, вычисляя свои ряды, отбросили такие члены, которых нельзя было отбрасывать, ибо их величина с течением времени становилась не меньше той, какую давали первые члены рядов. Таким образом, Лаплас получил более точные формулы, и когда он подставил в них соответствующие числа для Юпитера и Сатурна, то оказалось, что, благодаря принятию им во внимание новых членов ряда, вековые ускорения для этих планет пропали. Это доказывало, что ускорения, наблюдаемые в движении Юпитера и Сатурна, являются не вековыми, а периодическими, хотя и имеющими, повидимому, очень длинный период, измеряемый не одним столетием.
   В 1784 году, через десять с лишним лет, Лаплас снова вернулся к этой нерешенной окончательно задаче. Тщательно пересмотрев свои формулы, Лаплас нашел в них такие члены, далеко стоящие от начала, которые, вопреки первоначальным ожиданиям, оказались не ничтожно малыми по своей величине, а весьма заметными. Кроме того, эти члены оказались явно периодическими. Лаплас нашел и период этих членов – он оказался равным 913 годам. Значит, если бы астрономические наблюдения продолжались уже достаточно долго, то по ним можно было бы заметить, как с течением времени ускоренное движение Юпитера сменится замедленным, а замедленное движение Сатурна сменится ускоренным.
   Какая же причина вызывает в движении Юпитера и Сатурна такие большие возмущения, к тому же обнаруживаемые теоретически лишь в членах, очень далеких от начала тех рядов, которыми эти возмущения выражаются? Что заставляет эти члены за большие промежутки времени достигать большой величины? Оказывается, как подметил Лаплас, пять периодов обращения Юпитера по своей орбите почти в точности равны трем периодам обращения Сатурна. Благодаря этому, через каждые пятнадцать лет взаимные расположения Солнца и этих двух планет повторяются. Сила, с которой планеты возмущают друг друга, зависит от их расположения по отношению к Солнцу и друг к другу. Каждый раз, как расположение тел, соответствующее наибольшему взаимному влиянию, повторяется, возмущения движения также повторяются и действуют каждый раз в одном и том же смысле. Таким образом, маленькие возмущения нарастают все больше и больше, как бы наслаиваясь друг на друга (подобно тому, как это бывает при явлении резонанса), достигают в результате заметной величины.
   Если бы три периода Сатурна в точности равнялись пяти периодам Юпитера (были, как говорят, соизмеримы), то эти возмущения росли бы неограниченно и были бы вековыми. Тогда настало бы время, когда орбиты и движение обеих планет совершенно перестали бы быть похожими на то, что мы наблюдаем сейчас.
   Из-за не вполне точной соизмеримости возмущения в движении Юпитера и Сатурна оказываются не вековыми, а лишь очень долгопериодическими. Таким образом, загадка больших, казавшихся вековыми, неравенств в движении Юпитера и Сатурна была разгадана.

Возмущения и кольца Сатурна

   Впоследствии продолжатели дела Лапласа убедились в том, что подобные случаи в солнечной системе встречаются нередко? Большие возмущения обнаруживаются всякий раз, как отношения периодов обращения двух тел, возмущающих друг друга, оказываются с достаточной точностью равны отношению каких-нибудь целых чисел.
   Когда в движении тела существуют слишком большие возмущения, то движение, как говорят, является неустойчивым. Тело, двигающееся по такой неустойчивой орбите, скоро будет вырвано из пространства, в котором оно двигалось, и станет продолжать свои небесные путешествия в более «спокойном» месте.
   Этим об'ясняется тот факт, что между орбитами астероидов (мелких планет, обращающихся около Солнца между орбитами Юпитера и Марса) встречаются «щели», т. е. пространства, которых астероиды избегают. Оказывается, что тела, которые двигались бы в этих щелях, имели бы периоды обращения, соизмеримые с периодом обращения Юпитера.
   Этим же об'ясняется и наличие щелей в кольцах Сатурна: эти кольца не сплошные, а состоят из бесчисленных мельчайших частиц, двигающихся по орбитам подобно мелким спутникам планеты. У Сатурна роль тела, возмущающего движение частичек кольца, выполняют ближайшие к планете спутники. Итак, открытие Лапласа вдохновило многих небесных механиков об'яснить совершенно иные загадки в солнечной системе.
   В XVIII столетии поразительный придаток Сатурна в виде плоского и широкого кольца, окружающего планету, считался не твердым, а жидким. Это удивительное образование видел еще Галилей, но он не смог разобрать его истинного вида. Позднейшими наблюдениями было установлено, что толщина кольца составляет всего лишь 15 километров, а ширина – 275 тысяч километров. Поэтому, когда кольцо повернуто к Земле своим ребром, оно представляется в виде тончайшей иглы, пронизывающей шар планеты.
   До Лапласа никто не задавался вопросом, из чего состоит это кольцо и при каких условиях оно может быть устойчиво, – ведь за сотню лет в кольце не было замечено никаких изменений; значит, оно не временное, эфемерное образование, а действительно что-то вполне устойчивое. Такого кольца нет ни у какой другой планеты.
   Лаплас сам занимался изучением сатурнова кольца и доказал, что оно не может быть сплошным жидким или твердым, а должно состоять из мельчайших частиц, из которых каждая движется около планеты самостоятельно; он предсказал также, что сама планета от быстрого вращения должна быть сплющена у полюсов. Вскоре наблюдения Гершеля полностью подтвердили эти предсказания, и сжатие Сатурна оказалось наибольшим в солнечной системе: оно равно 1/10 тогда как, например, сжатие Земли составляет всего 1/297.
   Вывод, что колесо состоит из мелких твердых частиц, не связанных друг с другом, был подтвержден после Лапласа теоретическими исследованиями Максвелла, Софии Ковалевской и особыми наблюдениями академика А. А. Белопольского. Строение кольца, предсказанное Лапласом, стало теперь бесспорным фактом.
   Разгадка природы кольца Сатурна интересна не только сама по себе, но, как увидим, имеет большое значение и для выяснения того, как и когда зародилась вся солнечная система.

Спутники Юпитера

   Другой, также блестяще разрешенный Лапласом вопрос касался движения четырех наиболее ярких спутников Юпитера. Их часто можно видеть в хороший призматический бинокль близко-близко от своей планеты. Когда их впервые открыл Галилей, он завел оживленную переписку с правительствами Испании и Голландии, предлагая использовать затмения этих спутников для определения географических долгот. Действительно, эти юпитеровы луны по временам скрываются в тени, отбрасываемой этой гигантской планетой, и происходит их затмение тогда, когда на самих спутниках в это время происходит затмение Солнца.
   Так как затмения спутников, происходящие очень часто, одновременно видны со всей Земли, то, вычисляя момент их наступления наперед по какому-нибудь, например, по Гринвичскому времени, можно будет, как думал Галилей, определять долготу в море. Неудовлетворительное состояние методов определения долготы было острым бичом тогдашнего мореплавания; обладавшие громадными флотами Испания и Голландия дали бы многое за удачное решение проблемы.
   Выяснилось, однако, что движение спутников около Юпитера далеко не так просто, как предполагал Галилей, и вычислять их заранее с требуемой точностью было невозможно. Правда, Кассини в конце XVII столетия эмпирически составил таблицы движения спутников, но они не были достаточно точны, л, кроме того, об'яснение особенностей их движения теорией тяготения отсутствовало. В 1764 году французская Академия наук об'явила премию за наилучшую аналитическую теорию спутников Юпитера. В 1766 году Лагранж математически рассмотрел эту проблему, и его работа, являющаяся, по выражению Даламбера, «шедевром анализа», имеет большую математическую ценность. Лагранж ввел ряд упрощений, однако в его работе не были еще преодолены все трудности; поэтому сравнение теории с наблюдениями давало все еще неудовлетворительные результаты.
   Лаплас в 1789 году рассмотрел возмущения, которые испытывают эти спутники со стороны Солнца и друг друга; он получил не только блестящее согласование своей теории с наблюдениями, но установил несколько чрезвычайно простых и важных законов этих движений, с тех пор носящих его имя. Один из этих законов Лапласа, вытекающих как следствие из его теории возмущений, говорит, например: время обращения первого из спутников, сложенное с удвоенным временем обращения третьего, дает в сумме утроенное время обращения второго (если пренебречь вековыми возмущениями).
   Это и другие замечательные соотношения в системе спутников могли бы показаться мистическими. Однако Лаплас доказал, что первоначально законы, открытые им в системе спутников, могли быть лишь приблизительно такими и только последующее длительное взаимодействие спутников могло привести к такому строгому выполнению законов, какое наблюдается. При помощи своей теории Лаплас смог определить даже массы спутников Юпитера, хотя истинные размеры этих тел в то время еще не были известны.

Вековое ускорение Луны

   Одним из наиболее замечательных исследований Лапласа являлось раскрытие им тайны векового ускорения в движении Луны, не только ставившего втупик его предшественников, но и угрожавшего, казалось, продолжительному существованию Земли и ее спутника.
   С древних времен и до настоящего времени ни одно небесное явление не доставляло ученым столько беспокойства, как движение Луны.
   Луна вращается около Земли по эллипсу, то приближаясь к ней, то удаляясь от нее. Однако это движение под действием земного тяготения только в первом приближении происходит по законам Кеплера.
   Солнце своим притяжением действует на это движение Луны как возмущающее тело, притом с очень большой силой. Поэтому движение Луны чрезвычайно сложно. Ее движение не только постоянно отклоняется от законов Кеплера, но и сама орбита Луны непрерывно видоизменяется, и ее положение перемещается в пространстве. Все эти осложнения лунного движения хорошо нам заметны, потому что Луна – ближайшее к нам небесное тело. Еще до XVII столетия древние наблюдатели, не имевшие никаких телескопов, обнаружили многие из таких необ'яснимых особенностей движения Луны, а с развитием техники наблюдений неравенств лунного движения насчитывалось все больше и больше.