г/квт(100-300 г/л. с.); если отнести массу не к единице мощности, а к единице тяги, создаваемой воздушным винтом, то удельная масса будет меняться при изменении скорости полёта вследствие изменения кпд винта, в то время как удельная масса турбореактивного двигателя в пределах скоростей до 750 км/чпрактически остаётся постоянной (табл .). Это и делает турбореактивный А. д. наиболее выгодным при больших скоростях полёта.

Примерные значения удельной массы А. д. - массы отнесенной к единице тяги ( г/н) в зависимости от режима работы двигателя

Режим работы двигателя Винтовые А.д. ТРД
поршневые турбовинтовые
Взлетный режим 33 20 17
Крейсерский режим при скорости полета самолета 360 км/ч 57 35 17
750 км/ч 180 110 17

  В 1965-1967 появились весьма легкие турбореактивные А. д. для самолётов вертикального взлёта и посадки (СВВП). Их удельная масса находится в пределах 6-7 г/н. На основе ТРД и ТВД разработаны т. н. двухконтурные турбореактивные двигатели (ДТРД) ( рис. 4 ). Их особенностью является создание двух реактивных потоков: одного внутреннего, или центрального, из высокотемпературных продуктов сгорания, поступающих в реактивное сопло из газовой турбины, и второго, концентрически окружающего первый и состоящего из воздуха, который прогоняется компрессором второго контура.

  Двухконтурные ТРД применяются на самолётах с дозвуковыми скоростями; благодаря малому расходу топлива они могут успешно конкурировать как с обычными ТРД, так и с ТВД.

  Тяга ТРД при сверхзвуковых скоростях полёта возрастает ( рис. 5 ). Удельную массу турбореактивных А. д. за период 1939-67 удалось существенно снизить ( рис. 6 ).

  Схемы турбореактивных А. д. для дозвуковых и сверхзвуковых самолётов различны ( рис. 7 ). При сверхзвуковых скоростях полёта температура воздуха и газа в турбореактивных А. д. весьма велика. Воздухозаборник, обеспечивающий наибольшее использование скоростного напора воздуха с минимальными потерями, необходимо выполнять с регулируемыми размерами и изменяемой формой. Для увеличения тяги А. д. применяют форсажную камеру.При этом реактивное сопло выполняют также с регулируемыми размерами и формой.

  А. д. представляет собой автоматическую систему, которая позволяет освободить лётчика от управления двигателем в полёте. Автоматически поддерживаются на заданном уровне давление топлива, температура газов перед турбиной и другие параметры, независимо от высоты полёта.

  Дальнейшее развитие А. д. предусматривает следующие основные направления, на которых концентрируются главные усилия конструкторов в разных странах, разрабатывающих А. д.: обеспечение высоких скоростей и больших высот полёта, а также непрерывное повышение грузоподъёмности самолёта, что требует создания А. д., развивающих большую тягу с наименьшим расходом топлива, с малой удельной массой и большим ресурсом работы (т. е. длительностью периода работы двигателя между ремонтами, выражаемого обычно в часах). Для этого приходится повышать температуру газа перед турбиной, что ведёт к применению охлаждаемых сопловых и рабочих лопаток. С другой стороны, стремятся снизить расход энергии во всех элементах А. д., для чего требуется повышение кпд компрессоров, турбин, форсажных камер и т. п. Повысить температуру газов можно применением жаропрочных материалов (ниобий, молибден) для лопаток турбины и других деталей, соприкасающихся с высокотемпературными газами. Снижения удельной массы можно достигнуть использованием материалов с низкой плотностью (титановые, бериллиевые сплавы). На крупные пассажирские и транспортные самолёты целесообразно устанавливать двухконтурные А. д. с форсажной камерой, обеспечивающие большой диапазон скоростей полёта, и двухконтурные А. д. со степенью двухконтурности (т. е. соотношением температуры первого и второго контуров) 6-8 для получения больших значений тяги при высокой экономичности.

  Лит.:Иноземцев Н. В., Авиационные газотурбинные двигатели. Теория и рабочий процесс, М., 1955; Теория реактивных двигателей, М., 1958; Конструкция авиационных газотурбинных двигателей, М., 1961; Скубачевский Г. С., Авиационные газотурбинные двигатели. Конструкция и расчёт деталей, 2 изд., М., 1965; «Авиация и космонавтика», 1963, № 3, с. 6-13; 1966, № 2, с. 60-64; 1967, № 7, с. 57-61.

  С. К. Туманский, Г. С. Скубачевский.

Рис. 1. Классификация авиационных двигателей.

Рис. 4. Принципиальная схема двухконтурного турбореактивного двигателя: 1 - первый (внутренний) контур; 2 - второй (внешний) контур.

Рис. 3б. Турбореактивный авиационный двигатель. Внешний вид.

Рис. 6. Изменение удельной массы турбореактивных двигателей по годам.

Рис. 2а. Турбовинтовой авиационный двигатель: Принципиальная схема; 1 - входное устройство; 2 - компрессор; 3 - камера сгорания; 4 - турбина; 5 - реактивное сопло; 6 - воздушный винт.

Рис. 2б. Турбовинтовой авиационный двигатель. Внешний вид.

Рис. 3а. Турбореактивный авиационный двигатель: Принципиальная схема; 1 - входное устройство; 2 - компрессор; 3 - камера сгорания; 4 - корпус двигателя; 5 - сопловый аппарат; 6 - турбина; 7 - реактивное сопло.

Рис. 7. Сравнительная схема турбореактивного двигателя: ниже осевой линии для дозвуковых (ок. 850 км/ч) и выше осевой линии для сверхзвуковых (ок. 3000 км/ч) самолётов; 1 - воздухозаборник с регулируемыми размерами и формой; 2 - форсажная камера; 3 - сопло с регулируемыми размерами и формой; 4 - воздухозаборник нерегулируемый; 5 - сопло нерегулируемое.

Рис. 5. Изменения тяги Р турбореактивного двигателя в зависимости от М-числа.

Авиационный компас

Авиацио'нный ко'мпас,аэронавигационный прибор, указывающий пилоту курс самолёта относительно магнитного меридиана (магнитный компас, гиромагнитный компас), заданного направления ( гирополукомпас ) или направления на радиомаяк ( радиокомпас, радиополукомпас) и относительно какого-либо небесного светила ( астрономический компас ) .

Авиационный тыл

Авиацио'нный тыл,составная часть тыла вооружённых сил государства; включает тыловые соединения, части и учреждения. А. т. предназначен для материального инженерно-аэродромного, аэродромно-технического и медицинского обеспечения ВВС. Осуществляет снабжение авиационных частей и соединений всеми видами материальных средств, хозяйственно-бытовое обслуживание личного состава, строительство новых и восстановление непригодных для полётов аэродромов, аэродромно-техническое обеспечение полётов авиации, а также проведение санитарно-гигиенических, лечебно-эвакуационных и противоэпидемических мероприятий.

  М. Н. Кожевников.

Авиационных материалов институт

Авиацио'нных материа'лов институ'твсесоюзный научно-исследовательский (ВИАМ), создан в 1932 в Москве на базе отдела испытания авиационных материалов Аэрогидродинамического института.Институт разрабатывает конструкционные, коррозионно-стойкие, жаропрочные, износостойкие стали и сплавы, пластмассы, герметики, уплотнительные, тепло-звукоизоляционные и другие материалы. Институт занимается также теоретической и экспериментальной разработкой проблем легирования и прочности сплавов, вопросами защиты металлов от коррозии, созданием методов механических испытаний и неразрушающего контроля качества сплавов и неметаллических материалов. При ВИАМе имеется аспирантура. Издаёт «Труды», тематические сборники. Награждён орденом Ленина (1945).

  А. Т. Туманов.

Авиация

Авиа'ция(франц. aviation, от латинского avis - птица), летание на аппаратах тяжелее воздуха в околоземном воздушном пространстве. В 60-е гг. 20 в. в А. применяют самолёты, вертолёты, планёры.Различают А. гражданскую, осуществляющую перевозки людей и грузов, и военную (см. Гражданская авиация, Военно-Воздушные силы). Гражданская А. включает: транспортную, санитарную, учебно-спортивную и специального назначения (сельскохозяйственную, аэрофотосъёмки, связи, геологической разведки, разведки рыбных промыслов и др.). Для обеспечения регулярного грузопассажирского движения по авиалиниям гражданская А. располагает: парком турбореактивных, турбовинтовых и винтомоторных самолётов и вертолётов; службами управления и радиотехническими, метеорологическими, светотехническими (наземными и бортовыми) средствами обеспечения полётов; аэродромами и аэропортами.

  Начальный период развития А. Практически А. начала развиваться лишь в 20 в. Но мечта человека подняться в воздух существовала на протяжении многих веков и нашла своё выражение в сказках и легендах народов многих стран мира. Изображения крылатого человека встречаются в наскальных рисунках пещерных людей. Известен древнегреческий миф о Дедале и его сыне Икаре, поднявшихся к Солнцу на крыльях из птичьих перьев, скреплённых воском. В древности и в средние века в Китае и других странах для военных целей применялись воздушные змеи. Итальянский художник, учёный и инженер Леонардо да Винчи оставил эскизные наброски летательных аппаратов, приводимых в действие мускульной силой, вертолёта с механическим приводом, предложил идею парашюта. Великий русский учёный М. В. Ломоносов в 1754 построил модель вертолёта с пружинным заводом и практически доказал осуществимость полёта такого аппарата.

  В конце 19 в. предпринимаются попытки создания безмоторных летатательных аппаратов тяжелее воздуха - планёров; производятся первые теоретические изыскания в этой области. Значительный вклад в теорию и практику летания внёс немецкий учёный О. Лилиенталь. С 1891 по 1896 он спроектировал, построил и облетал несколько планёров. Изобретение и быстрое развитие паровой машины в 19 в. привело к попыткам создания самолётов с паровым двигателем. В России морской офицер А. Ф. Можайский в 1881 получил патент на такой летательный аппарат, названный им воздухо-летательным снарядом ( рис. 1 ). В 1885 его аппарат был построен, но потерпел аварию при взлёте. В 1894 в Англии конструктор Х. Максим построил гигантский самолёт с паровой машиной, также потерпевший аварию при взлёте. Французский изобретатель К. Адер пытался летать на аппарате с крылом, напоминавшим крыло летучей мыши. «Авьон» Адера пролетел (1897) несколько десятков ми разбился. Построить более или менее удачную конструкцию не удавалось из-за несовершенства двигателей: паровые машины были слишком тяжелы и не могли удовлетворить требованиям А.

  Совершенствование двигателей внутреннего сгорания, нашедших широкое применение к концу 19 в. в первую очередь в автомобилях, сделало возможным создание лёгкого и в то же время достаточно мощного авиационого двигателя. Первыми поставили на самолёт двигатель внутреннего сгорания американские механики братья У. и О. Райт ( рис. 2 ). 17 декабря 1903 состоялся первый успешный полёт их самолёта с двигателем, работавшим на керосине. Продолжая работать над своим самолётом, братья Райт добились к 1908 устойчивого управляемого полёта продолжительностью до 1,5 часов. Вслед за ними в Европе, главным образом во Франции, один за другим строят самолёты А. Сантос-Дюмон, Ф. Фербер и др. 25 июля 1909 французский конструктор-лётчик Л. Блерио на своём самолёте монопланной схемы «Блерио-XI» перелетел через пролив Ла-Манш из Франции в Англию ( рис. 3 ). В России в 1909-14 появился ряд оригинальных самолётов конструкции Я. М. Гаккеля ( рис. 4 ), Д. П. Григоровича, В. А. Слесарева, И. И. Стеглау. В 1910 Б. Н. Юрьев спроектировал первый в России вертолёт. В 1913 совершил свой первый полёт тяжёлый самолёт И. И. Сикорского «Русский витязь». Популяризации и развитию отечественной А. способствовали полёты русских лётчиков М. Н. Ефимова, Н. Е. Попова, Г. В. Алехновича, А. В. Шиукова, Б. И. Россинского, С. И. Уточкина и др. 9 сентября 1913 русский лётчик П. Н. Нестеров на самолёте «Ньюпор-4» уверенно осуществил «мёртвую петлю», названную впоследствии петлей Нестерова.

  Развитие А. в начале 20 в. шло вслепую, наугад. Первые самолёты строились эмпирически, без каких-либо расчётов. Научной базы для самолётостроения практически не было. Всё это приводило к большому количеству аварий и катастроф.

  Однако учёные многих передовых стран мира в 19 - начале 20 вв. начали теоретические и экспериментальные изыскания в области А.: в США - С. Ленгли и О. Шанют, в Англии - Дж. Кейли, во Франции - А. Эйфель, в Германии - Л. Прандтль и др. Решающий вклад в дело развития аэродинамической науки внесли русские учёные профессор Н. Е. Жуковский и его ученик академик С. А. Чаплыгин. В 1902 при Московском университете по инициативе Жуковского была построена первая в России аэродинамическая труба, а в 1904 организован аэродинамический институт в Кучино под Москвой. Жуковский впервые ввёл в аэромеханику эксперимент как метод исследования. К началу 1-й мировой войны он опубликовал работы, посвящённые теории полёта самолёта, устойчивости и другим проблемам А. («К теории летания», 1890; «О парении птиц», 1891; «О присоединённых вихрях», 1906, и др.). Труды Жуковского и других учёных в России и за рубежом позволили начать конструирование самолётов на научной основе.

  А. в годы 1-й мировой войны. 1-я мировая война, начавшаяся в 1914, дала резкий толчок развитию А.: были показаны широкие возможности применения самолётов в военных целях. Вначале ими пользовались наряду с аэростатами для разведки и корректировки артиллерийского огня, в дальнейшем стали вооружать пулемётами и бомбами. Для борьбы с бомбардировщиками и разведчиками создавались специальные, небольшого размера вооружённые пулемётами самолёты-истребители. Первое место в развитии тяжёлых самолётов заняла Россия. Построенный в 1913 тяжёлый 4-моторный самолёт Сикорского «Илья Муромец» ( рис. 5 ) не имел равных в мире; он поднимал до 800 кгбомб, был вооружён 3-7 пулемётами и имел экипаж 8 человек. Впервые построенные в России и широко применявшиеся в боевых действиях на море летающие лодки Григоровича М-5 (1915) и М-9 (1916) были лучшими гидросамолётами своего времени. Наиболее известными иностранными самолётами периода 1-й мировой войны были французские самолёты «Фарман», «Вуазен» и «Ньюпор», английский «Сопвич», немецкий «Фоккер», скорости которых достигали 90-120 км/ч. Военныесамолёты в России строились главным образом по французским образцам.

  Одновременно с развитием авиационной техники учёные России и других стран проводили теоретические исследования и экспериментальные работы в области аэродинамики и прочности самолёта. Научные труды Жуковского [«Динамика аэропланов в элементарном изложении» (ст. 1, 1913; ст. 2, 1916), «Вихревая теория гребного винта» (1912) и др.] оказали огромное влияние на развитие мировой авиационной науки. Жуковский вооружил конструкторов методом расчёта лётных данных самолётов. Его ученик В. П. Ветчинкин работал в области теории самолёта и воздушного винта, расчёта их прочности. Чаплыгин продолжал развивать теорию крыла. Его труд «О газовых струях» (1902) намного опередил подобные работы учёных стран Западной Европы и США. Проводились исследования моделей различных схем самолётов в аэродинамических трубах. Шли работы по усовершенствованию воздушных винтов, первых парашютов и пр. В результате за годы 1-й мировой войны лётные данные самолётов значительно улучшились: скорость истребителей выросла с 90-120 до 200-220 км/ч,потолок - с 2 до 7 км.

 Успешное применение А. на фронтах определило её большое значение как нового рода боевого оружия. Англия, Франция, Германия создали и за годы войны значительно расширили авиационную промышленность. Было налажено производство авиационных двигателей и приборов, созданы научно-исследовательские базы и институты. В России перед Великой Октябрьской социалистической революцией постройка и сборка самолётов производились на заводах: Русско-Балтийском вагонном, Щетинина и Лебедева (в Петрограде), «Дукс» (в Москве), «Анатра» (в Одессе) и в нескольких мелких мастерских других городов. Однако эти заводы и мастерские были слабо оснащены, а частая смена типов выпускавшихся самолётов затрудняла разработку прогрессивных технологических процессов. Особенно отрицательно сказывалось отсутствие авиационных двигателей, а также некоторых дефицитных материалов и приборов, ввозившихся до войны из-за границы. Не хватало квалифицированных инженеров, техников и рабочих.

  А. в период 1918-41. Коммунистическая партия, Советское государство, лично В. И. Ленин проявляли большую заботу о развитии А. В 1918 создана Коллегия воздушного флота, перед которой поставлена задача наведения порядка в авиационных делах и прежде всего сбора со всех фронтов самолётов, двигателей и запасных частей к ним. На первых порах на авиационных заводах налаживалось производство самолётов по трофейным образцам, одновременно приобретались лицензии на постройку самолётов иностранных марок. В мае 1918 создано Главное управление рабоче-крестьянского Красного воздушного флота, а в июне Совнаркомом издан декрет о национализации авиационных предприятий. В том же году при прямом участии В. И. Ленина основан Центральный аэрогидродинамический институт (ЦАГИ), впоследствии ставший крупнейшим центром авиационной науки. Возглавлял ЦАГИ Н. Е. Жуковский. В 1919 по его инициативе создаётся Московский авиационный техникум, преобразованный позже (1922) в Военно-воздушную инженерную академию (ВВИА) им. Н. Е. Жуковского. Механический факультет Московского высшего технического училища (МВТУ) им. Н. Э. Баумана приобретает аэродинамическую специализацию. На его базе в 1930 создан Московский авиационный институт (МАИ) им. Серго Орджоникидзе. В 20-х гг. были организованы отечественные конструкторские бюро по самолётостроению: А. Н. Туполева, Н. Н. Поликарпова и Д. П. Григоровича. Первыми советскими самолётами были построенные в ЦАГИ лёгкий спортивный моноплан Туполева АНТ-1 (1923), 3-местные пассажирские самолёты В. Л. Александрова и В. В. Калинина АК-1 «Латышский стрелок» (1924) и Туполева АНТ-2 (1924). В 1923 Поликарпов построил истребитель И-1, в 1924 Григорович - истребитель И-2, в 1925 Туполев выпустил самолёт-разведчик АНТ-3 (Р-3) и тяжёлый бомбардировщик АНТ-4 (ТБ-1). Скорость полёта наиболее быстроходных самолётов того времени не превышала 270 км/ч.

 Расширился и фронт научно-исследовательских работ. 9 мая 1924 была заложена в ЦАГИ новая аэродинамическая лаборатория (ныне имени С. А. Чаплыгина). Затем там же были построены лаборатории испытания авиационных материалов и моторов, гидроканал и опытный завод. Огромную помощь в деле пропаганды идей А. и сборе денежных средств на постройку самолётов оказало государству созданное в марте 1923 «Общество друзей воздушного флота».

  На первых советских самолётах было совершено несколько дальних перелётов: Москва - Пекин (1925) на самолётах АК-1, Р-1 и Р-2 (с участием немецкого самолёта Ю-13); Москва - Токио - Москва (1927) на самолёте Р-3; Москва - Нью-Йорк (1929) на самолёте АНТ-4 и др. Эти перелёты продемонстрировали высокие качества отечественных самолётов и мастерство лётчиков. В годы 1-й пятилетки (1929-32) продолжалось совершенствование авиационной техники и налаживание её массового производства.

  Дальнейшее развитие А. в предвоенные годы и в годы 2-й мировой войны было обеспечено созданием целой серии авиационных двигателей конструкции В. Я. Климова (М-100, ВК-103, -105,-107), А. Д. Швецова (М-11, АШ-62,-82) и А. А. Микулина (АМ-34, -38, -39) и др., что освободило Советскую страну от иностранной зависимости в области авиамоторостроения. В 1930 основными самолётами Военно-воздушных сил стали: истребитель-биплан Поликарпова и Григоровича И-5 с двигателем М-22 мощностью 480 л. с., развивавший скорость 280 км/ч;двухместный разведчик-биплан Поликарпова Р-5 с двигателем М-17 мощностью 500 л. с., развивавший скорость 230 км/ч,и бомбардировщик Туполева монопланной схемы ТБ-1 с двумя двигателями М-17, поднимавший 1000 кгбомб при дальности полёта 1350 км.Все эти самолёты не уступали лучшим образцам зарубежной авиационной техники того времени, а во многом и превосходили их.

  Для дальнейшего развёртывания научно-исследовательских работ из ЦАГИ были выделены: конструкторское бюро (КБ) Туполева; отдел авиационных материалов, превращённый во Всесоюзный институт авиационных материалов (ВИАМ), и авиамоторный отдел, ставший Центральным институтом авиационого моторостроения (ЦИАМ). Параллельно с крупными КБ Туполева и Поликарпова работало несколько небольших конструкторских групп под руководством В. В. Калинина, В. Б. Шаврова, Д. П. Григоровича, А. И. Путилова, А. С. Яковлева, при Московском и Харьковском авиационных институтах и др.

  К середине 30-х гг. 20 в. в СССР была создана мощная авиационная промышленность.Научно-исследовательские институты и конструкторские бюро добились существенного улучшения лётных данных самолётов. Один за другим появились: истребители Поликарпова И-15, И-16 (1933) и И-153 (1938), достигавшие скоростей полёта 450-525 км/ч,фронтовой бомбардировщик Туполева - СБ грузоподъёмностью 500 кги скоростью 420 км/ч,дальний бомбардировщик С.В . Ильюшина ДБ-3 грузоподъёмностью 500 кгпри дальности полёта 4000 кми скорости 450 км/ч.На гражданских линиях летали пассажирские самолёты: 6-местный К-5 со скоростью 172 км/чи дальностью полёта 1020 км,9-местный АНТ-9 со скоростью 170 км/чи дальностью полёта 830 км.

 Советские лётчики на самолётах отечественной конструкции совершили перелёты, прославившие нашу страну. С 5 марта по 13 апреля 1934 на самолётах АНТ-4, Р-5 и др. было вывезено со льдины 104 человека экипажа затонувшего во льдах Берингова пролива ледокола «Челюскин». За отвагу и мужество, проявленные при спасении экипажа ледокола, постановлением ЦИК СССР от 20 апреля 1934 первое звание Героя Советского Союза было присвоено лётчикам А. В. Ляпидевскому, С. А. Леваневскому, В. С. Молокову, Н. П. Каманину, М. Т. Слепнёву, М. В. Водопьянову, И. В. Доронину. Спустя 3 года, 18-20 июня 1937, лётчики В. П. Чкалов, Г. Ф. Байдуков и штурман А. В. Беляков на самолёте АНТ-25 совершили перелёт по маршруту Москва - Северный полюс - Ванкувер (США), пролетев без посадки по прямой 8504 кмза 63 ч16 мин.Через месяц после этого перелёта (12-14 июля) лётчики М. М. Громов, А. Б. Юмашев и штурман С. А. Данилин на самолёте АНТ-25 пролетели без посадки по маршруту Москва - Северный полюс - Сан-Джасинто (Калифорния, США), покрыв расстояние по прямой 10148 кмза 62 ч17 мини установив мировой рекорд дальности беспосадочного полёта. 24-25 сентября 1938 на самолёте конструкции П. О. Сухого «Родина» лётчицы В. С. Гризодубова, П. Д. Осипенко и штурман М. М. Раскова совершили перелёт по маршруту Москва - Дальний Восток (район реки Амгунь). Самолёт пролетел по прямой без посадки 5908 кмза 26 ч29 мин,что было признано женским международным рекордом дальности полёта. 28-29 апреля 1939 лётчик В. К. Коккинаки и штурман М. Х. Гордиенко на самолёте конструкции Ильюшина ЦКБ-30 « Москва» совершили беспосадочный перелёт из Москвы через Гренландию в Северную Америку [о. Мискоу (Миску) в заливе Святого Лаврентия, Канада], пролетев за 22ч56 миноколо 8 тыс. км(по прямой 6516 км) .Все эти и другие перелёты тех лет свидетельствовали о мастерстве и отваге советских лётчиков, о крупных научных и технических достижениях отечественной А., радиосвязи и метеослужбы.

  За рубежом, в Англии, Франции, США, Германии и других странах, в 20-30-е гг. 20 в. было создано несколько сот типов военных и гражданских самолётов, многие из которых выпускались большими сериями. Среди иностранных самолётов выделялись английский «Супермарин S. 6В» (в 1931 на нём был установлен рекорд скорости - 656 км/ч) ,американской фирмы «Райан», на котором в 1927 лётчик Ч. Линдберг впервые перелетел через Атлантический океан из США в Европу, и пассажирский ДС-3 американской фирмы «Дуглас», на долгие годы ставший основным самолётом гражданской А. многих стран мира.

  Первоначально большинство самолётов строилось по бипланной схеме, но к середине 30-х гг. определился решительный и окончательный переход от биплана к моноплану.Это было обусловлено достижениями аэродинамики, строительной механики и двигателестроения. Были созданы точные методы расчёта на прочность. Разработка и применение на самолётах тормозных колёс и механизации крыла (щитков, закрылков, предкрылков) позволили увеличить удельную нагрузку на крыло с 700-1000 до 1400-1700 н/м 2и тем самым повысить скорость полёта. Важнейшим достижением аэродинамики, обеспечившим снижение аэродинамического сопротивления самолёта на 20-25%, было решение проблемы уборки шасси в полёте и внедрение винтов изменяемого шага. Росту скорости полёта способствовало также усовершенствование капотирования двигателей, переход к закрытым фонарям кабин и обтекаемым, зализанным формам фюзеляжей, применение гладкой обшивки крыла и потайной клёпки. Всё это позволило добиться увеличения скорости самолётов на 20-30% при той же мощности двигателей. Продолжалось дальнейшее совершенствование методов расчёта и проектирования авиационных двигателей. Конструкторам совместно с учёными удалось повысить мощность серийных двигателей с 700-800 до 2000