Лучшими в гигиеническом отношении являются газовые отопительные приборы с отводом продуктов сгорания в атмосферу, например камины, а также приборы с изолированными от помещения газоходом и топливником, к которому необходимый для горения воздух подводится снаружи. Эти приборы устанавливаются обычно у наружных стен под окнами. Они состоят из корпуса-нагревателя с топливником, где сжигается газ, и надеваемого на него защитного кожуха, имеющего отверстия для прохода подогретого воздуха в помещение. Корпус-нагреватель сообщается с наружным воздухом двумя проходящими через стену каналами: по одному к топливнику подводится наружный воздух, а по другому - отводятся наружу прошедшие через корпус-нагреватель и отдавшие тепло продукты сгорания.

  Г. о. в СССР применяется главным образом в некоторых производственных, а также в общественных зданиях с временным пребыванием людей. Вместе с тем газ широко применяется для отопления как топливо в котлах (реже - воздухоподогревателях) систем водяного, парового и воздушного отопления. Целесообразность широкого использования газа для отопления промышленных и коммунально-бытовых предприятий, а также в котельных централизованного теплоснабжения, особенно в крупных городах, в значительной мере определяется тем, что продукты его сгорания почти не загрязняют воздушный бассейна города, подача газа к потребителям происходит по трубопроводам, не загружается транспорт. Внедрение автоматики и дистанционного управления при сжигании газа создаёт благоприятные условия для безопасности его применения. Котельные, работающие на газовом топливе, могут располагаться в верхнем этаже отапливаемого здания. Газ может использоваться также в комбинированных установках, которые обеспечивают зимой отопление зданий, а летом - их охлаждение.

  Лит.:Отопление и вентиляция, 3 изд., ч. 1, М., 1964.

  И.Ф. Ливчак.

Газовое хранилище

Га'зовое храни'лище,природный или искусственный резервуар для хранения газа. Различают Г. х. наземные (см. Газгольдер ) и подземные. Основное промышленное значение имеют подземные Г. х., способные вмещать сотни млн. м 3(иногда млрд. м 3) газа. Они менее опасны и во много раз экономически эффективнее, чем наземные. Удельный расход металла на их сооружение в 20-25 раз меньше. В отличие от газгольдеров, предназначенных для сглаживания суточной неравномерности потребления газа, подземные Г. х. обеспечивают сглаживание сезонной неравномерности. В зиму 1968-69 из подземных Г. х. в Москву в сутки подавалось до 20 млн. м 3природного газа, а из газгольдеров - только 1 млн. м 3.Летом, когда резко уменьшается расход газа, особенно за счёт отопления, его накапливают в Г. х., а зимой, когда потребность в газе резко возрастает, газ из хранилищ отбирают ( рис. ). Кроме того, подземные Г., х. служат аварийным резервом топлива и химического сырья.

  Газотранспортная система, рассчитанная на максимальную потребность в газе, на протяжении года будет не загружена, если же исходить из минимальной подачи, то город в отдельные месяцы не будет полностью обеспечен газом. Поэтому газотранспортную систему сооружают исходя из средней её производительности, а вблизи крупных потребителей газа создают Г. х. Сезонную неравномерность потребления газа частично выравнивают с помощью т. н. буферных потребителей, которые летом переводятся на газ, а зимой используют др. вид топлива (обычно мазут или уголь).

  Подземные Г. х. сооружаются двух типов: в пористых породах и в полостях горных пород. К первому типу относятся хранилища в истощённых нефтяных и газовых месторождениях, а также в водоносных пластах. В них природный газ обычно хранится в газообразном состоянии. Ко второму типу относятся хранилища, созданные в заброшенных шахтах, старых туннелях, в пещерах, а также в специальных горных выработках, которые сооружаются в плотных горных породах (известняках, гранитах, глинах, каменной соли и др.). В полостях горных пород газы хранятся преимущественно в сжиженном состоянии при температуре окружающей среды и при давлении порядка 0,8-1,0 Мн/м 2(8-10 кгс/см 2) и более. Обычно это пропан, бутан и их смеси. С начала 60-х гг. применяется в промышленных масштабах подземное и наземное хранение природного газа в жидком состоянии при атмосферном давлении и низкой температуре (т. н. изотермические хранилища).

  Наиболее дёшевы и удобны Г. х., созданные в истощённых нефтяных и газовых залежах. Приспособление этих ёмкостей под хранилища сводится к установке дополнительного оборудования, ремонту скважин, прокладке необходимых коммуникаций. В тех районах, где нужны резервы газа, а истощённые нефтяные и газовые залежи отсутствуют, Г. х. устраивают в водоносных пластах. Г. х. в водоносном пласте представляет собой искусственно созданную газовую залежь, которая эксплуатируется циклически. Для устройства такой залежи необходимо, чтобы водоносный пласт был достаточно порист, проницаем, имел бы ловушку для газа и допускал оттеснение воды из ловушки на периферию пласта. Обычно ловушка - это куполовидное поднятие пласта, перекрытое непроницаемыми породами, чаще всего глинами. Газ, закачанный в ловушку, оттесняет из неё воду и размещается над водой. Плотные отложения, образуя кровлю над пластом-коллектором, не позволяют газу просочиться вверх. Пластовая вода удерживает газ от ухода его в стороны и вниз. При создании Г. х. в водоносном пласте основная трудность состоит в том, чтобы выяснить, действительно ли разведываемая часть пласта представляет собой ловушку для газа. Кроме того, необходимо в условиях обычно значит, неоднородности пласта наиболее полно вытеснить из него воду, не допуская при этом ухода газа за пределы ловушки. Создание Г. х. в водоносном пласте продолжается в среднем 3- 8 лет и обходится в несколько млн. руб. Срок окупаемости капитальных затрат составляет 2-3 года. Г. х. в водоносных пластах устраивают обычно на глубине от 200- 300 до 1000-1200 м.

 В СССР на основе теоретических работ И. А. Чарного разработано и впервые в мире осуществлено в промышленных масштабах вблизи Ленинграда (Гатчинское подземное Г. х.) хранение газа в горизонтальных и пологопадающих водоносных пластах (1963). Этот метод основан на том, что газовый объём, находящийся в водонасыщенной пористой среде (при достаточно больших его размерах), расплывается в горизонтальном пласте очень медленно и утечки не имеют существенного значения. Хранение газа без ловушек представляет большой практический интерес, поскольку во многих газопотребляющих районах отсутствуют благоприятные условия для создания водоносных газохранилищ обычного типа.

  Из Г. х. в полостях горных пород наибольшее значение имеют хранилища, сооруженные в отложениях каменной соли. Создание такой ёмкости в 10-20 раз дешевле, чем в др. горных породах. Ёмкость в каменной соли создаётся обычно путём выщелачивания её водой через скважины, которые используются затем при эксплуатации хранилища. Объём одной каверны достигает 100-150 тыс. м 3.Размыв такой каверны продолжается 3-4 года. Хранилище в соли сооружают на глубине от 80-100 до 1000 ми более. Для хранения природного газа целесообразны глубокие хранилища, т. к. в них можно поддерживать более высокие давления и, следовательно, содержать в заданном объёме больше газа.

  Особое место занимают изотермические подземные Г. х. (например, для сжиженного метана), которые представляют собой котлован с замороженными стенками. Верхняя часть резервуара укреплена бетонным кольцом, на которое опирается стальная крыша с теплоизоляционным материалом. Для сооружения изотермического хранилища по его периметру бурится кольцевая батарея скважин, с помощью которых грунт вокруг будущего хранилища на период строительства замораживается. После сооружения ёмкости и заполнения её сжиженным метаном надобность в морозильных скважинах отпадает. Сжиженный метан хранится при атмосферном давлении и температуре - 161, - 162 °С. Толщина замороженных грунтовых стенок резервуара медленно растет и достигает 10-15 м.Потери тепла со временем уменьшаются. Низкая температура в хранилище поддерживается за счёт испарения части метана (2-4% в месяц). Пары собираются, сжижаются и возвращаются в хранилище. Отбор метана производится погружными центробежными насосами и последующей регазификацией жидкости на специальных установках. Изотермические Г. х. создают в различных условиях, в том числе и в слабоустойчивых грунтах. Геометрическая ёмкость их достигает 80 тыс. м 3.Изотермическое хранение метана обычно значительно дороже, чем хранение его в газообразном состоянии в водоносных пластах. Для хранения углеводородов в жидком состоянии применяются и наземные ёмкости - стальные резервуары с двойными стенками, между которыми помещен теплоизоляционный материал. Наземные изотермические Г. х. относительно дороги и металлоёмки, поэтому они распространены мало.

  Историческая справка. Первое подземное Г. х. сооружено в Канаде (1915) в истощённой залежи. Наибольшее развитие подземное хранение газа получило в США, где в 1968 насчитывалось 330 Г. х., общая ёмкость которых составляла 124 млрд. м 3.Подземные Г. х. имеются также в ГДР, Польше, Чехословакии, ФРГ, Франции и др. странах. В СССР первым было сооружено Башкатовское Г. х. в Куйбышевской обл. (1958) на базе истощённой газовой залежи. В 1959 началось заполнение газом Калужского водоносного газохранилища, и с 1963 оно эксплуатируется. Его объём - 400 млн. м 3.Позднее в водоносном пласте было создано одно из крупнейших в мире - Щёлковское Г. х.; в нём хранится около 3,0 млрд. м 3газа, максимальное давление - 11 Мн/м 2(110 кгс/см 2) .Рабочий расход газа по этому хранилищу достигает 15 млн. м 3в сутки.

  В СССР газ в промышленных масштабах отбирается из 5 Г. х., созданных в истощённых залежах, и из 7 - в водоносных пластах; два Г. х. сооружены в отложениях каменной соли (1969). Два крупных подземных Г. х. созданы в истощённых газовых месторождениях Саратовской обл. В них производится закачка газа из мощной системы газопроводов Средняя Азия - Центр. Начаты работы по сооружению крупнейших Г. х. на базе истощённых месторождений Зап. Украины, Башкирии и Азербайджана. Значительно расширяются Калужское, Щёлковское (РСФСР) и Олишевское (УССР) хранилища; заполняются газом Краснопартизанское (УССР), Инчукалнское (Латвийская ССР) и др. хранилища. К 1975 общую ёмкость отечественных подземных Г. х. намечено довести до 51 млрд. м 3.

  Лит.:Сидоренко М. В., Подземное хранение газа, М., 1965: Хейн А. Л., Гидродинамический расчёт подземных хранилищ газа, М., 1968; Хранение газа в горизонтальных и пологозалегающих водоносных пластах, М., 1968.

  Е. В. Левыкин

График газопотребления промышленного города по месяцам.

Газовоз

Газово'з,судно, перевозящее сжиженные газы (пропан, бутан, метан, аммиак и др.). Газы транспортируются в цистернах под давлением 1-1,8 Мн/м 2(10-18 кгс/см 2) ,сильно охлажденными либо при небольшом совместном охлаждении и сжатии. Грузоподъёмность современных Г. от нескольких десятков до 25-35 тыс. т,грузовместимость достигает 70 тыс. м 3и более. Цистерны Г. цилиндрические, сферические или прямоугольные, с тепловой изоляцией наружной или внутренние поверхности. Г. оборудуются системами разгрузки, отвода испаряющихся газов, подачи в цистерны инертного газа и др. Предусмотрены дистанционный контроль состояния груза (уровня, температуры, давления) и противопожарные средства.

Газовыделение

Газовыделе'ниегорные выработки, выделение метана или др. природного газа из толщи полезного ископаемого и вмещающих пород в подземные горные выработки. Различают Г.: обыкновенное (происходит медленно, но непрерывно из трещин и пор в угле и породе по всей свободной поверхности; оно увеличивается при отделении угля от массива); суфлярное (местное выделение газа из трещин, газовый фонтан, действующий иногда продолжит, время); внезапное (местное бурное выделение больших количеств газа за небольшой промежуток времени, сопровождающееся разрушением поверхности забоя). Борьба с Г. успешно ведётся с помощью дегазации полезных ископаемых и вмещающих пород. См. также Газовый баланс.

Газовые конгрессы

Га'зовые конгре'ссымеждународные, проводятся с 1931 по инициативе Международного газового союза (МГС), основанного в 1930. К 1970 проведено одиннадцать Г. к., в пяти из которых принимали участие советские специалисты (табл.). Местом проведения очередного Г. к. является страна, представитель которой избирается на 3-летний срок президентом МГС. Программа Г. к. разрабатывается оргкомитетом страны-организатора совместно с Советом МГС. На обсуждение конгресса представляются отчётные доклады комитетов МГС, а также индивидуальные доклады специалистов и учёных национальных газовых ассоциаций по вопросам добычи и производства газа, состояния науки и техники газового дела и др.

  К 11-му Г. к., проходившему в Москве в июне 1970, впервые в международной практике была приурочена специализированная Международная выставка газового оборудования, аппаратуры и приборов «Интергаз-70».

  12-й Г. к. принято решение провести в 1973 в Канне (Франция), 13-й - в 1976 в Лондоне (Великобритания).

Международные газовые конгрессы с участием СССР

Конгресс Место проведения Год Число стран-участниц Число участников Число докладов
7-й Рим (Италия) 1958 18 750 46
8-й Стокгольм (Швеция) 1961 22 980 48
9-й Гаага (Нидерланды 1964 31 1500 56
10-й Гамбург (ФРГ) 1967 30 2250 77
11-й Москва (СССР) 1970 47 3500 173

  А. И. Сорокин.

Газовые приборы

Га'зовые прибо'ры,устройства, применяемые в жилых и общественных зданиях для приготовления пищи, подогрева воды, отопления помещений и для создания искусственного холода. В качестве энергии в Г. п. используют тепло, выделяющееся при сгорании газа. Г. п., как правило, состоит из газовой горелки с подводящим газопроводом, теплообменного устройства и устройства для удаления продуктов сгорания. Газовые холодильники, кроме этих элементов, имеют холодильный аппарат и камеру. Г. п. разделяют на: бытовые - газовые кухонные плиты, водонагреватели и холодильники домашние;отопительные (см. Газовое отопление ) и приборы предприятий общественного питания - ресторанные плиты, духовые шкафы, пищеварочные котлы и кипятильники. Г. п. чаще всего имеют газовые горелки атмосферного типа. Газ под давлением до 500 мм вод. cm.выходит из сопла и эжектирует из атмосферы от 40 до 60% воздуха, необходимого для горения. Часть газа, обеспеченная «первичным» воздухом, сгорает во внутреннем конусе пламени, образующемся на горелке. Он четко очерчен и имеет зеленовато-голубой цвет. Остальная часть газа сгорает в наружном конусе, имеющем размытые контуры и бледно-голубой цвет. «Вторичный» воздух поступает к нему непосредственно из окружающей среды. Пламя горелки не должно иметь жёлтых кончиков, а внутренний конус не должен касаться поверхностей нагрева. В противном случае в продуктах сгорания может недопустимо увеличиться концентрация окиси углерода. Для устранения жёлтых кончиков с помощью регулировочного воздушного шибера увеличивают количество первичного воздуха.

  Производительность горелок бытовых Г. п. изменяется от 0,02 до 5 м 3/час(в расчёте на природный газ). На газопроводе перед Г. п. устанавливают отключающий пробочный кран. Г. п. оснащают автоматически действующими устройствами, прекращающими поступление газа при нарушениях работы Г. п. и регулирующими производительность горелок в зависимости от технологических требований. Газовые горелки располагают открыто или в топочных камерах. При открытом расположении продукты сгорания поступают в помещение; при наличии топочных камер продукты сгорания отводятся в дымоходы .

  Лит.:Стаскевич Н. Л., Справочное руководство по газоснабжению, Л., 1960; Газовое оборудование, приборы и арматура. (Справочное руководство), под ред. Н. И. Рябцева, М., 1963: Ионин А. А., Газоснабжение, М., 1965.

  А. А. Ионин.

Газовые туманности

Га'зовые тума'нностив астрономии, см. Туманности галактические .

Газовый анализ

Га'зовый ана'лиз,анализ смесей газов с целью установления их качественного и количественного состава. Различают химические, физико-химические и физические методы Г. а. Химические методы основаны на поглощении компонентов газовой смеси различными реагентами. Так, углекислый газ поглощают раствором щёлочи, кислород - щелочным раствором пирогаллола,ненасыщенные углеводороды - бромной водой. О количестве газа судят по уменьшению его объёма. Достоинство химических методов Г. а. - простота конструкции приборов (газоанализаторов) и выполнения анализа. В физико-химических методах Г. а. компоненты газовой смеси поглощают раствором соответствующего реагента и измеряют электрическую проводимость (см. Электрохимические методы анализа ) ,оптическую плотность (см. Колориметрия ) или др. физико-химическую характеристику раствора. Для определения состава смесей углеводородов широко применяют метод хроматографического адсорбционного анализа (см. Хроматография ) .Физические методы Г. а. основаны на измерении плотности, вязкости, температуры кипения, теплопроводности, поглощения и испускания света (см. Спектральный анализ ) ,масс-спектров (см. Масс-спектроскопия ) и др. физических свойств газовой смеси, зависящих от её состава.

  Существенные преимущества физико-химических и физических методов Г. а. перед химическими - быстрота выполнения, возможность автоматизации анализа - обусловили их широкое распространение в различных отраслях промышленности. Г. а. применяют для установления состава природных и промышленных газов, контроля технологических процессов в металлургической, химической, нефтяной и газовой промышленности, определения токсичных, легко воспламеняющихся или взрывоопасных газов в воздухе производственных помещений. О приборах для Г. а. см. Газоанализаторы см. также лит. при этой статье.

  В. В. Краснощекое.

Газовый баланс

Га'зовый бала'нс,количество выделяющегося в шахте газа и распределение газовыделения по источникам или по системе горных выработок. Различают Г. б. отдельной выработки, выемочного участка и шахты или рудника в целом. Знание Г. б. является основной предпосылкой для выбора методов управления газовыделением,системы вентиляции шахты и системы разработки полезного ископаемого. Один из методов установления Г. б. - газовая съёмка. Г. б. шахты определяется в основном природными условиями и горнотехническими показателями разработки. Г. б. шахты по источникам метана слагается из газовыделений разрабатываемого угольного пласта (пластов); смежных газоносных угольных пластов; вмещающих пород. По структуре Г. б. метанообильные шахты могут быть разделены на 2 группы: к 1-й относят шахты, разрабатывающие одиночный пласт, ко 2-й - свиту пластов. Для 1-й группы при выемке пласта с незначительными потерями характерно выделение в призабойном пространстве свыше 75%, а в выработанном - менее 25% общего дебита метана на выемочном участке. Отличительная особенность 2-й группы - выделение в призабойном пространстве 50-60% и менее, а в выработанном 40-50% и более общего дебита метана в пределах выемочного поля.

Газовый двигатель

Га'зовый дви'гатель,двигатель внутреннего сгорания, работающий на газообразном топливе: природном и нефтяном (попутном) газах, а также сжиженном газе (пропано-бутановая смесь), доменных, генераторных и др. газах. Преимущества Г. д. перед жидкотопливными: значительно меньший износ основных деталей благодаря более совершенному смесеобразованию и сгоранию; отсутствие в выхлопных газах вредных примесей; возможность применения более высокой степени сжатия,чем в двигателях, работающих на бензине. Эффективный кпд современных стационарных Г. д. достигает 42%. Наиболее распространены Г. д., работающие по циклу дизеля (см. Газодизель ) .Г. д. мощностью до 12 тыс. квт(16 тыс. л. с.) используются в качестве энергетического источника в различных отраслях народного хозяйства, особенно в газовой и нефтяной промышленности в качестве привода газоперекачивающих установок.

  Г. д., работающие на сжиженном газе (газожидкостные двигатели), применяют в тех случаях, когда важно обеспечить безвредность и бездымность выхлопных газов, например при работе автомобилей, автопогрузчиков и тягачей в складских и подземных помещениях, для городских автобусов и т. п.

  Лит.:Генкин К. И., Газовые двигатели, М., 1962; Коллеров Л. К., Газовые двигатели поршневого типа, 2 изд., Л., 1968.

  К. И. Генкин.

Газовый каротаж

Га'зовый карота'ж,метод выявления нефтяных и газовых залежей путём систематического определения газообразных и лёгких жидких углеводородов в буровом растворе, реже в керне.

 При пробуривании скважин через нефтегазоносный пласт углеводороды попадают в буровой раствор, который и выносит их на поверхность. Производится эпизодическая или непрерывная дегазация бурового раствора, а полученный газ анализируется. Результаты анализов наносятся на диаграммы, показывающие изменения состава и содержания углеводородов по разрезу скважины. По этим диаграммам определяется глубина нахождения нефтеносного или газоносного пласта.

  Для проведения работ применяются газокаротажные станции - автомашины, в которых располагаются различные приборы, позволяющие следить за глубиной забоя скважины, скоростью её проходки и циркуляцией бурового раствора, анализировать газ, поступающий из дегазатора, определять присутствие нефти в буровом растворе и др. Результаты анализов газа автоматически регистрируются с помощью самописца. Учитывая скорость проходки скважины и её глубину, вносятся поправки, позволяющие более точно определить местоположение залежей нефти и газа по разрезу скважины.

  Г. к. проводится также и при остановке бурения скважины. Буровой раствор стоит некоторое время в скважине и обогащается углеводородами на тех участках раствора, которые находятся против нефтеносных и газоносных пластов. Затем начинается обычная циркуляция бурового раствора (как при бурении скважины) и проводится Г. к., позволяющий определить интервалы раствора, обогащенные углеводородами. Вводя поправки, учитывающие глубину скважины и скорость циркуляции бурового раствора, определяют местоположение нефтяных и газовых залежей по разрезу скважины.

  Проводится также Г. к. по кернам, которые подвергаются дегазации, а извлечённый газ анализируется. Результаты анализов позволяют делать выводы о местоположении нефтегазоносных пластов. Метод Г. к. используется также для изучения газоносности угольных пластов. В перспективе предусматривается совместное применение Г. к. с электрокаротажем.

  Г. к. впервые был разработан в СССР (1933).

  Лит.:Соколов В. А., Юровский Ю. М., Теория и практика газового каротажа, М., 1961; Юровский Ю. М., Разрешающие способности газового каротажа, М., 1964.

  Ю. М. Юровский.

Газовый конденсатор

Га'зовый конденса'тор,конденсатор с газообразным диэлектриком; к Г. к. относятся газонаполненные, воздушные и вакуумные конденсаторы. Применяются в электрических цепях, приборах и устройствах с напряжением от долей вдо сотен кв,при частотах до сотен Мгц(см. Конденсатор электрический ) .

Газовый лазер

Га'зовый ла'зер,лазер с газообразной активной средой. Трубка с активным газом помещается в оптический резонатор,состоящий в простейшем случае из двух параллельных зеркал. Одно из них является полупрозрачным.

  Испущенная в каком-либо месте трубки световая волна при распространении её через газ усиливается за счёт актов вынужденного испускания, порождающих лавину фотонов. Дойдя до полупрозрачного зеркала, волна частично проходит через него. Эта часть световой энергии излучается Г. л. вовне. Другая же часть отражается от зеркала и даёт начало новой лавине фотонов. Все фотоны идентичны по частоте, фазе и направлению распространения. Благодаря этому излучение лазера может обладать чрезвычайно большой монохроматичностью, мощностью и резкой направленностью (см.