Лазер, Квантовая электроника) .

 Первый Г. л. был создан в США в 1960 А. Джаваном. Существующие Г. л. работают в очень широком диапазоне длин волн - от ультрафиолетового излучения до далёкого инфракрасного излучения - как в импульсном, так и в непрерывном режиме. В табл. приведены некоторые данные о наиболее распространённых Г. л. непрерывного действия.

  Из Г. л., работающих только в импульсном режиме, наибольший интерес представляют лазеры ультрафиолетового диапазона на ионах Ne (l =0,2358 мкми l =0,3328 мкм) и на молекулах N 2(l = 0,3371 мкм). Азотный лазер обладает большой импульсной мощностью.

  В излучении Г. л. наиболее отчётливо проявляются характерные свойства лазерного излучения - высокая направленность и монохроматичность. Существенным достоинством является их способность работать в непрерывном режиме. Применение новых методов возбуждения (см. ниже) и переход к более высоким давлениям газа могут резко увеличить мощность Г. л. С помощью Г. л. возможно дальнейшее освоение далёкого инфракрасного диапазона, диапазонов ультрафиолетового и рентгеновского излучений. Открываются новые области применения Г. л., например в космических исследованиях.

  Особенности газов как лазерных материалов.По сравнению с твёрдыми телами и жидкостями газы обладают существенно меньшей плотностью и более высокой однородностью. Поэтому световой луч в газе практически не искажается, не рассеивается и не испытывает потерь энергии. В таких лазерах сравнительно просто возбудить только один тип электромагнитных волн (одну моду). В результате направленность лазерного излучения резко увеличивается, достигая предела, обусловленного дифракцией света.Расходимость светового луча Г. л. в области видимого света составляет 10 -5- 10 -4 рад,а в инфракрасной области 10 -4- 10 -3 рад.

 В отличие от твёрдых тел и жидкостей, составляющие газ частицы (атомы, молекулы или ионы) взаимодействуют друг с другом только при соударениях в процессе теплового движения. Это взаимодействие слабо влияет на расположение уровней энергии частиц. Поэтому энергетический спектр газа соответствует уровням энергии отдельных частиц. Спектральные линии, соответствующие переходам частиц с одного уровня энергии на другой, в газе уширены незначительно. Узость спектральных линий в газе приводит к тому, что в линию попадает мало мод резонатора.

  Так как газ практически не влияет на распространение излучения в резонаторе, стабильность частоты излучения Г. л. зависит главным образом от неподвижности зеркал и всей конструкции резонатора. Это приводит к чрезвычайно высокой стабильности частоты излучения Г. л. Частота w излучения Г. л. воспроизводится с точностью до 10 -11, а относительная стабильность частоты

 

  Малая плотность газов препятствует получению высокой концентрации возбуждённых частиц. Поэтому плотность генерируемой энергии у Г. л. существенно ниже, чем у твердотельных лазеров.

  Создание активной газовой среды в газоразрядных лазерах.Активной средой Г. л. является совокупность возбуждённых частиц газа (атомов, молекул, ионов), обладающих инверсией населённостей.Это означает, что число частиц, «населяющих» более высокие уровни энергии, больше, чем число частиц, находящихся на более низких энергетических уровнях. В обычных условиях теплового равновесия имеет место обратная картина - населённость низших уровней больше, чем более высоких (см. Больцмана статистика ) .В случае инверсии населённостей акты вынужденного испускания фотонов с энергией hn = Ев - Ен, сопровождающие вынужденный переход частиц с верхнего уровня Евна нижний Ен,преобладают над актами поглощения этих фотонов. В результате этого активный газ может генерировать электромагнитное излучение частоты

 

  или с длиной волны

 

  Одна из особенностей газа (или смеси газов) - многообразие физических процессов, приводящих к его возбуждению и созданию в нём инверсии населённостей. Возбуждение активной среды излучением газоразрядных ламп, нашедшее широкое применение в твердотельных и жидкостных лазерах, мало эффективно для получения инверсии населённостей в Г. л., т. к. газы обладают узкими линиями поглощения, а лампы излучают свет в широком интервале длин волн. В результате может быть использована только ничтожная часть мощности источника накачки (кпд мал). В подавляющем большинстве Г. л. инверсия населённостей создаётся в электрическом разряде (газоразрядные лазеры). Электроны, образующиеся в разряде, при столкновениях с частицами газа (электронный удар) возбуждают их, переводя на более высокие уровни энергии. Если время жизни частиц на верхнем уровне энергии больше, чем на нижнем, то в газе создаётся устойчивая инверсия населённостей. Возбуждение атомов и молекул электронным ударом является наиболее разработанным методом получения инверсии населённостей в газах. Метод электронного удара применим для возбуждения Г. л. как в непрерывном, так и в импульсном режимах.

  Возбуждение электронным ударом удачно сочетается с др. механизмом возбуждения - передачей энергии, необходимой для возбуждения частиц одного сорта от частиц др. сорта при неупругих соударениях (резонансная передача возбуждения). Такая передача весьма эффективна при совпадении уровней энергии у частиц разного сорта ( рис. 1 ).

  В этих случаях создание активной среды происходит в два этапа: сначала электроны возбуждают частицы вспомогательного газа, затем эти частицы в процессе неупругих соударений с частицами рабочего газа передают им энергию. В результате этого населяется верхний лазерный уровень. Чтобы хорошо накапливалась энергия, верхний уровень энергии вспомогательного газа должен обладать большим собственным временем жизни. Именно по такой схеме осуществляется инверсия населённостей в гелий-неоновом лазере.

  Гелий-неоновый лазер(А. Джаван, США, 1960). В гелий-неоновом лазере рабочим веществом являются нейтральные атомы неона Ne. Атомы гелия Не служат для передачи энергии возбуждения. В электрическом разряде часть атомов Ne переходит с основного уровня e 1на возбуждённый верхний уровень энергии E 3. Но в чистом Ne время жизни на уровне E 3мало, атомы быстро «соскакивают» с него на уровни E 1и E 2, что препятствует созданию достаточно высокой инверсии населённостей для пары уровней E 2и E 3. Примесь Не существенно меняет ситуацию. Первый возбуждённый уровень Не совпадает с верхним уровнем E 3неона. Поэтому при столкновении возбуждённых электронным ударом атомов Не с невозбуждёнными атомами Ne (с энергией E 1) происходит передача возбуждения, в результате которой атомы Ne будут возбуждены, а атомы Не вернутся в основное состояние. При достаточно большом количестве атомов Не можно добиться преимущественного заселения уровня неона. Этому же способствует опустошение уровня E 2неона, происходящее при соударениях атомов со стенками газоразрядной трубки. Для эффективного опустошения уровня E 2диаметр трубки должен быть достаточно мал. Однако малый диаметр трубки ограничивает количество Ne и, следовательно, мощность генерации, Оптимальным, с точки зрения максимальной мощности генерации, является диаметр около 7 мм.Т. о., в результате специального подбора количеств ( парциальных давлений ) Ne и Не и при правильном выборе диаметра газоразрядной трубки устанавливается стационарная инверсия населённостей уровней энергии E 2и E 3неона.

 неона E 2и E 3.Уровни обладают сложной структурой, т. е. состоят из множества подуровней. В результате гелий-неоновый лазер может работать на 30 длинах волн в области видимого света и инфракрасного излучения. Зеркала оптического резонатора имеют многослойные диэлектрические покрытия. Это позволяет создать необходимый коэффициент отражения для заданной длины волны и возбудить тем самым в Г. л. генерацию на требуемой частоте.

  Основной конструктивный элемент гелий-неонового лазера - газоразрядная трубка (обычно из кварца). Давление газа в разряде 1 мм рт. ст.,причём количество Не обычно в 10 раз больше, чем Ne. На рис. 2 приведена конструкция гелий-неонового лазера, разработанная для применения в открытом космосе. Разрядная трубка с внутренним диаметром 1,5 ммиз корундовой керамики помещена между полупрозрачным зеркалом и отражающей призмой, смонтированными на жёсткой бериллиевой трубе (цилиндре). Разряд осуществляется на постоянном токе (8 ма,1000 в) в двух секциях (каждая длиной 127 мм) с общим центральным катодом. Холодный оксиднотанталовый катод (диаметром 48 мми длиной 51 мм) разделён на 2 половины диэлектрической прокладкой, обеспечивающей более однородное распределение тока по поверхности катода. Вакуумные сильфоны из нержавеющей стали, являющиеся анодами, образуют подвижное соединение каждой трубки с держателями зеркала и призмы. Кожух завершен с левого конца выходным окном. Лазер рассчитан на работу в космосе в течение 10 000 ч.

  Мощность излучения гелий-неоновых лазеров может достигать десятых долей вт,кпд не превышает 0,01%, но высокая монохроматичность и направленность излучения, простота в обращении и надёжность конструкции обусловили их широкое применение. Красный гелий-неоновый лазер (l = 0,6328 мкм) используется при юстировочных и нивелировочных работах (шахтные работы, кораблестроение, строительство больших сооружений). Гелий-неоновый лазер широко применяется в оптической связи и локации, в голографии и в квантовых гироскопах.

  Лазер на углекислом газе(К. Пател, США, Ф. Легей, Н. Легей-Соммер, Франция, 1964). Молекулы, в отличие от атомов, имеют не только электронные, но и т. н. колебательные уровни энергии, обусловленные колебаниями атомов, составляющих молекулу, относительно положений равновесия (см. Молекула ) .Переходы между колебательными уровнями энергии соответствуют инфракрасному излучению. Лазеры, в которых используются эти переходы, называются молекулярными. Из числа молекулярных лазеров особенно интересен лазер, в котором используются колебательные уровни молекулы СО 2, между которыми создаётся инверсия населённостей (СО 2-лазер).

  В газоразрядных CO 2-лазерах инверсия населённостей также достигается возбуждением молекул электронным ударом и резонансной передачей возбуждения. Для передачи энергии возбуждения служат молекулы азота N 2, возбуждаемые, в свою очередь, электронным ударом. Обычно в условиях тлеющего разряда около 90% молекул азота переходит в возбуждённое состояние, время жизни которого очень велико. Молекулярный азот хорошо аккумулирует энергию возбуждения и легко передаёт её молекулам CO 2в процессе неупругих соударений. Высокая инверсия населённостей достигается при добавлении в разрядную смесь Не, который, во-первых, облегчает условия возникновения разряда и, во-вторых, в силу своей высокой теплопроводности охлаждает разряд и способствует опустошению нижних лазерных уровней молекулы CO 2. Эффективное возбуждение СО 2-лазеров может быть достигнуто химическими или газодинамическими методами.

  Тонкая структура колебательных уровней молекулы C0 2позволяет изменять длину волны (перестраивать лазер) скачками через 30-50 Ггцв интервале длин волн от 9,4 до 10,6 мкм.

 СО 2-лазеры обладают высокой мощностью (наибольшая мощность лазерного излучения в непрерывном режиме) и высоким кпд. При возбуждении молекул CO 2электронным ударом и длине газоразрядной трубы 200 мСО 2-лазер излучает мощность 9 квт.Существуют компактные конструкции с выходной мощностью в 1 квт.Кроме высокой выходной мощности, СО 2-лазеры обладают большим кпд, достигающим 15-20% (возможно достижение кпд 40%). СО 2-лазеры могут принципиально эффективно работать и в импульсном режиме. Перечисленные особенности CO 2-лазеров обусловливают многообразие их применения: технологические процессы (резание, сварка), локация и связь (атмосфера прозрачна для волн с l = 10 мкм) ,физические исследования, связанные с получением и изучением высокотемпературной плазмы (высокая мощность излучения), исследование материалов и т. д.

  Газоразрядные трубки СО 2-лазеров имеют диаметр от 2 до 10 см,длина их может быть очень большой ( рис. 3 ). Обычно применяются секционные (модульные) конструкции с током разряда до нескольких апри напряжениях до 10 квна секцию. Т. к. мощность СО 2-лазеров непрерывного действия достигает очень высоких значений, серьёзной проблемой является изготовление достаточно долговечных зеркал хорошего оптического качества. Применяются покрытые золотом сапфировые или металлические зеркала. Вывод излучения зачастую производится через отверстия в зеркалах. В качестве полупрозрачных выходных зеркал применяются пластины из высокоомного германия, арсенида галлия и т. п.

  В электрическом разряде СО 2-лазеров имеют место нежелательные эффекты, разрушающие инверсию населённостей, - разогрев газа и диссоциация его молекул. Для их устранения газовая смесь непрерывно «прогоняется» через разрядные трубы лазеров. Так происходит обновление активной среды. Для получения больших мощностей (несколько квт) в непрерывном режиме газ прогоняют через трубку с большой скоростью и разряд происходит в сверхзвуковом потоке. Для того чтобы избежать потерь дорогостоящего Не, газовая смесь циркулирует по замкнутому контуру. Возбуждение электронным ударом производится либо в резонаторе, либо непосредственно перед поступлением смеси в резонатор. В лучших приборах практически все молекулы CO 2, влетающие в резонатор, уже возбуждены и за время пролёта через резонатор отдают энергию возбуждения в виде кванта излучения.

  Ионные лазеры(У. Бриджес, США, 1964). В ионных лазерах инверсия населённостей создаётся между электронными уровнями энергии ионизированных атомов инертных газов и паров металлов. Инверсия населённостей достигается выбором пары уровней, для которой нижний лазерный уровень обладает меньшим, а верхний - большим временами жизни. Необходимость создания большого количества ионов приводит к тому, что плотность тока газового разряда в ионных лазерах достигает десятков тысяч а/см 2Электрический разряд осуществляется в тонких капиллярах диаметром до 5 мм.При больших плотностях тока газ увлекается током от анода к катоду. Для компенсации этого эффекта анодная и катодная области разрядной трубки соединяются дополнительной длинной трубкой малого диаметра, обеспечивающей обратное движение газа.

  Ввиду высокой плотности тока для изготовления газоразрядных трубок ионных лазеров применяются металлокерамические конструкции или трубки из бериллиевой керамики, обладающие высокой теплопроводностью. Кпд ионных лазеров не превышает 0,01%. В области видимого света сравнительно высокой мощностью в непрерывном режиме обладают аргоновые лазеры. Аргоновый ионный лазер генерирует излучение с l = 0,5145 мкм(зелёный луч) мощностью до нескольких десятков вт.Он применяется в технологии обработки твёрдых материалов, при физических исследованиях, в оптических линиях связи, при оптической локации искусственных спутников Земли.

  Ионный лазер на смеси ионов аргона и криптона обладает способностью перестраиваться по длине волны (сменой зеркал) во всём видимом диапазоне. Он излучает мощность до 0,1 втна волнах 0,4880 мкм(синий), 0,5145 мкм(зелёный), 0,5682 мкм(жёлтый) и 0,6471 мкм(красный луч).

  Весьма перспективен лазер на парах кадмия, работающий в непрерывном режиме в синей (0,4416 мкм) и ультрафиолетовой (0,3250 мкм) областях спектра и обладающий высокой монохроматичностью. Пары Cd образуются в испарителе, расположенном около анода ( рис. 4 ). Они сильно разбавлены Не. Равномерное распределение Cd в газоразрядной трубке и подбор его концентрации достигаются увлечением паров Cd ионами Не от анода к катоду. Плотность паров Cd определяется температурой подогревателя. В охладителе около катода Cd конденсируется. Трубка диаметром 2,5 мми длиной 140 смпри давлении Не 4,5 мм рт. ст.,температуре подогревателя 250 °С, токе разряда 0,12 аи напряжении 4 квпозволяет получить мощность 0,1 втв синей и 0,004 втв ультрафиолетовой областях спектра. Кадмиевый лазер применяется в оптических исследованиях (см. Нелинейная оптика ) ,океанографии, а также фотобиологии и фотохимии.

  Газодинамические лазеры (В. К. Конюхов и А. М. Прохоров, СССР, 1966). Характерной особенностью газов является возможность создания быстрых потоков газовых масс. Если предварительно сильно нагретый газ внезапно расширяется, например при протекании со сверхзвуковой скоростью через сопло, то его температура резко падает. При внезапном снижении температуры молекулярного газа колебательные уровни энергии молекул могут оказаться возбуждёнными (газодинамическое возбуждение). Существует СО 2-лазер с газодинамическим возбуждением. При газодинамическом возбуждении тепловая энергия непосредственно преобразуется в энергию электромагнитного излучения. Мощность излучения газодинамических лазеров, работающих в непрерывном режиме, достигает 100 квт.

  Химические лазеры.Инверсия населённостей в некоторых газах может быть создана в результате химических реакций, при; которых образуются возбуждённые атомы, радикалы или молекулы. Газовая среда удобна для химического возбуждения, т. к. реагирующие вещества легко и быстро перемешиваются и легко транспортируются. Химические лазеры интересны тем, что в них происходит прямое преобразование химической энергии в энергию электромагнитного излучения. Примером химического возбуждения может служить возбуждение при цепной реакции соединения фтора с дейтерием, в результате которой получается возбуждённый дейтерид фтора DF, передающий в дальнейшем энергию своего возбуждения молекулам CO 2. Удаление продуктов реакции обеспечивает непрерывный характер работы этих лазеров.

  К химическим лазерам примыкают Г. л., в которых инверсия населённостей достигается с помощью реакций фотодиссоциации (распада молекул под действием света). Это быстропротекающие реакции, в ходе которых возникают возбуждённые радикалы или атомы. Существует лазер на фотодиссоциации молекулы CF зI (С. Г. Раутиан, И. И. Собельман, СССР). Диссоциация происходит под действием излучения ксеноновой лампы-вспышки. Осколком реакции является возбужденный атомарный ион I +

Лазер Длина волны,мкм Мощность, вт
Кадмиевый 0,3250 несколько тысячных долей
Кадмиевый 0,4416 десятые доли
Аргоновый 0,4880 единицы
Аргоновый 0,5145 десятки
Криптоновый 0,5682 единицы
Гелий-неоновый 0,6328 десятые доли
Гелий-неоновый 1,1523 сотые доли
Ксеноновый 2,0261 сотые доли
Гелий-неоновый 3,3912 сотые доли
СО-лазер 5,6-5,9 сотни
СО 2-лазер 9,4-10,6 дес. тысяч
Лазер на молекулах HCN 337 тысячные доли

  Лит.:Квантовая электроника, М., 1969; Беннет В., Газовые лазеры, пер. с англ., М., 1964; Блум А., Газовые лазеры, «Тр. института инженеров по электронике и радиоэлектронике», 1966, т. 54, № 10; Пател К., Мощные лазеры на двуокиси углерода, «Успехи физических наук», 1969, т. 97, в. 4; Аллен Л., Джонс Д., Основы физики газовых лазеров, пер. с англ., М., 1970.

  Н. В. Карлов.

Рис. 3. СО 2-лазер.

Рис. 4. Схематическое изображение кадмиевого лазера: 1 - зеркала; 2 - окна для выхода излучения; 3 - катод (слева) и анод (справа); 4 - испаритель кадмия; 5 - конденсатор паров кадмия; 6 - газоразрядная трубка.

Рис. 2. Поперечное сечение конструкции гелий-неонового лазера для космических исследований.

Рис. 1. Схема уровней энергии вспомогательных и рабочих частиц газоразрядного лазера.

Газовый разряд

Га'зовый разря'д,совокупность электрических, оптических и тепловых явлений, сопровождающих прохождение электрического тока через газ. См. Электрический разряд в газах.

Газовый режим

Га'зовый режи'мшахты, распорядок, вводимый на шахтах (рудниках), опасных по выделению метана или водорода. Если шахта опасна не только по газу, но и по взрывчатой пыли, то вводится т. н. пыле-газовый режим.

  К опасным по газу относятся шахты, в которых хотя бы один раз и на одном пласте было обнаружено присутствие метана. В зависимости от газообильности шахты разделяются на 4 категории (табл.).

  Г. р. предусматривает выполнение организационно-технических мероприятий для предупреждения скопления газа до опасных пределов и появления источников воспламенения газа. Это достигается осуществлением интенсивной вентиляции выработок и дегазации полезных ископаемых и вмещающих пород; применением таких способов работ и механизмов, при которых скопление газа минимально; регулярным контролем содержания газа в воздухе горных выработок при помощи газоопределителей и аппаратуры автоматического контроля и аварийного оповещения. Вторая группа мероприятий состоит в том, чтобы не допускать в шахте открытого пламени, раскалённых предметов и искр (достигается применением предохранительных взрывчатых веществ, электрооборудования в специальном исполнении, соблюдением предохранительных мер при ведении горных работ и др.).

  При разработке пластов, опасных по внезапным выбросам и суфлярным выделениям, при наличии слоевых скоплений метана Г. р. включает ряд дополнительных мероприятий. См. также Пылевой режим.

Категории шахт

Показатели Категории по газу Сверхкатегорные
I II III
Угольные шахты
Количество метана, выделяющегося в сутки на 1 т. среднесуточной добычи, м 3 5 от 5 до 10 от 10 до 15 Св. 15 или шахты, разрабатывающие пласты, опасные по выбросам угля и газа и суфлярным выделениям газа
Рудные и нерудные шахты
Количество горючих газов (метана, водорода), выделяющихся в сутки на 1 м 3 среднесуточной добычи, м 3 до 7 от 7 до 14 от 14 до 21 21 и выше или шахты, разрабатывающие пласты, опасные по выбросам угля и газа и суфлярным выделениям газа

Примечание. При делении шахт на категории по газообильности 1м 3водорода

принимают равным 2 м 3метана.

  С. Я. Хейфи.

Газовый руль

Га'зовый руль,устройство для управления самолётами, ракетами, космическими кораблями и др. летательными аппаратами на тех участках полёта, где воздушные рули неэффективны. По конструкции Г. р. разнообразны: от пластин, изменяющих направление тяги газового потока, до сложного соплового аппарата. В самолётах вертикального взлёта и посадки ( рис. ) Г. р. применяются на режимах взлёта и посадки (до выхода на горизонтальный полёт), в ракетах и космических кораблях - на начальных участках полёта и для управления в безвоздушном пространстве.

Самолёт вертикального взлёта и посадки (а), кабина космического корабля (б), ракета (в): 1 - газовый руль; 2 - генератор газа.

Газовый сепаратор

Га'зовый сепара'тор,аппарат для очистки продукции газовых и газоконденсатных скважин от капельной влаги и углеводородного конденсата, твёрдых частиц и др. примесей. Примеси затрудняют транспортировку газа и являются причиной коррозии трубопроводов, закупорки (частичной или полной) скважин, шлейфов и промыслового оборудования вследствие образования пробок гидратов или льда (см. Гидратообразование ) .форма Г. с. цилиндрическая (горизонтальные и вертикальные).

  Г. с., как правило, имеют сепарационные секции: основную сепарационную (для отделения большей части жидкости из газового потока); осадительную, в которой примеси отделяются под действием сил гравитации; окончательной очистки газа (от мельчайших капель жидкости); для сбора и предварительного отстоя жидкости. Г. с. разделяются по типу основного сепарационного устройства на гравитационные, циклонные (центробежные) и насадочные; по положению сборника жидкости - с выносным сборником и со сборником, находящимся в объёме Г. с. Принцип действия гравитационных Г. с. основан на снижении скорости газа в них до такой величины, при которой примеси оседают под действием силы тяжести и периодически сбрасываются по мере накопления. Гравитационные Г. с. просты по конструкции и изготовлению, надёжны в работе, однако очень громоздки, металлоёмки, и эффективность их составляет 70-85%. В циклонных Г. с. сепарация примесей происходит под действием центробежных сил. При равной с гравитационными эффективности циклонные Г. с. обладают большей пропускной способностью, менее металлоёмки и имеют меньшие габаритные размеры. Наиболее эффективными являются насадочные Г. с., в которых отделение жидкости осуществляется в основном под действием сил инерции.